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A simple linear time algorithm for cograph

recognition

Michel Habib a and Christophe Paul a

aCNRS, Université Montpellier 2,

LIRMM, 161 rue Ada, 34392 Montpellier Cedex 2, France

Abstract

In this paper, we describe a new simple linear time algorithm to recognize cographs.
Cographs are exactly the P4-free graphs (where P4 denotes the path with 4 vertices).
The recognition process works in two steps. First, we use partition refinement tech-
niques to produce a factorizing permutation, ie. an ordering of the vertices in which
the strong modules appear consecutively. Then a very simple test algorithm is pro-
vided to check whether the given graph is a cograph, using a single sweep of the
permutation obtained in the first step.
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1 Introduction

The class of cographs has been intensively studied since their definition by
Seinsche [21]. Cographs are exactly the P4-free graphs. It is well known that
any cograph has a canonical tree representation, called the cotree. This tree
decomposition scheme of cographs is a particular case of the modular decom-
position [9] that applies to arbitrary graphs. Indeed, algorithm which com-
putes in linear time the modular tree decomposition of an arbitrary graph,
can also recognize cographs without additive complexity cost. In 1994, lin-
ear time modular decomposition algorithms were designed independently by
Cournier, Habib [5] and by McConnell, Spinrad [18]. More recently Dahlhaus
et al. [7] proposed a simpler algorithm. Unfortunately, because they build
the decomposition tree, all these algorithms are either complicated or need
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to maintain complicated data structures. Therefore to find a simple modular
decomposition algorithm is still an open problem.

The design of a new recognition algorithm for cographs 1 is also an interest-
ing problem. The first linear time algorithm by Corneil, Perl and Stewart [4]
incrementally builds a cotree, starting from a single vertex and adding a new
vertex at each step of the computation. The complication of this algorithm is
mainly due to the linear time complexity. In fact, each time a vertex x is added,
the cotree has to be updated using at most O(|N(x)|) elementary operations
which is far from being obvious. It should be mentioned that Dahlhaus [6]
proposed a nice parallel cograph recognition algorithm.

The new algorithm we propose in this paper is not incremental, and instead of
building directly the cotree, it first computes a special ordering of the vertices,
namely a factorizing permutation, using the very efficient partition refinement
techniques via two elementary refinement rules. In our point of view, the bot-
tleneck with respect to simplicity for all these algorithms is the decomposition
tree computation. In 1997, Capelle [2] introduced the concept of factorizing
permutation that can roughly be seen as an ordering of the leaves of the
decomposition tree.

Our algorithm really avoids complicated data structures because it never com-
putes the decomposition tree. It is a two step algorithm. The first step only
computes a permutation of the vertices, that is a factorizing permutation if the
input graph is a cograph. The second step tests the result: the computed per-
mutation has a certain property iff the input graph is a cograph. It roughly
consists of a left to right scan of the computed permutation. Both steps of
the algorithm need linear time and the main step is based on the powerful
paradigm of partition refinement and vertex splitting; thus this algorithm can
be included in a wide pool of graphs algorithms including modular decompo-
sition, transitive orientation, interval graph recognition algorithms. The inter-
ested reader can refer to [10, 11] for more examples. In [8, 11] a O(n+m log n)
version of the first step was proposed. Our algorithm can also be seen as the
first step towards a simple linear modular decomposition algorithm.

Section 2 presents in more detail the structure of cographs and some defini-
tions. The algorithm that computes a factorizing permutation of a cograph is
explained in section 3. Data-structures and complexity analysis are discussed
in section 4. Finally the recognition test is detailed in section 5.

1 Recently, a simple Lex-BFS based cograph recognition algorithm, using the du-
ality on G and G, has been proposed [1].
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2 Definitions

2.1 Cographs and factorizing permutations

Throughout this paper we consider only finite undirected simple (with no
multiple edges) graphs.

Definition 1 The class of cographs is the smallest class of graphs containing
the single vertex graph and closed under series and parallel composition.

Let G1 = (V1, E1) and G2 = (V2, E2) be two arbitrary graphs. A graph G =
(V, E) is the parallel composition of G1 and G2 if V = V1∪V2 and E = E1∪E2.
A graph G is the series composition of G1 and G2 if V = V1 ∪ V2 and E =
E1 ∪E2 ∪ {(x1, x2) s.t. x1 ∈ E1 and x2 ∈ E2}.

Therefore to each cograph can be associated several composition formulas us-
ing series and parallel operations. Such a formula can be written as a tree
whose leaves are the vertices of the graph, and the internal nodes are labeled
series or parallel depending of their corresponding operation. Among those
tree-decompositions, for each graph there exists a canonical one, the so-called
cotree [4] in which on every path, the labels series and parallel strictly alter-
nate. Figure 1 shows an example of a cograph and its cotree.

parallel parallel

series

series

f

e

dc

ba

d

cb

a

e

f

Fig. 1. A cograph and its cotree

Remark 2 In a cotree, the internal nodes of a path from a leaf to the root
are alternatively labeled series and parallel.

Remark 3 In a cograph, two vertices x and y are adjacent iff their least
common ancestor (denoted by lca(x, y)) in the cotree is a series node.

Definition 4 Let us denote by ≤T the usual partial order of the nodes of T
(i.e. n1 ≤T n2 iff n1 is a descendant of n2 in T . Equality holds when n1 = n2.)

Notation 1 Let n be an internal node of the cotree T of a given cograph G.
Let us denote by Tn the subtree of T rooted at n.
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Let M be the set of vertices that are leaves of some subtree Tn for some n. It
follows from the second remark that any pair of vertices in M have the same
neighborhood outside M ; such a set is called a module and plays an important
role in the cograph recognition algorithm. More formally:

Definition 5 A set of vertices M of a graph G is a module iff for any z and
t in M , N(z) \M = N(t) \M . A module M is a strong module iff for any
module M ′ either M ′ ⊆M or M ⊆M ′ or M ∩M ′ = ∅.

Remark 6 For any strong module M , there is an internal node n of the cotree
T such that M is exactly the set of leaves of Tn.

The algorithm we present computes a factorizing permutation, that can be
seen as a postorder traversal of the leaves of the cotree. Let us define this
permutation more precisely :

Definition 7 A factorizing permutation of a graph G = (V, E) is a permu-
tation σ of the vertex set V such that the vertices of any strong module of G
appears consecutively in σ.

In particular if G is a prime graph (i.e. has no nontrivial module) then any
permutation of the vertices is a factorizing permutation. Let us now examine
the relationships between cotrees and factorizing permutations. Although a
given cograph G has a unique cotree T (G), a cotree admits several plane
representations (drawings) in which root is on top and where the left-right
ordering of the children of each node is fixed. We first need a definition.

Definition 8 Let x, y, z be three different vertices. Then x separates y and z
if either xy ∈ E and xz /∈ E or xy /∈ E and xz ∈ E.

Lemma 9 Factorizing permutations are in one-to-one correspondence with
plane representations of a cotree.

Proof: Let A be plane representation of a cotree, the left-right ordering of the
leaves yields a factorizing permutation. Let us prove the converse by induction
on the size of G. If G has only one vertex the result is obvious. Now let σ be
a factorizing permutation of G. If G is prime its cotree T (G) has only one
internal node and the result is also obvious. Else G admits a minimal non
trivial strong module M . By definition M defines a factor of σ. The result is
obtained by contracting M to a single vertex and applying induction. 2

Most of the proofs of this paper can easily been understood geometrically
when considering the plane representation associated with a given factorizing
permutation. Furthermore for cographs since adjacency between two vertices
is completely determined by their least common ancestor in the cotree, we can
deduce some necessary conditions.
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Corollary 10 Let x, y, z be distinct vertices appearing in that order in a fac-
torizing permutation σ. If x separates y and z then lca(x, y) <T lca(y, z).

Proof: Let us consider A(σ) the plane representation associated with σ, then z
is a leaf of A(σ) that lies right to y which lies right to x. Trivially least common
ancestors are the same in the cotree and in A(σ). Let us consider the unique
path in A(σ) joining y to the root r of A(σ). lca(x, y) and lca(y, z) are two
nodes of this path. If lca(x, y) ≥T lca(y, z) this implies that lca(x, y) =
lca(x, z) which contradicts the fact that x separates y and z. 2

Corollary 11 Let x, y, z be distinct vertices appearing in that order in a fac-
torizing permutation σ such that xy /∈ E and yz ∈ E. Then xz ∈ E iff
lca(x, y) <T lca(y, z).

Proof: If xz ∈ E, then x separates y and z and corollary 10 applies. If
xz /∈ E, then z separates x and y. Same proof than for corollary 10 shows
that lca(x, y) >T lca(y, z). 2

Series

xt y z
x y z

parallel

Series

Series

parallel

Fig. 2. Illustrations of the corollaries 11 and 12

Corollary 12 Let t, x, y, z be distinct vertices appearing in that order in a
factorizing permutation σ and tx /∈ E, xy ∈ E and xz ∈ E. If t separates y
and z, then necessarily ty /∈ E and tz ∈ E.

Proof: Suppose the contrary: ty ∈ E and tz /∈ E. Corollary 11 applied to
triples t, x, y and t, x, z respectively shows that lca(x, t) <T lca(x, y) and
lca(x, z) <T lca(x, t). It follows that lca(x, z) <T lca(x, y) which would
lead to a crossing in A(σ), a contradiction. 2

The proof of lemma 9 leads to an algorithm which computes A(σ) from σ.
In fact this bijection for cographs between plane representations of cotrees
and factorizing permutations can be generalized to a bijection between plane
representations of the unique modular tree decomposition of a given graph
and its factorizing permutations. In this general setting Capelle, Habib and
Montgolfier [3] obtained a linear algorithm to compute compute A(σ) from
σ. Indeed in many applications of the modular decomposition, the factorizing
permutation is enough [14, 2, 12]. For the particular case of cographs a very
simple algorithm is provided in section 5.
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2.2 Partition refinement and vertex splitting

A partition P of a set V is a set of disjoint subsets of V , called parts of P,
{X1, . . . ,Xk} whose union is exactly V . Let P and Q be two partitions of V .
If for each part X of P there exists a part Y of Q such that X ⊆ Y , then we
say that P is thinner than Q (or Q is coarser than P).

The algorithms we develop here deal with ordered partitions. Let P be the
ordered partition [X1, . . . ,Xk] of the set V . And let u ∈ Xi and v ∈ Xj be
two arbitrary elements of different parts. Then u <P v iff i < j. For sake of
simplicity, we will also say that Xi <P Xj.

Let P and Q be two partitions of V , then P is compatible with Q, denoted
by P 4 Q (and P ≺ Q if P 4 Q and P 6= Q) iff :

• P is thinner than Q and,
• let x and y be two elements of V such that x <P y, then x 6Q y.

Clearly 4 is a partial ordering on the partitions of a given ground set V .

Definition 13 A set S striclty intersects another set S ′ iff S ∩ S ′ 6= ∅ and
S ′ − S 6= ∅.

It should be noticed that the strict intersection relation is not symmetric: set
S can be included in set S ′. Refining a partition P with a pivot set S consists
in replacing each part X ∈ P by [Xb,Xa] (in that order, recall we deal with
ordered partitions) where Xa = X ∩ S and Xb = X \ S. The new partition
obtained using this refinement operation will be denoted by Refine(P, S). A
partition P is stable with respect to S if S strictly intersects no part of P (ie.
P = Refine(P, S)). A set S strictly refines a partition P if Refine(P, S) ≺ P.

In the following we deal with partitions of the vertex set of a graph, and
we use neighborhood sets as pivot sets to refine these partitions. When the
neighborhood of a vertex x is used as a pivot set to refine the partition, then
x is called a pivot.

A vertex x splits a part C if N(x) strictly intersects C. Then x is called a
splitter for P. Notice that a vertex x is a splitter for P iff x separates at least
two vertices of some part of P.

Starting from initial partition [V ] of the vertex set of a graph G = (V, E)
and using vertex splitting operations the following algorithms will produce
a final partition [{x1}, . . .{xn}] which can be considered as an ordering or a
permutation of the vertices.
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3 Computing a factorizing permutation

In this section, the graphs we consider are supposed to be cographs. So the
existence of a cotree is assumed. The first algorithm describes how the basic
ideas for the computation of a factorizing permutation can be applied. The
second algorithm is a refinement of the first: based on two new properties it
can be implemented in linear time.

3.1 A kind of ”brute force” algorithm

Lemma 14 [11] Let x be an arbitrary vertex of a cograph, then there exists
a factorizing permutation compatible with partition P = [N(x), {x}, N(x)].

Proof: Let T be the cotree of G. As noticed in remark 3, two vertices are
adjacent in G if and only if their least common ancestor (lca) in T is a series
node. The set {lca(x, y)| s.t. y 6= x}, is exactly the set of all ancestors of x
in the cotree T . Let n be one of these nodes and let n1, . . . , nk be its sons.
Without loss of generality, we can assume that x is a leaf of Tn1

. Then insert
the subtrees Tn2

, . . . , Tnk
on the right of Tn1

iff n is a series node (see figure 3).
Applying downward this rule to any internal node on the path between x and
the root of T , produces a drawing of T where the leaf corresponding to a given
vertex y is on the right of x iff x and y are adjacent. 2

n2 nk. . .n1

x
. . .

y

series

Fig. 3. If n is a series node, then Tn2
, . . . , Tnk

are inserted on the right of Tn1

This lemma will be used as a refinement rule in the algorithms as follows:

Refinement rule 1 (Initialization rule) Let C be a partition part, then
pick an arbitrary vertex x ∈ C, hereafter called the origin of C, and refine
C into [N(x) ∩ C, {x}, N(x) ∩ C].

We will now explain how an initial partition [N(x), {x}, N(x)] can be refined
into a factorizing permutation. In order to introduce lemma 15 we need to fix
a notation.
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Notation 2 Let n be an ancestor of leaf x in the cotree. Let us denote by :
M(n, x) = {w ∈ V | lca(x, w) = n}.

Therefore M(n, x) is a subset of the leaves of the cotree, but not necessarily
a strong module.

Lemma 15 Let n be an arbitrary ancestor of a given vertex x. Then the set
of vertices M(n, x), is a module.

Proof: Without loss of generality let us assume that n is a series node. It
should be noticed that M(n, x) is included in N(x). If y ∈ N(x) is adjacent
to some vertex w ∈ M(n, x), then n is an ancestor of lca(y, x). If y is non-
adjacent to some vertex w′ ∈ M(n, x), then lca(y, x) is an ancestor of n.
Thus in these cases, y cannot split M(n, x). Now let us consider a vertex
y ∈ N(x) \M(m, x). Then lca(x, y) is a series node distinct from n that is
either a descendant or an ancestor of n. Therefore y is adjacent to any vertex
of M(n, x). 2

Having the initial partition [N(x), {x}, N(x)], the remaining problem is to
refine N(x) and N(x) into subparts corresponding to the sets M(n, x) for any
ancestor n of x. The following lemmas will be helpful. They are based on
remark 2.

N(x)

x

parallel

series

parallel

series

yz

N(x) ∩N(z)

N(x) ∩N(z)

N(x)

Fig. 4. Vertex z splits the part formed by N(x). (doted lines represent path in the
cotree)

Lemma 16 [11] Let y and z be two vertices of a cograph such that y ∈ N(x)
z ∈ N(x) and let P be a partition thinner than [N(x), {x}, N(x)] such that
there exists a factorizing permutation compatible with P.

• If y splits a part C ⊆ N(x) then there exists a factorizing permutation
compatible with P ′ that is obtained from P by refining C into [C ∩N(y), C ∩
N(y)].
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• If z splits a part C ⊆ N(x) then there exists a factorizing permutation
compatible with P ′ that is obtained from P by refining C into [C ∩N(z), C ∩
N(z)].

Proof: Without loss of generality let us consider the second case (a simi-
lar proof holds for the first). Since z splits C, there exists u ∈ C adjacent
to z and v ∈ C non-adjacent to z. Since z ∈ N(x), lca(x, z) is a paral-
lel node. Then corollary 11 applied to triple z, x, v and z, x, u respectively
shows that lca(x, v) <T lca(x, z) <T lca(x, u). Thus z and w ∈ C are non-
adjacent iff lca(z, w) =T lca(x, z). So using the neighborhood of z, we can
separate M(lca(x, z), x) from the other vertices of C. And by corollary 12,
M(lca(x, z), x) ∩ C has to occur before C \M(lca(x, z), x) in any factoriz-
ing permutation compatible with P. By assumption there exists a factorizing
permutation compatible with P. Recall that from P to P ′ only the part C has
been splitted into [C ∩N(z), C ∩N(z)]. Since corollary 12 means that there is
no factorizing permutation of G thinner than P in which a vertex of C ∩N(z)
could be placed left to a vertex of C ∩N(z), it exists a factorizing permutation
of G compatible with P ′. 2

The previous lemma allows us to express a simple refinement rule, which will
be useful for the computation of a factorizing permutation.

Refinement rule 2 If a vertex y /∈ C separates two vertices of a part C, then
refine C into [C ∩N(y), C ∩N(y)].

So using the neighborhood of each vertex of N(x) to refine the partition,
N(x) can be partitioned into [M(n1, x), . . . , M(nk, x)], where n1, . . . , nk are
the series nodes on the path from x up to the root of the cotree. Since the
M(ni, x) sets are modules by lemma 2, then to refine N(x) in the same manner,
using a single vertex per partition subpart of N(x) is sufficient.

The next lemma explains how to launch again the refinement process into any
non-singleton part. It shows that the same ideas can be recursively applied:

Lemma 17 Let P be a partition that can be refined into a factorizing permu-
tation and C be a part of P that is a module (not necessarily a strong module).
Let P ′ be the partition obtained from P by using rule 1 on C with an arbitrary
vertex of x ∈ C. Then there exists a factorizing permutation that is compatible
with P ′.

Proof: Since C is a module any vertex y 6= x of C behaves like x with respect
to the vertices in V \C. It means that part C can be refined independently from
the rest of the partition as a whole cograph, and lemma 14 can be applied.
Therefore to launch the process in C, rule 1 can be applied. 2
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Algorithm 1: A kind of “brute force” algorithm

Input: Let G = (V, E) be a cograph

Output: A factorizing permutation P of G

begin
Set the initial partition P to [V ]
while there exist non-singleton parts in P do

Choose any non-singleton partition part C in P Choose an arbitrary
vertex x ∈ C as the origin

1 Refine C into [C ∩N(x), {x}, C ∩N(x)] ”Rule 1”;
2 Iteratively refine C ∩ N(x) using the neighborhoods of the vertices of

C ∩ N(x): ∀y ∈ C ∩ N(x), refine each subpart C′ of C ∩ N(x) into
[C′ ∩N(y), C′ ∩N(y)] ”Rule 2”;

3 Pick an arbitrary vertex y in each subpart of C ∩N(x) and use N(y) as
pivot set to refine each subpart C′ of C∩N (x) into [C′∩N(y), C′∩N(y)]
”Rule 2”;

Return P

end

Invariant of algorithm 1: There exists a factorizing permutation compatible
with the current ordered partition P.

Proof: Initially true, this invariant is proved for step 1 using lemma 14, and
for step 2 using lemma 16. After step 2, any part C ⊆ N(x) corresponds
to a set M(n, x) for some ancestor n of x. So by lemma 15, it is a module.
Therefore during step 3, the refining rule (2) can be applied just to one vertex
per subpart of N(x). By lemma 16 the invariant is preserved.

Applying the same argument, we prove that after steps 2 and 3, necessarily all
non-singleton parts of P are modules of G. Since we only refine the partition
when needed, a part which cannot be separated is necessarily maximal with
this property and therefore by lemma 17 step 1 can be recursively processed.
2

The correctness of algorithm 1 follows from the above invariant that states:

Theorem 18 If G is a cograph, then algorithm 1 ends up with a final partition
P which is a factorizing permutation of G.

3.2 A linear time algorithm

Clearly the complexity of the above algorithm 1 is not linear since a given
vertex can be used O(n) times as a pivot to refine the partition: it implies a
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time-complexity larger than O(nm) or O(mlogn) if the part C is chosen via a
cleverer rule [19].

To achieve linear time complexity we need to use only O(1) time the neigh-
borhood of each vertex. The problem is now to choose the pivot vertices in an
appropriate ordering. Indeed, as shown in figure 5, an arbitrary choice may
give a vertex whose neighborhood does not refine the partition.

N(x)

y x

f - parallel

series

parallel

r - series

M(f, x)

M(r, x)

z

N(x)

Fig. 5. Let r be the root of the cotree and f be the father of x. Let us consider arbi-
trary vertices y ∈M(f, x) and z ∈M(r, x). Since N(x) ⊆ N(y) and N(x) ⊆ N(z),
y and z do not split any part of the partition.

The idea of the algorithm is to use only one vertex per part as long as pos-
sible. When any part has a pivot that has been used, we have to find a way
to relaunch the refinement process. The next lemma explain how it can be
achieved using rule 1 can be used again. In the following, we will denote by
Cy the part containing a given vertex y.

Lemma 19 Let G = (V, E) be a cograph and P be a partition with vertex x
as Origin, that can be refined into a factorizing permutation. Let y ∈ Cy be
a pivot. Let us assume that any vertex z such that lca(x, z) is a descendant
of lca(x, y) (lca(x, z) <T lca(x, y)) belongs to a singleton part. Let P ′ be
the partition obtained from P by splitting Cy into [N(y) ∩ Cy, {y}, N(y) ∩ Cy].
Then there exists a factorizing permutation compatible with P ′.

Proof: Without loss of generality, let us assume that y ∈ N(x). Any vertex
v ∈ N(x) such that v 6∈ M(lca(x, y), x) is a neighbor of y. Indeed lca(y, v)
is a series node that is either a descendant or an ancestor of lca(x, y). If
lca(x, v) <T lca(x, y), by assumption v belongs to a singleton part and thus
does not belong to Cy. If lca(y, v) >T lca(x, y), then v may belong to Cy
or not. The simple case holds when Cy = M(lca(x, y), x) and is proved by
lemma 17. But by assumption there may also exist some neighbors z ∈ Cy
of y such that lca(x, y) <T lca(x, z). But notice that for any factorizing
permutation σ compatible with P, we have to have x <σ y <σ z′ where
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z′ ∈ N(y) and lca(x, y) <T lca(x, z′). Indeed it will be the case in P ′ since
Cy is splitted into [N(y) ∩ Cy, {y}, N(y) ∩ Cy]. 2

If we know the Origin of the current partition, we can easily find a vertex y
as describe in lemma 19. We have to consider the first two pivots respectively
on the left and on the right that belong to non-singleton parts. Then by
corollary 11, we can determine the good one by a simple adjacency test. An
example of execution of the algorithm is given in Appendix (see figure A.1).

Algorithm 2: Computing a factorizing permutation of a cograph

Input: A graph G = (V, E) and an empty stack Q of vertices

Output: A permutation of V that is a factorizing permutation if G is a co-
graph

begin
P = [V ]

1 Choose an arbitrary vertex x of G as Origin
if Origin is an isolated vertex or a universal vertex then

2 recurse on G[V \ {Origin}]

while there exist some non-singleton parts do
if COrigin is not a singleton then

3 Use rule 1 on COrigin with Origin as pivot
Set N(Origin) ∩ COrigin and N(Origin) ∩ COrigin as unused parts

while there exist unused parts do
Pick an arbitrary unused part C and an arbitrary vertex y ∈ C
Set y as the pivot of C
Refine the parts C′ 6= C of P with rule 2 using the pivot set N(y)
Mark C as used and the new created subparts without pivot as
unused

Let zl and zr be the pivots of the nearest non singleton parts to Origin
respectively on its left and on its right

4 if zl is adjacent to zr then Origin← zl else Origin← zr

return P
end

The invariant of algorithm 2 will be proved in two steps. Roughly speaking,
the first property is that each time a new origin is chosen all its neighbors
which are not singletons are on its left side. This will ensures the validity of
the refinement rules. And thus at any step, there is a factorizing permutation
compatible with the current partition. Let us introduce some notations:

• Let x0 be the first origin chosen at step 1 and xi be the i + 1-th vertex
chosen as the new origin of the partition (step 4).
• The part containing xi and the partition at the step in which xi becomes

the current origin are denoted respectively by Ci and Pi.
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• The invariant deals with subsets Vi of the vertex set V and cotrees Ti of
the subgraphs induced by Vi. We define V0 = V and Vi = Vi−1 \Mi, i > 0,
where Mi = M(ni, xi−1) with ni the son of lca(xi, xi−1) in the cotree Ti.
Let us remark that by lemma 15, Mi is a module for the subgraph induced
by Vi−1.

Invariant of algorithm 2: Let P be the current partition with origin xi. If
G is a cograph, then:

a : Let y be a vertex of Vi. Then yxi ∈ E iff xi <P y.
b : there exists a factorizing permutation compatible P.

Proof:

• Invariant a: The property is clearly true in the case i = 0, since the initial
partition P0 is [N(x0), {x0}, N(x0)] (see step 1).

Let us assume by induction that invariant a holds for i > 0. Let us
consider a vertex y ∈ Vi+1. Let us remark that lca(y, xi) ≥Ti

lca(xi+1, xi).
Therefore lca(y, xi) = lca(y, xi+1). Since yxi ∈ E iff y >Pi

xi, we also
have yxi+1 ∈ E iff y >P1

xi+1.
• Invariant b: In the following, all the partition we deal with, are issued

from the refinement process.
Invariant b is initially true by lemma 14 for P0. Let us consider any

partition P that is coarser than P1. P is obtained by successive application
of rule 2 and thus lemma 16 ensures that the invariant is preserved.

Let us assume by induction invariant b for any P strictly coarser than Pi

with i > 1. Let us first consider Pi. By corollary 11, the the new origin xi

checks (see step 4) the hypothesis of lemma 19. Thus the refinement process
can be relaunched on Ci using rule 1. So invariant b is verified for Pi.

Now recall that by the choice of xi, Mi is composed by singleton parts.
It means that the problem of computing a factorizing permutation on the
subgraph induced by Mi is solved. Since Mi is a module (that contains
xi−1) for the subgraph induced by Vi−1, Pi is stable with respect to the
neighborhood of any vertex of Mi. In other words, Mi can be removed to
end the refinement process.

Let P ′
i be the partition of Vi obtained from Pi by removing the vertices of

all the Mj, j ≤ i. Now there exists a factorizing permutation of the induced
subgraph G[V \Mi] compatible with P ′

i. Since by invariant a, P ′
i is thinner

than [N(xi), {xi}, N(xi)], exactly the same arguments than those used for
the initial case while there are some unused parts, shows that the property
also holds for the current partition P at any step of the refinement process.

2

The above invariant proves the following theorem that states the correctness
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of algorithm 2:

Theorem 20 Algorithm 2 computes a factorizing permutation if the input
graph is a cograph.

Proof: When any part is a singleton part, since invariant B has been preserved
by any refinement step, the partition P is a factorizing permutation. 2

4 Data-structures and complexity issues

In this section we describe the data-structures and the key points of algo-
rithm 2. The complexity of these operations will be proved. Then the com-
plexity analysis of the whole algorithm follows.

List of unused
parts

List of used
parts

E x5 x7x6

X = [1, 4] Z = [6, 7]

x2 x3 x4x1

Y = [5, 5]

Fig. 6. Partition data-structure

A partition P of a set E is represented as shown in figure 6. The elements of
E are stored in a sorted list and each element has a pointer to its part. Since
the elements of a given part are consecutive in the sorted list, each part can
be represented with pointers to its first and last elements. The parts of the
partition are stored in two different sorted lists depending on their status: one
list of the used parts and one list for the unused parts. To each used part,
we have to store its vertex that has been used as a pivot. That vertex will be
used once more at step 3 of algorithm 2.

Lemma 21 The neighborhood of each vertex is used at most once by proce-
dure 3, that can be processed in O(|N(x)|) times.

Proof: A vertex in a used part C can be used once more by procedure 3 iff C is
split into subparts. Since the vertex x used in procedure 3 is the only member
of a new used part, it will never be used again. Procedure 3 can clearly be
achieved in O(|N(x)|) time since we mainly have to move the neighbors of x
in the list of vertices. 2

The procedure 3 is an implementation of rule 1. Let us have a look at the
implementation of rule 2 (ie. refines a partition P using a pivot set S) and

14



Procedure 3: Init(C)

Input: a part C of the current partition P

Output: a partition P compatible with P

begin
if no vertex of C has been already used as a pivot then

Choose an arbitrary vertex x

else let x be the already used pivot Remove N(x) from C and insert it on
the right
Remove x from C and insert it on the right
N(x) ∩ C and N(x) ∩ C are unused parts, {x} is a used part

end

updates the lists of parts. While splitting a used part into two subparts, a new
unused part is created.

Procedure 4: Refine(P, S)

Input: a partition P and a pivot set S

Output: a partition P ′ compatible with P and stable with respect to S

begin
let M be the set of parts strictly intersected by S
foreach part X ∈M do

let Xa be the elements of X belonging to S
remove Xa from X and insert Xa immediately on the right of X
if X is an unused part then
Xa and X \ Xa are also unused parts

else
let x be the used pivot of X
the new subpart that does not contain x is an unused part

end

Lemma 22 Refining a partition of the vertices with the neighborhood of a
vertex x can be done in O(|N(x)|) times.

Proof: Each element of S can be moved from its position to the beginning (or
the end) of its part in constant time. Then counting the moves in each touched
part, allows us to create new parts containing the elements of S. Let X be a
part strictly overlapped by S. A new record for the new part Xa = X ∩ S is
created. The record corresponding to the old part X now represents the part
Xb = X \S. At most |S| new records are created, and exactly |S| elements are
moved. So this operation can be achieved in O(|S|) time using an appropriate
data structure. 2

In order to implement efficiently step 4 of algorithm 2, each time a vertex of

15



a singleton part C is used as pivot with rule 2, the part C is removed from the
lists of parts. Also when the origin of the partition changes, the part containing
the part of the old origin is removed from the lists of parts. Therefore to choose
the new origin, we just have to look at the pivots of the two parts adjacent to
the part containing the origin.

Lemma 23 The neighborhood of each vertex is used at most 3 times to refine
the partition.

Proof: The neighborhood of a given vertex x can be used to refine the par-
tition with rule 2. It can also be used for the adjacency test at step 4 of
algorithm 2. To test wether the two candidates are connected or not, it suf-
fices to scan the smallest neighborhood and this search could be charged to
the chosen new origin. Thus in the whole any neighborhood can be charged at
most once at step 4. The next use of N(x) is to refine its partition part with
rule 1 when it becomes the new origin, with procedure 3. 2

Theorem 24 The algorithm 2 computes a factorizing permutation of a co-
graph in O(n + m) time.

Proof: By lemma 23, during the whole refining process each neighborhood is
used O(1) times. So the whole complexity is O(

∑
x∈V |N(x)|) = O(n + m) 2

5 A very simple recognition test

Let us now consider the testing problem, ie. to test whether the output per-
mutation of algorithm 2 is a factorizing permutation or not. This work can
easily be done in linear time using the following simple algorithm that scans
the given permutation from left to right.

It is well known that any cograph admits a twin-elimination ordering of its
vertex set defined as following : σ = x1, . . . , xn such that for any vertex xi,
1 6 i < n, there exists j, i < j 6 n such that xi and xj are either true twins
or false twins.

Definition 25 Two vertices x and y of a graph G are false (resp. true) twins
iff N(x) = N(y) (resp. N(x) ∪ {x} = N(y) ∪ {y}).

Clearly two vertices x and y are twins iff they are brothers in the cotree
(true twins if their parent node lca(x, y) is a series node, false otherwise). By
definition, many brothers will occur consecutively in a factorizing permutation.
The natural idea is to scan the computed permutation from left to right. The
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Algorithm 5: Recognition test

Input: Let σ = x1, . . . , xn be a permutation of the vertex set of a graph G, σ
is represented as a doubly linked list.

Output: σ a list of vertices

begin
Let x0 and xn+1 be added to σ (these vertices are dummies which are not
twins with any other vertex)
Let z be the current vertex, initially z ← x1

Let succ(z) (resp. prec(z)) be the vertex following (resp. preceding z) in σ
while z 6= xn+1 do

if z and prec(z) are twins (true or false) in G(σ) then
remove prec(z) from σ

else
if z and succ(z) are twins (true or false) in G(σ) then

z ← succ(z)
remove prec(z) from σ

else z ← succ(z)

if |σ − {x0, xn+1}| = 1 then return G is a cograph else return G(σ)
contains a P4

end

description of the testing process is given by algorithm 5. An example of
execution on the cograph of figure A.1 is given in Appendix.

Theorem 26 A permutation σ computed by algorithm 2 is a factorizing per-
mutation of a cograph iff algorithm 3 ends up with σ reduced to a single vertex.

Proof: If algorithm 5 ends up with a single vertex, then a twin vertex elimina-
tion ordering has been found and thus the corresponding graph is a cograph.
Let us now prove that if G is a cograph algorithm 5 ends with a single vertex
in σ. Clearly algorithm 5 maintains as invariants the following properties:

Invariant 1: If G is a cograph σ is a factorizing permutation of G(σ), where
G(σ) denotes the subgraph induced by the vertices in σ.

Let us denote by zk (resp. σk) the current vertex z (resp. the permutation) after
k steps of the while loop, in particular z0 = x1. We now prove by induction
that:

Invariant 2: For any k > 1, the subsequence σk([z0, zk[) does not contain any
twins vertices in G(σ).

For k = 1, the property is obviously true, since σ([z0, z1[) contains at most
one vertex. Let us now execute step k + 1 of the while loop; three cases have
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to be considered corresponding to the algorithm.

(1) zk and prec(zk) are twins in G(σ). But then prec(zk) is deleted from σk

and zk+1 = zk, σk+1([z0, zk+1[) is included in σk([z0, zk[), and therefore
invariant 2 is trivially true.

(2) zk and succ(zk) are twins in G(σ). But then zk is deleted from σk and
zk+1 = succ(zk), σk+1([z0, zk+1[) = σk([z0, zk[), and therefore invariant 2
is trivially true.

(3) In the last case, we move right on the circular list, and zk+1 = succ(zk),
σk+1([z0, zk+1[) = σk([z0, zk]).

Using the induction hypothesis it suffices to show that zk has no twin
in σk([z0, zk]). Let us suppose the contrary, ie. zk admits a twin zh ∈
σk([z0, zk[).

If we consider σk(]zh, zk[) it corresponds to a factorizing permutation
of a cograph and therefore by induction the algorithm must have reduced
it to a single vertex z in σk. But this vertex is equal to prec(zk) a twin of
zk, a contradiction.

Therefore if G is a cograph, using the two previous invariants, we can prove
that necessarily algorithm 5 ends up with σ such that: |σ−{x0, xn+1}| = 1. 2

Theorem 27 The recognition of cographs can be done in O(n + m) using
algorithm 2 and 5.

Proof: By theorem 24 the computation of the factorizing permutation can
be done in linear time. Let us analyze the complexity of the test (algo-
rithm 5). Assuming that the neighborhoods are all given in the same sorted
order, to test whether two vertices u and v are twins in σ can be done in
O(min(|N(u)|, |N(v)|)). Let us consider an execution of a step of the while
loop.

• If some twins are detected, then z can remain the current vertex, but this
step can be charged to the eliminated vertex.
• If no twins are detected, then z will be no longer be the current vertex and

this step can be charged to z in O(|N(z)|).

Therefore in the whole, the neighborhood of a vertex can be at used at most
twice, once as the current vertex and another time as an eliminated vertex.
So the whole complexity can be done in O(n + m). 2

When a cograph has been recognized, if the cotree is needed, one can eas-
ily build a binary series-parallel tree from the twin-elimination ordering. To
transform this tree into a canonical cotree, it suffices to merge neighbor series
(resp. parallel) nodes.
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6 Conclusions

We have liked to see a graph algorithm as a function applied on the graph
that provides a permutation σ of the vertices that contains all the required
information. Such a framework includes many graph algorithms such as depth-
first search, (lexicographic) breadth first search, chordal graph recognition . . . .

It may turn out that even if the input graph is not a cograph algorithm 2 may
output a factorizing permutation. Just consider the case of the P4 for which
any permutation of its vertex set is a factorizing permutation. So to recognize
cographs, the recognition test has to be performed after algorithm 2. For those
reasons the presented algorithm can be considered as a robust algorithm [20]:

• If the test fails, then it produces a certificate, namely the subgraph G(σ),
that shows the input graph is not a cograph. To be a little more precise, if
TG is the modular decomposition tree of G, then TG(σ) is the tree obtained
from TG by recursively deleting all series and parallel nodes whose children
are only leaves. If G is not a cograph, then TG(σ) contains a prime node and
so G(σ) contains a P4.
• But also since it is possible to extract in linear time the modular tree de-

composition out of a factorizing permutation [2], the same algorithm may
be used to recognize more general graph classes: for example graphs having
with few P4 [13, 16, 15, 17].

Of course, another natural generalization of these ideas would be to apply
them to modular decomposition. It has still to be done, since the algorithm
developed in [11] has an extra logn factor.
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References

[1] A. Bretscher, D.G. Corneil, M. Habib, and C. Paul. A simple linear time
lexbfs cograph recognition algorithm. In Graph-Theoretic Concepts in
Computer Science - WG’03, number 2880 in Lecture Notes in Computer
Science, pages 119–130, 2003.

[2] C. Capelle. Decomposition de graphes et permutations factorisantes. PhD
thesis, Univ. de Montpellier II, 1997.

[3] C. Capelle, M. Habib, and F. de Montgolfier. Graph decompositions and
factorizing permutations. Discrete Mathematics and Theoretical Com-
puter Science, 5(1):55–70, 2002.

[4] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm
for cographs. SIAM Journal of Computing, 14(4):926–934, 1985.

19



[5] A. Cournier and M. Habib. A new linear algorithm for modular decompo-
sition. In S. Tison, editor, 19th International ColloquiumTrees in Algebra
and Programming, CAAP’94, volume 787 of Lecture notes in Computer
Science, pages 68–82. Springer-Verlag, 1994.

[6] E. Dahlhaus. Efficient parallel algorithms of of cographs and distance
hereditatary graphs. Discrete Apllied Mathematics, 57:29–54, 1995.

[7] E. Dahlhaus, J. Gustedt, and R.M. McConnell. Efficient and practical
algorithms for sequential modular decomposition. Journal of Algorithms,
41(2):360–387, 2001.

[8] G. Damiand, M. Habib, and C. Paul. A simple paradigm for graph recog-
nition: Application to cographs and distance hereditary graphs. Theoret-
ical Computer Science, 263:99–111, 2001.

[9] T. Gallai. Transitiv orientierbarer graphen. Acta Math. Acad. Sci. Hung.,
18:25–66, 1967.

[10] M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-bfs and parti-
tion refinement, with applications to transitive orientation, interval graph
recognition and consecutive ones testing. Theoretical Computer Science,
234:59–84, 2000.

[11] M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: an
interesting algorithmic tool kit. International Journal of Foundations of
Computer Science, 10(2):147–170, 1999.

[12] M. Habib, C. Paul, and L. Viennot. Linear time recognition of p4-
indifference graphs. Discrete Mathematics and Theoretical Computer Sci-
ence, 4(2):173–178, 2001.
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A An example

A.1 Computation of the factorizing permutation
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Fig. A.1. An execution of the algorithm

a. Vertex 0 is the first origin. Vertices 1 and 2 have been used as pivot, but do
not refine any part of the partition.

b. The innermost pivot with respect to the current origin, namely 0, is 1. Then
1 is the new origin and its part is refined using rule 1.

c. Vertex 3 splits the rightmost part into [4] and [8, 7, 9, 11, 5, 12]. Then vertex
4 can be used but it does not refine anything.

d. Vertex 5 is used and splits the part containing 2 into [2] and [6, 10].
e. Vertex 6 is used and splits the part containing 5 into [8, 7, 9] and [11, 5, 12].
f. Vertex 7 is used but refines nothing.
g. All the parts have been used. The innermost pivot with respect to the

current origin, namely 1, is 7. The part containing 7 is refined using rule 1
into [8], [7] and [9]. Vertices 8 and 9 can be used but refines nothing.
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h. All the parts have been used. The innermost pivot with respect to the
current origin, namely 7, is 6. The part containing 6 is refined using rule 1
into [6] and [10]. Vertex 10 can be used but refines nothing.

i. All the parts have been used. The innermost pivot with respect to the
current origin, namely 6, is 5. The part containing 5 is refined using rule 1
into [11][5] and [10]. Now all parts are singletons, we are done.

A.2 The recognition test

• σ = [x0, 2, 6, 10, 0, 3, 1, 4, 8, 7, 9, 11, 5, 12, x14]
· z = 2: 2 and x0 nor 2 and 6 are twins.
· z = 6: 6 and 2 are not twins but 6 and 10 are. Thus set z = 10 and 6 is

removed.
• σ = [x0, 2, 10, 0, 3, 1, 4, 8, 7, 9, 11, 5, 12, x14]
· z = 10: 10 and 2 nor 10 and 0 are twins.
· z = 0: 0 and 10 nor 0 and 3 are twins.
· z = 3: 3 and 0 nor 3 and 1 are twins.
· z = 1: 1 and 3 are not twins but 1 and 4 are. Thus set z = 4 and 1 is

removed.
• σ = [x0, 2, 10, 0, 3, 4, 8, 7, 9, 11, 5, 12, x14], z = 4: 4 and 3 are twins. Thus 3

is removed.
• σ = [x0, 2, 10, 0, 4, 8, 7, 9, 11, 5, 12, x14], z = 4: 4 and 0 are twins. Thus 0 is

removed.
• σ = [x0, 2, 10, 4, 8, 7, 9, 11, 5, 12, x14]
· z = 4: 4 and 10 nor 4 and 8 are twins.
· z = 8: 8 and 4 nor 8 and 7 are twins.
· z = 7: 7 and 8 are not twins but 7 and 9 are. Thus set z = 9 and 7 is

removed.
• σ = [x0, 2, 10, 4, 8, 9, 11, 5, 12, x14], z = 9: 9 and 8 are twins. Thus 8 is

removed.
• σ = [x0, 2, 10, 4, 9, 11, 5, 12, x14], z = 9: 9 and 4 are twins. Thus 4 is removed.
• σ = [x0, 2, 10, 9, 11, 5, 12, x14], z = 9: 9 and 10 are twins. Thus 10 is removed.
• σ = [x0, 2, 9, 11, 5, 12, x14]
· z = 9: 9 and 2 nor 9 and 11 are twins.
· z = 11: 11 and 9 nor 11 and 5 are twins.
· z = 5: 5 and 11 are not twins but 5 and 12 are. Thus set z = 12 and 5 is

removed.
• σ = [x0, 2, 9, 11, 12, x14], z = 12: 12 and 11 are twins. Thus 11 is removed.
• σ = [x0, 2, 9, 12, x14], z = 12: 12 and 9 are twins. Thus 9 is removed.
• σ = [x0, 2, 12, x14], z = 12: 12 and 2 are twins. Thus 2 is removed.
• σ = [x0, 12, x14]
· z = 12: 12 and x0 nor 12 and x14 are twins.
· z = x14: End of the algorithm, G is a cograph.
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