
An Optimal Coarse-grained Arc Consistency
Algorithm ∗ †

Christian Bessiere
LIRMM-CNRS (UMR 5506)

161 rue Ada,
34392 Montpellier Cedex 5, France

Jean-Charles Régin
ILOG

1681 route des Dolines,
06560 Valbonne, France

Roland H.C. Yap
School of Computing,

Natl. Univ. of Singapore,
3 Science Dr. 2, Singapore

Yuanlin Zhang
Department of

Computer Science,
Texas Tech University, USA

Abstract

The use of constraint propagation is the main feature of any constraint solver.
It is thus of prime importance to manage the propagation in an efficient and effec-
tive fashion. There are two classes of propagation algorithms for general constraints:
fine-grained algorithms where the removal of a value for a variable will be propagated
to the corresponding values for other variables, and coarse-grained algorithms where
the removal of a value will be propagated to the related variables. One big advantage
of coarse-grained algorithms, like AC-3, over fine-grained algorithms, like AC-4, is
the ease of integration when implementing an algorithm in a constraint solver. How-
ever, fine-grained algorithms usually have optimal worst case time complexity while
coarse-grained algorithms don’t. For example, AC-3 is an algorithm with non-optimal
worst case complexity although it is simple, efficient in practice, and widely used. In
this paper we propose a coarse-grained algorithm, AC2001/3.1, that is worst case op-
timal and preserves as much as possible the ease of its integration into a solver (no
heavy data structure to be maintained during search). Experimental results show that
AC2001/3.1 is competitive with the best fine-grained algorithms such as AC-6. The
idea behind the new algorithm can immediately be applied to obtain a path consis-
tency algorithm that has the best-known time and space complexity. The same idea is
then extended to non-binary constraints.

∗Preliminary versions of this paper appeared in [BR01, ZY01].
†During that work, Christian Bessiere was supported by ILOG under a research collaboration contract

ILOG/CNRS/University of Montpelier II, Yuanlin Zhang by the Science Foundation Ireland under Grant
00/PI.1/C075, and Roland Yap and Yuanlin Zhang by the Academic Research Fund, National Univ. of Sin-
gapore.

1

1 Introduction

Constraint propagation is a basic operation in constraint programming. It is now well-
recognized that its extensive use is necessary when we want to efficiently solve hard
constraint satisfaction problems. All the constraint solvers use propagation as a basic
step. Thus, each improvement to a constraint propagation algorithm has an immediate
effect on the performance of the constraint solving engine. In practical applications, many
constraints are of well-known types for which specific algorithms are available. These
algorithms generally receive a set of removed values for one of the variables involved in
the constraint, and propagate these deletions to the other variables of the constraint. They
are usually as cheap as one can expect in cpu time. This state of things implies that most
of the existing solving engines are based on a constraint-oriented propagation scheme
(ILOG Solver, CHOCO, etc.). We call the algorithms using this scheme coarse-grained
algorithms. AC-3 [Mac77a, McG79] is a generic constraint propagation algorithm which
fits the best this propagation scheme. Its successors, AC-4, AC-6, and AC-7, indeed, were
written with a value-oriented propagation where the deletion of a value in the domain of a
variable will be propagated only to the affected values in the domains of other variables.
Algorithms using this propagation are called fine-grained algorithms here. The coarse-
grained characteristics of AC-3 explain why it is the algorithm which is usually used
to propagate those constraints for which nothing special is known about the semantics
(and then for which no specific algorithm is available). When compared to AC-4, AC-6
or AC-7, this algorithm has a second strong advantage, namely, its independence with
respect to specific data structure which should be maintained if used during a search
procedure. Thus, it has ease of implementation. Fine-grained algorithms, on the other
hand, have more complex implementation with possibly higher overheads as there is a
need to maintain some complex data structures.

Unfortunately, the worst case time complexity of AC-3 isO(ed3), where e is the num-
ber of constraints and d is the size of the maximum domain in a problem. Fine grained
algorithms on the other hand enjoy optimal worst case complexity O(ed2) [MH86]. The
fine-grained algorithms are also more efficient when applied to networks where much
propagation occurs [BFR95, BFR99] while AC-3 is better when there is very little prop-
agation.

In this paper, we present a new algorithm, AC2001/3.1, which is the first worst case
optimal coarse-grained arc consistency algorithm. This result is somewhat surprising
since due to the non-optimality result of AC-3 [MF85] from 1985, it is widely held that
only fine-grained algorithms have worst case optimality. AC2001/3.1preserves the sim-
plicity of AC-3 while improving on AC-3 in efficiency both in terms of constraint checks
and in terms of cpu time. In our experiments, AC2001/3.1 leads to substantial gains over
AC-3 both on randomly generated and real-world instances of problems and comparable
to AC-6, the fastest fine-grained algorithm.

The idea behind the new algorithm can be applied immediately to obtain a new simple
path consistency algorithm, PC2001/3.1, which has the same time and space complexity
as the best known theoretical results. We show how to use the same idea for arc con-
sistency on non-binary constraints with a new algorithm, GAC2001/3.1. We also give a
detailed comparison of coarse-grained and fine-grained algorithms.

The paper is organized as follows. The preliminaries are given in section 2 before the

2

presentation of AC2001/3.1 and its complexity analysis in section 3. Section 5 extends
the idea to path consistency and and generalised arc consistency. Experimental results to
benchmarking the performance of the new algorithm with respect to AC-3 and AC-6 are
shown in section 4. We compare and contrast most propagation algorithms in section 6
before concluding in section 7.

2 Preliminaries

In this section we give some background material and notations used herein.

Definition 1 A finite binary constraint network (N, D, C) consists of a finite set of vari-
ables N = {x1, x2, · · · , xn}, a set of domains D = {D1, D2, · · · , Dn}, where the do-
main Di (i ∈ 1..n) is a finite set of values that variable xi can take, and a set of con-
straints C = {c1, · · · , ce}, where each constraint ck (k ∈ 1..e) is a binary relation on
two variables. A constraint on xi and xj is usually denoted by cij . (a, b) ∈ cij means
that the constraint cij holds when xi = a and xj = b. For the problem of interest here,
we require that ∀a, b a ∈ Di, b ∈ Dj , (a, b) ∈ cij if and only if (b, a) ∈ cji. Verifying
whether a tuple (a, b) where a ∈ Di and b ∈ Dj is in cij is called a constraint check. A
solution of a constraint network is an assignment of a value to each variable such that all
constraints in the network are satisfied.

For simplicity, in the above definition we consider only binary constraints, omitting
the unary constraint on any variable [Mac77a]. Without loss of generality we assume
there is only one constraint between each pair of variables.

Throughout this paper, n denotes the number of variables, d the size of the largest
domain, and e the number of constraints in a constraint network. (xi, a) denotes a value
a ∈ Di.

Definition 2 Given a constraint network (N, D, C), the support of a value a ∈ Di under
cij is a value b ∈ Dj such that (a, b) ∈ cij . The value a is viable with respect to cij if
it has a support in Dj . A constraint cij is consistent from xi to xj , that is along the arc
(xi, xj), if and only if every a ∈ Di has a support in Dj . A constraint cij is arc consistent
if and only if it is consistent along both arcs (xi, xj) and (xj , xi). A constraint network is
arc consistent if and only if every constraint in the network is arc consistent.

From the definition, we know that a constraint network is arc consistent if and only if
every value is viable with respect to every constraint on its variable.

Before presenting and analyzing the new algorithm, let us briefly recall the AC-3 al-
gorithm which is given in Fig. 1 as ACX . The presentation follows [Mac77a, MF85] with
a slight change in notation, and node consistency removed. The name of the algorithm
ACX is parameterized by X . For AC-3, the X is “-3” and thus the procedure REVISEX
is “REVISE-3”. For the new algorithm, AC2001/3.1, the X is “2001/3.1” and thus the
procedure REVISEX is “REVISE2001/3.1”.

To enforce arc consistency in a constraint network, a key task of AC-3 is to check the
viability of a value with respect to any related constraint. REVISE-3(xi, xj) in Fig 2 is
to remove those values in Di without any support in Dj under cij . If any value in Di

is removed when revising (xi, xj), all binary constraints (or arcs) pointing to xi, except

3

algorithm ACX
begin

1. Q← {(xi, xj) | cij ∈ C or cji ∈ C, i 6= j}
while Q not empty do

select and delete any arc (xi, xj) from Q
2. if REVISEX (xi, xj) then
3. Q← Q ∪ {(xk, xi) | cki ∈ C, k 6= j}

end

Figure 1: A schema for coarse-grained arc consistency algorithms

procedure REVISE-3(xi, xj)
begin

DELETE← false
for each a ∈ Di do

1. if there is no b ∈ Dj such that cij(a, b) then
delete a from Di

DELETE← true
return DELETE

end

Figure 2: Procedure REVISE for AC-3

cji, will be revised (line 2 and 3 in Fig 1). A queue Q is used to hold these arcs for later
processing. It can be shown that this algorithm is correct.

Proposition 1 ([Mac77a]) Applying algorithm AC-3 to a constraint network makes it arc
consistent.

The traditional derivation of the complexity of AC-3 is given by the following theorem
whose proof from [MF85] is modified in order to facilitate the presentation in Section 3.

Theorem 1 ([MF85]) Given a constraint network (N, D, C), the time complexity of AC-
3 is O(ed3).

Proof. Each arc (xi, xj) is revised if and only if it enters Q. The observation is that arc
(xi, xj) enters Q if and only if some value of Dj is deleted (line 2–3 in Fig 1). So, arc
(xi, xj) enters Q at most d times and thus is revised d times. Given that the number of
arcs is 2e, REVISE(xi, xj) is executed O(ed) times. The complexity of REVISE(xi, xj)

4

in Fig 2 is at most d2. Hence, the result follows. 2

The reader is referred to [Mac77a, MF85] for more details and motivations concerning
arc consistency.

Remark. In implementing the queue, to reduce the number of queue operations, one
way is simply enqueue the variable whose domain has shrunk, instead of enqueue all
relevant arcs. When we dequeue a variable from the queue, we just revise all constraints
pointing to this variable. The method is also called variable oriented propagation. This
idea appeared in [McG79] and in [CJ98]. In this method, for each variable, one more
constraint is revised than in the original algorithm AC-3. However, it seems that the
savings from enqueue operations well compensates this cost in our experiments.

3 The New Algorithm

The worst case time complexity of AC-3 is based on a naive implementation of line 1 in
Fig. 2 in which b is always searched from scratch. However, from the analysis we know
a constraint (xi, xj) may be revised many times. The key idea to improve the efficiency
of the algorithm is that we need to find from scratch a support for a value a ∈ Di only in
the first revision of the arc (xi, xj), and store the support in a structure Last((xi, a), xj).
When checking the viability of a ∈ Di in the subsequent revisions of the arc (xi, xj), we
only need to check whether its stored support Last((xi, a), xj) is still in the domain Dj .
If it was removed (because of the revision of other constraints), we would just have to
explore the values in Dj that are “after” the support since its “predecessors” have already
been checked before.

Assume without loss of generality that each domain Di is associated with a total
ordering <d. The function succ(a, Dj), where Dj denotes the current domain of xj during
the procedure of arc consistency enforcing, returns the first value in Dj that is after a in
accordance with <d, or NIL, if no such an element exists. We define NIL as a value not
belonging to any domain but preceding any value in any domain.

As a simple example, let the constraint cij be xi = xj , with Di = Dj = [1..11].
The removal of value 11 from Dj (say, after the revision of some arc leaving xj) leads
to a revision of (xi, xj). REVISE-3 will look for a support for every value in Di, for a
total cost of 1 + 2 + . . . + 9 + 10 + 10 = 65 constraint checks, whereas only (xi, 11)
had lost support. The new revision procedure makes sure that for each a ∈ [1..10],
Last((xi, a), xj) still belongs to Dj , and finds that Last((xi, 11), xj) has been removed.
Looking for a new support for 11 does not need any constraint check since Dj does not
contain any value greater than Last((xi, 11), xj), which was equal to 11. It saves 65
constraint checks compared to AC-3.

The new algorithm, AC2001/3.1, is the main algorithm ACX augmented with the
initialization of Last((xi, a), xj) to be NIL for any constraint cij and any value a ∈ Di.
The corresponding revision procedure, REVISE2001/3.1 is given in Fig. 3. In Fig. 3,
line 1 checks if the support in Last is still valid and otherwise line 2 makes use of the
domain ordering to find the first support after the old one. We now show the correctness
of AC2001/3.1.

5

procedure REVISE2001/3.1(xi, xj)
begin

DELETE← false
for each a ∈ Di do

b← Last((xi, a), xj)
1. if b /∈ Dj then

b← succ(b, Dj)
2. while (b 6= NIL) and (¬cij(a, b)) do

b← succ(b, Dj)
if b 6= NIL then

Last((xi, a), xj)← b
else

delete a from Di

DELETE← true
return DELETE

end

Figure 3: Procedure REVISE for AC2001/3.1

Theorem 2 Applying algorithm AC2001/3.1 to a constraint network makes it arc consis-
tent.

Proof. AC-3 and AC2001/3.1 have exactly the same initialization phase except that
AC2001/3.1 stores Last((xi, a), xj), the support found for each a on each cij . It is suf-
ficient to show that REVISE-3(xi, xj) and REVISE2001/3.1(xi, xj) are equivalent given
that Di and Dj are the same when either procedure is called. In other words, a values
is deleted by REVISE-3 iff it is deleted by REVISE2001/3.1. Obviously the return value
would also be the same for both procedures. Without loss of generality, we can assume
that REVISE-3 visits the same values as the ordering used in <d.

Suppose a value a is deleted by REVISE-3. Line 1 in REVISE-3 tells us that a has no
support. Consequently, line 1 in REVISE2001/3.1 is also true and the while loop in line
2 will not find any support. Hence a will be deleted.

Now consider REVISE2001/3.1 deleting a value a. Let b be the previous support,
Last((xi, a), xj). Since line 1 will be true, b is not a support for a. The while loop at
line 2 also doesn’t find for a any support after b. Now suppose there is a support b′ such
that b′ <d b. It must also be a support for a in all the previous domains of xj . Hence,
Last((xi, a), xj)≤d b′, which contradicts b = Last((xi, a), xj). Thus, a has no support in
Dj and will also be deleted by REVISE-3.

Proposition 1 implies that AC2001/3.1 achieves arc consistency on a constraint net-
work. 2

Next, we show that AC2001/3.1 has optimal worst case time complexity.

6

Theorem 3 The worst case time complexity of AC2001/3.1 is O(ed2) with space com-
plexity O(ed).

Proof. Here it is helpful to regard the execution of AC2001/3.1 on an instance of a
constraint network as a sequence of calls to REVISE2001/3.1(xi, xj).

Consider the total time spent on an arc (xi, xj). From the proof in Theorem 1, the arc
(xi, xj) will be revised at most d times.

In the lth(1 ≤ l ≤ d) revision of (xi, xj), let tl be the time for searching a support
for a value a ∈ Di. tl can be considered as 1 if Last((xi, a), xj) ∈ Dj (see line 1 in
Fig. 3) and otherwise it is sl which is simply the number of elements in Dj checked after
Last((xi, a), xj) and before the next support is found (the while loop in line 2). So, the
total time of the algorithm spent on a ∈ Di with respect to (xi, xj) is

d∑

1

tl ≤

d∑

1

1 +

d∑

1

sl

where sl = 0 if tl = 1. Observe that REVISE2001/3.1(xi, xj) checks an element in Dj

at most once when looking for a support for a ∈ Di. Therefore,
∑d

1 sl ≤ d which results
in

∑d

1 tl ≤ 2d.
To revise (xi, xj), we need to find a support for each value of Di. For there are up to

d values in Di, at most O(d2) time will be spent on revising the arc (xi, xj).
Hence, the complexity of AC2001/3.1 is O(ed2) since the number of arcs in the con-

straint network is 2e (one constraint is regarded as two arcs).
The space complexity of AC2001/3.1 is bounded above by the size of Q, and the struc-

ture Last. Q can be of complexity in O(n) or O(e), depending on the the implementation
of the queue. The size of Last is in O(ed) since each value a ∈ Di needs a space in Last
with respect to each constraint involving xi. This gives a O(ed) overall space complexity.
2

4 Experimental Results: AC2001/3.1 versus AC-3 and AC-6

We presented AC2001/3.1, a refinement of AC-3 with optimal worst case time complexity.
It remains to see whether it is effective in saving constraint checks and/or cpu time when
compared to AC-3. As we said previously, the goal is not to compete with AC-6/AC-7,
which have very subtle data structure for the propagation phase. However, we will see
in the experimental results that AC2001/3.1 is often competitive with these fine-grained
algorithms.

There have been many experimental studies on the performance of general arc con-
sistency algorithms [Wal93, Bes94, BFR99]. Here, we take problems used in [BFR99],
namely some random CSPs and Radio Link Frequency Assignment Problems (RLFAPs).
Given the experimental results of [BFR99], AC-6 is chosen as a representative of a state-
of-the-art algorithm because of its good runtime performance over the problems of con-
cern. In addition, a new artificial problem, DOMINO, in the same vein as the problem in
Fig. 5 in [DP88], is designed to study the worst case performance of AC-3.

7

X2Xn−1 Xn X3X1Xn−2

Figure 4: The domino problem

Randomly generated problems. For the random instances, we used a model B
generator [Pro96]. The parameters are 〈N, D, C, T 〉, where N is the number of vari-
ables, D the size of the domains, C the number of constraints (the density p1 is equal
to 2C/N · (N − 1)), and T the number of forbidden tuples per constraint (the tightness
p2 is equal to T/D2). We used the generator available in [FBDR96]. For each class of
problems tested, we ran the first 50 instances generated using the initial seed 1964 (as in
[BFR99]).

RLFAP. The radio link frequency assignment problem (RLFAP) is to assign frequen-
cies to communication links to avoid interference [CdGL+99]. We use the CELAR in-
stances of RLFAP which are real-life problems available in the FullRLFAP archive1 at
ftp://ftp.cs.unh.edu/pub/csp/archive/code/benchmarks.

DOMINO. Informally the DOMINO problem is an undirected constraint graph with n
variables and a cycle of constraints. The domain of any variable xi is Di = {1, 2, . . . , d}.
The constraints are C = {ci(i+1)|∀i ∈ 1..n−1}∪{c1n} where c1n = {(d, d)}∪{(v, v +
1) | v < d} is called the trigger constraint and the other constraints in C are identity
relations. (See the value based constraint graph in Fig. 4.) A DOMINO instance is thus
fully characterized by the pair of parameters 〈n, d〉. The trigger constraint will make one
value invalid during arc consistency and that value will trigger the domino effect on the
values of all domains until each domain has only one value d left. So, each revision of
an arc in coarse-grained algorithms removes one value while fine-grained algorithms only
do the necessary work.

Some details of our implementation of AC2001/3.1 and AC-3.0 are as follows. We
implemented domains and related operations by double-linked lists. The Q in AC-3 is
implemented as a queue with a FIFO policy. For AC-6, we noted that using a single
currently supported list per value is faster than using multiple lists with respect to related
constraints as needed for AC-7. This may be one reason why AC-7 is slower than AC-6
in [BFR99]. Our implementation of AC-6 adopts a single currently supported list. The
code is written in C++ with g++. The experiments are run on a PC Pentium II 300MHz
processor with Linux. The performance of arc consistency algorithms here is measured
along two dimensions: running time and number of constraint checks (#ccks).

1We thank the Centre d’Electronique de l’Armement (France).

8

AC-3 AC2001/3.1 AC-6(∗)

#ccks time #ccks time time
P1 (under-constrained) 100,010 0.04 100,010 0.05 0.07
P2 (over-constrained) 507,783 0.18 487,029 0.16 0.10
P3 (phase transition of AC) 2,860,542 1.06 688,606 0.34 0.32
P4 (phase transition of AC) 4,925,403 1.78 1,147,084 0.61 0.66
SCEN#08 (arc inconsistent) 4,084,987 1.67 2,721,100 1.25 0.51

Table 1: Arc consistency results in mean number of constraint checks (#ccks) and mean
cpu time in seconds (time). (*) The number of constraint checks performed by AC-6 is
similar to that of AC2001/3.1, as discussed in Section 6.

4.1 Arc Consistency as a Preprocessing Step

The first set of experiments shows the efficiency of AC2001/3.1 when arc consistency is
used for preprocessing (without search). In this case, the chance to have some propaga-
tions is small on real instances. As such, we also choose problems falling in the phase
transition of arc consistency (see [GMP+97]). To see the different behaviours, we present
results for randomly generated instances with different characteristics (those presented in
[BFR99]) and on a RLFAP instance where enforcing arc consistency was not trivial:

• P1= 〈150, 50, 500, 1250〉, under-constrained CSPs, where all generated instances
are already arc consistent;

• P2= 〈150, 50, 500, 2350〉, over-constrained CSPs, where all generated instances are
arc inconsistent, which means that the instances are not satisfiable and this can be
detected by enforcing arc consistency;

• P3=〈150, 50, 500, 2296〉 and P4=〈50, 50, 1225, 2188〉, problems in the phase tran-
sition of arc consistency;

• the RLFAP instance SCEN#08, which is arc inconsistent.

Table 1 presents the results. For the randomly generated instances, the number of
constraint check (#ccks) and time are averaged over the 50 instances in each class. The
under-constrained (P1) and over-constrained (P2) problems. represent cases where there
is little or no propagation needed to reach the arc consistent or arc inconsistent state. This
is the best case for AC-3. The AC2001/3.1 algorithm still gives comparable runtimes,
which indicates that the overhead incurred by AC2001/3.1 is not significant since in P1
there are no savings in constraint checks and P2 only saves about 4% of the checks.

The P3 instances are sparse problems (with a density of 4.5%) at the phase transition
of arc consistency. The P4 instances are dense problems (with a complete graph) also
at the phase transition of arc consistency. Usually much propagation is needed on these
problems to make the network arc consistent. We see that here the runtime of AC2001/3.1
is significantly faster than AC-3 due to large savings in the number of constraint checks.

The final experiment reports the results for a real-life problem, SCEN#08. Here,
AC2001/3.1 also saves a significant amount of constraint checks and is also faster.

9

MAC-3 MAC2001/3.1 MAC6
#ccks time #ccks time time

SCEN#01 5,026,208 2.33 1,983,332 1.62 2.05
SCEN#11 77,885,671 39.50 9,369,298 21.96 14.69
GRAPH#09 6,269,218 2.95 2,127,598 1.99 2.41
GRAPH#10 6,790,702 3.04 2,430,109 1.85 2.17
GRAPH#14 5,503,326 2.53 1,840,886 1.66 1.90

Table 2: Results for search of the first solution with a MAC algorithm in number of
constraint checks (#ccks) and cpu time in seconds (time).

In order to compare AC2001/3.1 to AC-6, it is necessary to first understand that they
perform the same number of constraint checks (see Section 6). Here the runtimes show
that for most of the problems AC2001/3.1 and AC-6 are comparable and we will return
again to this comparison with the DOMINO problem.

4.2 Maintaining Arc Consistency during Search

The second set of experiments we present in this section shows the behaviour of AC2001/3.1
when arc consistency is maintained during search (MAC algorithm [SF94]) to find the first
solution. We present results for all the instances contained in the FullRLFAP archive for
which more than 2 seconds were needed to find a solution or to prove that none exists. It
has to be noticed that the original objective in these instances is to find the “best” solution
under some criteria. This is of course out of the scope of this paper.

Table 2 contains the results. From these instances we can see a significant gain for
AC2001/3.1 on AC-3, with up to 9 times less constraint checks and twice less cpu time
on SCEN#11. As for the experiments performed on random instances at the phase tran-
sition of arc consistency, this tends to show that the trick of storing the Last data struc-
ture significantly pays off. In addition, we see that in spite of its simple data structures,
AC2001/3.1 is faster than AC-6 on all instances except the difficult SCEN#11. The rea-
son why AC-6 takes more time can be explained as follows. The main contribution to the
slow down of AC-6 is the maintenance of the currently supported list for each value of
each variable. Our experiments show that the overhead of maintaining the list does not
usually compensate for the savings, at least under the assumption that constraint checking
is cheap.

4.3 The DOMINO Problem

The last set of experiments we made shows the extreme case where the arc consistency
process converges after a long propagation that removes all values in all domains but
those belonging to the unique solution. The DOMINO problem is designed to exhibit
this behaviour. What we can expect from such a pathological case is to show us the
deep properties of non optimal coarse-grained, optimal coarse-grained and fine-grained
algorithms.

The results are in Table 3. We can see clearly the effect of the non-optimal worst case
complexity of AC-3. The number of constraint checks and cpu time increase dramatically

10

AC-3 AC2001/3.1 AC6
#ccks time #ccks time time

〈1000, 10〉 319,964 0.19 155,009 0.13 0.16
〈500, 100〉 90,845,149 25.70 7,525,099 3.18 2.66
〈300, 300〉 1,390,485,449 381.25 40,545,299 15.40 12.16

Table 3: Results on the DOMINO problem in number of constraint checks (#ccks) and
cpu time in seconds (time).

AC2001/3.1 domain checks AC6 list checks
〈1000, 10〉 53,991 17,999
〈500, 100〉 2,524,401 88,999
〈300, 300〉 13,544,401 179,399

Table 4: Results on the DOMINO problem in the number of domain versus list checks

with the size of the domains. As we already saw, AC2001/3.1 and AC-6 perform exactly
the same number of constraint checks. However, as in the most difficult problem of Sec-
tion 4.2, the fine-grained feature of AC-6 pays off with respect to AC2001/3.1 especially
when the domain size increases. This can be explained by the way AC2001/3.1 and AC-6
propagate the deletions of values. If we look more closely at the operations performed
by these two algorithms when a value (xj , b) is deleted, we note that they achieve opti-
mality in two different ways. For each (xi, a) such that xi shares a constraint with xj ,
AC2001/3.1 checks Last((xi, a), xj) against the domain Dj to know whether (xi, a) still
has support (see line 1 in Fig. 3). The Last indicates where to start the new search for
support. AC-6 on the other hand, maintains for each (xj , b) the list of the values a for xi

with Last((xi, a), xj) = b. When b is deleted from Dj , thanks to these lists of supported
values, AC-6 directly knows which values in Di need to seek a new support, and where
to start the new search.

By counting the number of such operations they perform (membership test of a Last
in a domain for AC2001/3.1 and list operations on supported lists for AC-6) we obtain
the following interesting information. While they don’t perform any such tests during the
initialization phase, the number of tests they perform during the propagation as shown
in Table 4 differs quite significantly. As domain size increases (and thus propagation
becomes longer), the cost of AC2001/3.1 propagation increases faster than that of AC-6.

5 An Application to Path Consistency and Non-binary
Constraints

5.1 Path Consistency

Notation. In this subsection, to simplify the presentation a variable xi is represented by
its index i.

Assume there is a constraint between any pair of variables in a given constraint net-
work (N, D, C). If it is not the case, we add a special constraint between the uncon-

11

strained pairs of variables. This constraint allows the constrained variables to take any val-
ues. The network is path consistent if and only if for any cij ∈ C, any tuple (a, b) ∈ cij ,
and any variable k ∈ N , there exists a value v ∈ Dk such that the values a, b, and v
satisfy the constraints among variables i, j, and k.

The same idea behind AC2001/3.1 applies here. Specifically, in order to find a new
support for each (a, b) ∈ cij with respect to a variable, say k, it is not necessary to start
from scratch every time. We can start from where we stopped before. Last((i, a), (j, b), k)
is used to remember that point.

The path consistency algorithm, which we have named PC2001/3.1, partially moti-
vated by the algorithm in [CJ98], is shown in Fig 5. It includes two parts: initialization
(INITIALIZE(Q)) and propagation (the while loop on Q). During the initialization, a first
support is searched for each pair of values ((i, a), (j, b)) on each third variable k. This
support is stored in Last((i, a), (j, b), k). When a tuple (a, b) is removed from cij , we
enqueue ((i, a), j) and ((j, b), i) into Q. Later, when ((i, a), k) is popped from Q, RE-
VISE PATH((i, a), k, Q) (in Fig 6) will check every constraint cij where j ∈ N − {i, k}
to see if any tuple in cij is affected by the modification of cik. For each constraint cij ,
REVISE PATH tries to find in Dk a support not from scratch but from its support in the
previous revision (line 1 and line 2 in Fig 6) for only those tuples starting with a.

algorithm PC2001/3.1
begin

INITIALIZE(Q)
while Q not empty do

Select and delete any ((i, a), j) from Q
REVISE PATH((i, a), j, Q))

endwhile
end

procedure INITIALIZE(Q)
begin

for any i, j, k ∈ N do
for any a ∈ Di, b ∈ Dj such that (a, b) ∈ cij do

if there is no v ∈ Dk such that (a, v) ∈ cik ∧ (v, b) ∈ ckj

then
cij(a, b)← false; cji(b, a)← false
Q← Q ∪ {(i, a), j} ∪ {(j, b), i}

else
Let v ∈ Dk be the first value satisfying

(a, v) ∈ cik ∧ (v, b) ∈ ckj

Last((i, a), (j, b), k)← v
end

Figure 5: Algorithm to enforce path consistency

12

procedure REVISE PATH((i, a), k, Q)
begin

for any j ∈ N, j 6= i, j 6= k do
for any b ∈ Dj such that (a, b) ∈ cij do

1. v ← Last((i, a), (j, b), k)
2. while (v 6= NIL) ∧ ((a, v) /∈ cik ∨ (v, b) /∈ ckj) do

v ← succ(v, Dk)
if v = NIL then

cij(a, b)← false; cji(b, a)← false
Q← Q ∪ {((i, a), j} ∪ {((j, b), i)}

else Last((i, a), (j, b), k))← v
endfor

end

Figure 6: Revision procedure for PC algorithm

For this algorithm, we have the following result.

Theorem 4 The time complexity of the algorithm PC2001/3.1 is O(n3d3) with space
complexity O(n3d2).

Proof. The complexity of the algorithm PC depends on the procedure REVISE PATH
whose second loop is to find a support for the tuple ((i, a), (j, b)) with respect to k. The
while loop in line 2 (Fig 6) either takes constant time if the condition is not satisfied (the
support stored in Last is still valid), or skips values in Dk otherwise. For the second case,
no matter how many times we try to find a support for ((i, a), (j, b)), at most we skip d
values since totally we have only d values in Dk.

We know that it is necessary to find a support for ((i, a), (j, b)) with respect to k if
and only if some tuple (a, v) is removed from cik. So we need to find such a support d
times. From first paragraph, for these d times we have at most d constant checks and d
skips in total. As a result, to find a support for ((i, a), (j, b)) with respect to k we need 2d
steps. Given that i, j, k can be any variable from N and a, b any value from Di and Dj

respectively, we have n3d2 possible ((i, a), (j, b))’s and k’s. Hence, the total time cost is
n3d2 × 2d, that is O(n3d3).

The main working space is for the structure Last((i, a), (j, b), k). The size of this
structure is the number of combinations of possible choices for i, j, k, a, b, that isO(n3d2).
2

The PC2001/3.1 has time complexity of O(n3d3) and space complexity of O(n3d2)
which is the same bounds as the best known results obtained in [Sin96]. The algorithm
in [Sin96] employs a supported list for each value of a variable and propagates the re-
moval of values in a fashion of AC-6. Compared with the supported list, the structure

13

Last((i, a), (j, b), k) is easier to maintain. This makes the PC2001/3.1 algorithm both
simpler to understand and to implement.

5.2 Non-binary Constraints

AC2001/3.1 can be extended to GAC2001/3.1 to deal with non-binary constraints. The
definition of arc consistency for non binary constraints is a direct extension of the bi-
nary one [Mac77b, MH86]. Let us denote by var(cj) = (xj1 , . . . , xjq

) the sequence of
variables involved in a constraint cj , by rel(cj) the set of tuples allowed by cj , and by

D
var(cj)

|xi=a
the set of the tuples τ in Dj1 ×· · ·×Djq

with τ [xi] = a (where i ∈ {j1, .., jq}).

A tuple τ in D
var(cj)

|xi=a
∩ rel(cj) is called a support for (xi, a) on cj . The constraint cj

is arc consistent (also called generalized arc consistent, or GAC) iff for any variable xi

in var(cj), every value a ∈ Di has a support on cj . Tuples in a constraint cj are totally
ordered with respect to the lexicographic ordering obtained by combining the ordering
<d of each domain with the ordering of the sequence var(cj) (or with respect to any
total order used when searching for support). Once this ordering is defined, a call to
REVISE2001/3.1(xi, cj) (see Fig. 7) checks for each a ∈ Di whether Last((xi, a), cj),
which is the smallest support found previously for (xi, a), still belongs to Dvar(cj). If
not, it looks for a new support for a on cj . If such a support τ exists, it is stored as

Last((xi, a), cj), otherwise a is removed from Di. The function succ(τ, Dvar(cj)

|xi=a
) re-

turns the smallest tuple in D
var(cj)

|xi=a
greater than τ .

procedure REVISE2001/3.1(xi, cj)
begin

DELETE← false
for each a ∈ Di do

τ ← Last((xi, a), cj)
if ∃k/τ [xjk

] 6∈ Djk
then

τ ← succ(τ, Dvar(cj)

|xi=a
)

while (τ 6= NIL) and (¬cj(τ)) do
τ ← succ(τ, Dvar(cj)

|xi=a
)

if τ 6= NIL then
Last((xi, a), cj)← τ

else
delete a from Di

DELETE← true
return DELETE

end

Figure 7: Procedure REVISE for GAC2001/3.1

14

In Fig. 8, we present a version of the main algorithm based on the one proposed in
[Mac77b]. It is a brute force propagation schema that does not take into account the fact
that in practice some of the constraints may have ad hoc propagators. Thus the algorithm
may have to be adapted depending on the architecture of the solver in which it is used.
Standard techniques are described in [ILO99, Lab00].

algorithm GACX
begin

Q← {(xi, cj) | cj ∈ C, xi ∈ var(cj)}
while Q not empty do

select and delete any pair (xi, cj) from Q
if REVISEX (xi, cj) then

Q← Q ∪ {(xk, cm) | cm ∈ C, xi, xk ∈ var(cm), m 6= j, i 6= k}
end

Figure 8: A non binary version of coarse-grained arc consistency algorithm

Complexity. The worst-case time complexity of GAC2001/3.1 depends on the arity of
the constraints involved in the constraint network. The greater the number of variables
involved in a constraint, the higher the cost to propagate it. Let us first limit our analysis
to the cost of enforcing GAC on a single constraint, cj , of arity r = |var(cj)|. For each

variable xi ∈ var(cj), for each value a ∈ Di, we look for supports in the space D
var(cj)

|xi=a
,

which can contain up to dr−1 tuples. If the cost of constraint checks2 is inO(r) this gives
a cost in O(rdr−1) for checking viability of a value. Since we have to find support for rd
values, the cost of enforcing GAC on cj is in O(r2dr). If we enforce GAC on the whole
constraint network, values can be pruned by other constraints, and each time a value is
pruned from the domain of a variable involved in cj , we have to revise cj . So, cj can be
revised up to rd times. Fortunately, additional calls to REVISE2001/3.1 do not increase
its complexity since, as in the binary case, Last((xi, a), cj) ensures that the search for
support for (xi, a) on cj will never check twice the same tuple. Therefore, in a network
involving constraints of arity bounded by r, the total time complexity of GAC2001/3.1 is
in O(er2dr).

6 Related Work and Discussion

Many arc consistency algorithms have been designed since the birth of the first such al-
gorithm. In this section we present a systematic way to view these algorithms including

2The cost of a constraint check is sometimes considered as constant time while it is natural to assume its cost
be linear to its arity.

15

AC-3, AC-4, AC-6 , AC-7 and AC2001/3.1. We also present an analysis of the perfor-
mance of these algorithms, especially AC2001/3.1 and AC-6.

6.1 A Classification and Comparison of AC algorithms

Arc consistency algorithms can be classified by their methods of propagation. So far, two
approaches are employed in known efficient algorithms: arc oriented and value oriented.
Arc oriented propagation originates from AC-1 and its underlying computation model is
the constraint graph where we have only variables and topological relationship between
variables derived from constraints.

Definition 3 The constraint graph of a constraint network (N, D, C) is the graph G =
(V , E) where V = N and E = {(i, j) | ∃cij ∈ C }.

Value oriented propagation originates from AC-4 and its underlying computation
model is the value based constraint graph where each constraint is also represented as
a (sub)graph. For example, the graph in Fig 4 is a value based graph where a vertex is a
value and an edge is an allowed tuple by the corresponding constraint.

Definition 4 The value based constraint graph of a constraint network (N, D, C) is G =
(V , E) where V = {(i, a) | xi ∈ N, a ∈ Di} and E = {((i, a), (j, b)) | a ∈ Di, b ∈
Dj , cij ∈ C, (a, b) ∈ cij }.

The value based constraint graph is also known under the names consistency graph or
microstructure. A more specific name for the traditional constraint graph may be variable
based constraint graph. The key idea of value oriented propagation is that once a value
is removed only the viability of those values depending on it will be checked. Thus it is
more fine-grained than arc oriented propagation. Algorithms working with variable and
value based constraint graphs can be classified respectively as coarse-grained algorithms
and fine-grained algorithms.

An immediate observation is that compared with variable based constraint graph, the
time complexity analysis in value based constraint graph is straightforward. That is, the
total number of operations during the execution of a fine-grained algorithm will be of the
same order as the number of edges in the value based constraint graph: O(ed2). As far
as we know, Perlin [Per92] is the first to make value based constraint graph explicit in arc
consistency enforcing algorithm.

Given a computation model of propagation, the algorithms differ in the implementa-
tion details. Under variable based constraint graph, AC-3 [Mac77a] can be thought of
as an open algorithm, as suggested by our notation ACX . Its time complexity analysis
in [MF85] can be regarded as a realized implementation where a very intuitive revision
procedure is employed. The new algorithm AC2001/3.1 presented in this paper uses a
new implementation of the revision procedure, leading to the optimal worst case time
complexity. Our new approach simply remembers the support obtained in the previous
revision of an arc while in the old one, the choice is to be lazy, forgetting previous com-
putation. There are also some approaches to improve the space complexity of AC-3 in
[McG79, CJ98].

16

For value based constraint graphs, AC-4 is the first AC implementation and AC-6 is
a lazy version of AC-4. AC-7 exploits the bidirectionality on the basis of AC-6. Bidirec-
tionality states that given any cij , cji, and any a ∈ Di, b ∈ Dj , (a, b) ∈ cij if and only if
(b, a) ∈ cji.

Another observation is that the general properties or knowledge of a constraint net-
work can be isolated from a specific arc consistency enforcing algorithm. In fact the idea
of metaknowledge [BFR99] can be applied to algorithms for either computation model.
For example, to save the number of constraint checks, the bidirectionality can be em-
ployed also in coarse-grained algorithm, e.g., in [Gas78, LBH03]. Other propagation
heuristics [WF92] such as propagating deletion first [BFR99] are also applicable to the
algorithms of both models.

We have delineated the AC algorithms which shows that AC2001/3.1 and AC-6 are
methodologically different. From a technical perspective, the time complexity analysis of
AC2001/3.1 is different from that of AC-6 where the worst case time complexity analysis
is straightforward. The point of commonality between AC2001/3.1 and AC-6 is that they
face the same problem: the domain may shrink during the process of arc consistency
enforcing and thus the recorded support may not be valid in the future. This makes some
portions of the implementation of AC2001/3.1 similar to AC-6. We remark that the proof
technique in the traditional view of AC-3 does not directly lead to AC2001/3.1 and its
complexity results.

6.2 Analysis of the Performance of AC Algorithms

The time complexity of AC-3 is inO(ed3) while that of AC-4, AC-6, AC-7 and AC2001/3.1
is in O(ed2). As for space complexity, AC-3 uses as little as O(e) for its queue, AC-
4 has a complexity of O(ed2), and AC2001/3.1, AC-6 and AC-7 have O(ed). When
dealing with non-binary constraints, GAC3 [Mac77b] has a O(er3dr+1) time complex-
ity, GAC2001/3.1 is in O(er2dr), while GAC4 [MM88] and GAC-schema [BR97] are in
O(erdr). GAC4 is a factor r better than GAC2001/3.1 because it computes the dr possible
constraint checks on a constraint once and for all at the beginning, storing the information
in lists of supported values. For GAC-schema, the reason is that the use of multidirection-
ality (i.e., bidirectionality for non-binary constraints) prevents it from checking a tuple
once for each value composing it.

AC-4 does not perform well in practice [Wal93, BFR99] because it reaches the worst
case complexity both theoretically and in actual problem instances when constructing the
value based constraint graph for the instance. Other algorithms like AC-3 and AC-6 can
take advantage of some instances where the worst case doesn’t occur. In practice, both
artificial and real life problems rarely make algorithms behave in the worst case except
for AC-4.3

The number of constraint checks is also used to evaluate practical time efficiency of
AC algorithms. In theory, applying bidirectionality to all algorithms will result in better
performance since it decreases the number of constraint checks. However, if the cost of
constraint checks is cheap, the overhead of using bidirectionality may not be compensated
by its savings as demonstrated by [BFR99].

3However, the value based constraint graph induced from AC-4 provides a convenient and accurate tool for
studying arc consistency.

17

AC-6 and AC2001/3.1 have the same worst-case time and space complexities. So, an
interesting question here is “What are the differences between AC2001/3.1 and AC-6 in
terms of constraint checks?”.

Let us first briefly recall the AC-6 behavior [Bes94]. AC-6 looks for one support
(the first one or smallest one with respect to the ordering <d) for each value (xi, a) with
respect to each constraint cij to prove that a is currently viable. When (xj , b) is found
as the smallest support for (xi, a) wrt cij , (xi, a) is added to S[xj , b], the list of values
currently having (xj , b) as their smallest support. If (xj , b) is removed from Dj , it is
added to the DeletionSet, which is the stream driving propagations in AC-6. When
(xj , b) is picked from the DeletionSet, AC-6 looks for the next support, greater than b,
in Dj for each value (xi, a) in S[xj , b].

To allow a closer comparison, we will suppose in the following that the S[xi, a] lists
used in AC-6 are split with respect to each constraint cij involving xi, leading to a struc-
ture S[xi, a, xj], as in AC-7.

Property 1 Given a constraint network (N, D, C). If we suppose AC2001/3.1 and AC-6
follow the same ordering of variables and values when looking for supports and propagat-
ing deletions, then, enforcing arc consistency on the network with AC2001/3.1 performs
the same constraint checks as with AC-6.

Proof. Since they follow the same ordering, both algorithms perform the same constraint
checks in the initialization phase: they stop search for support for a value (xi, a) on cij

as soon as the first b ∈ Dj compatible with a is found, or when Dj is exhausted (then
removing a from Di). During the propagation phase, both algorithms look for a new
support for a value (xi, a) with respect to cij only when a value b removed from Dj was
the current support for a (i.e., a ∈ S[xj , b, xi] for AC-6, and b = Last((xi, a), xj) for
AC2001/3.1). Both algorithms search in Dj for a new support for a immediately greater
than b. Thus, they will find the same new support for a with respect to cij , or will remove
a, at the same time, and with the same constraint checks. And so on. 2

From property 1, we see that the difference between AC2001/3.1 and AC-6 cannot be
characterized by the number of constraint checks they perform. We will then focus on
the way they find which values should look for a new support. For that, both algorithms
handle their specific data structure. Let us characterize the number of times each of them
checks its own data structure when a set ∆(xj) of deletions from Dj is propagated with
respect to a given constraint cij .

Property 2 Let cij be a constraint in a constraint network (N, D, C). Let ∆(xj) be a set
of values removed from Dj that have to be propagated with respect to cij . If,

• dA = |∆(xj)|+
∑

b∈∆(xj)
|S[xj , b, xi]|,

• dB = |Di|, and

• dC = # constraint checks performed on cij to propagate ∆(xj),

then, dA + dC and dB + dC represent the number of operations AC-6 and AC2001/3.1
will respectively perform to propagate ∆(xj) on cij .

18

..............
..............

.............
.............

.............
.............

.............
..............

.............
.............

.............
.............

.............
..............

.............
.............

.............
.............

.............
..............

.............
.............

.............
.............

.............
..............

.............
.............

.............
.............

.............
..............

..............
....

...........
..........
...........
...........
...........
..........
...........
...........
...........
..........
...........
..........
...........
...........
...........
..........
...........
..........
...........
...........
...........
..........
...........
...........
...........
..........
...........
..........
...........
...........
...........
..........
...........
...........
...........
..........
...........
..........
...........
...........
...........
..........
...........
..

..................
..................

..................
..................

.................
..................

..................
..................

..................
.................

..................
..................

..................
..................

.................
..................

..................
..................

..................
..................

.................
..................

..................
..................

........

s

s

s

s

s

s

s
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
..........

...
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....
..

.....

....

.....

....

.....

.....

.....

....

.....

.....

.....

....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.......
..
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
....
.....
.....
.....
.....
.....
....
.....
....
.....
.....
.....
....
.....
.....
...

s

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
....

..

............................
...........................

...........................
............................

...........................
...........................

............................
...........................

...........................
............................

...........................
...........................

............................
...........................

............................
............

...

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xi

v2

v3

v0

v1

v50

v51

v100

v1

xj

Figure 9: The constraint example

Proof. From property 1 we know that AC-6 and AC2001/3.1 perform the same con-
straint checks. The difference is in the process leading to them. AC-6 traverses the
S[xj , b, xi] list for each b ∈ ∆(xj) (i.e., dA operations), and AC2001/3.1 checks whether
Last((xi, a), xj) belongs to Dj for every a in Di (i.e., dB operations). 2

We illustrate this on the extreme case presented in Fig. 9. In that example, the three
values of xi are all compatible with the first value v0 of xj . In addition, (xi, v1) is com-
patible with all the values of xj from v1 to v50, and (xi, v2) with all the values of xj from
v51 to v100. Imagine that for some reason, the value v3 has been removed from Di (i.e.,
∆(xi) = {v3}). This leads to dA = 1, dB = 101, and dC = 0, which is a case in which
propagating with AC-6 is much better than with AC2001/3.1, even if none of them needs
any constraint check. Indeed, AC-6 just checks that S[xi, v3, xj] is empty,4 and stops.
AC2001/3.1 takes one by one the 101 values b of Dj to check that their Last((xj , b), xi)
is not in ∆(xi). Imagine now that instead of the value v3 of Di these are the values v1 to
v100 of Dj that have been removed (i.e., ∆j = {v1, . . . , v100}). Now, dA = 100, dB = 3,
and dC = 0. This means that AC2001/3.1 will clearly outperform AC-6. Indeed, AC-6
will check for all the 100 values b in ∆(xj) that S[xj , b, xi] is empty,5 while AC2001/3.1
just checks that Last((xi, a), xj) is not in ∆(xj) for every value (totally 3) a ∈ Di.

Finally, given that both variable and value based constraint graphs can lead to worst
case optimal algorithms, we consider their strength on some special constraints: func-
tional, monotonic and anti-functional. For more details, see [VDT92] and [ZY00]. Coarse
grained algorithms can be easily adapted to process monotonic and anti-monotonic con-
straints in a time complexity of O(ed) (e.g., using AC2001/3.1). Fine grained algorithms

4The only value compatible with (xi, v3) is (xj , v0), which is currently supported by (xi, v1).
5Indeed, (xj , v0) is the current support for the three values in Di since it is the smallest in Dj and it is

compatible with every value in Di.

19

(e.g., AC-4 and AC-6) can deal with functional constraints efficiently with complexity
O(ed). We remark that the particular distance constraints in RLFAP can be enforced to
be arc consistent in O(ed) by using a coarse-grained algorithm. It is difficult for coarse-
grained algorithm to deal with functional constraints and tricky for fine grained algorithms
to handle monotonic constraints. That is why AC-5 [VDT92] is introduced. In fact AC-5
uses both graphs.

By showing that coarse-grained algorithms can be made worst case optimal, this pa-
per opens opportunities to construct new efficient algorithms through reexamining in the
context of coarse-grained algorithms those techniques (e.g., bidirectionality and other
heuristics or meta knowledge) mainly employed in fine-grained algorithms.

Detailed experiments in [Wal93] show the advantage of AC-3 over AC-4. Our work
complements this by providing a way to make coarse-grained algorithms to be worst case
optimal.

7 Conclusion

This paper presents AC2001/3.1, a coarse-grained algorithm that improves AC-3. AC2001/3.1
uses an additional data structure, the Last supports, which should be maintained during
propagation. This data structure permits a significant improvement on AC-3, and de-
creases the worst case time complexity to the optimal O(ed2). AC2001/3.1 is the first
algorithm in the literature achieving optimally arc consistency while being free of any
lists of supported values. While worst case time complexity gives us the upper bound
on the time complexity, in practice, the running time and number of constraint checks are
the prime consideration. Our experiments show that AC2001/3.1 significantly reduces the
number of constraint checks and the running time of AC-3 on hard arc consistency prob-
lems. Furthermore, the running time of AC2001/3.1 is competitive with the best known
algorithms, based on the benchmarks from the experiments in [BFR99]. Its behavior is
analysed, and compared to that of AC-6, making a contribution to the understanding of
the different AC algorithms. The paper shows how the technique used in AC2001/3.1
directly applies to non binary constraints. In addition, this technique can also be used to
produce a new algorithm for path consistency. We conjecture from the results of [CJ98]
that this algorithm can give a practical implementation for path consistency.

Acknowledgments

The first author would like to thank Philippe Charman who pointed out to him the negative
side of fine-grained algorithms. The first author also wants to thank all the members of the
OCRE team for the discussions they had about the specification of the CHOCO language.

References

[Bes94] C. Bessière. Arc-consistency and arc-consistency again. Artificial Intelli-
gence, 65:179–190, 1994.

20

[BFR95] C. Bessière, E. C. Freuder, and J. C. Régin. Using inference to reduce
arc consistency computation. In Proceedings IJCAI’95, pages 592–598,
Montréal, Canada, 1995.

[BFR99] C. Bessière, E.C. Freuder, and J.C. Régin. Using constraint metaknowledge
to reduce arc consistency computation. Artificial Intelligence, 107:125–148,
1999.

[BR97] C. Bessière and J.C. Régin. Arc consistency for general constraint networks:
preliminary results. In Proceedings IJCAI’97, pages 398–404, Nagoya,
Japan, 1997.

[BR01] C. Bessière and J.C. Régin. Refining the basic constraint propagation algo-
rithm. In Proceedings IJCAI’01, pages 309–315, Seattle WA, 2001.

[CdGL+99] C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio link
frequency assignment. Constraints, 4:79–89, 1999.

[CJ98] A. Chmeiss and P. Jégou. Efficient path-consistency propagation. Interna-
tional Journal on Artificial Intelligence Tools, 7(2):121–142, 1998.

[DP88] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction
problems. Artificial Intelligence, 34:1–38, 1988.

[FBDR96] D. Frost, C. Bessière, R. Dechter, and J.C. Régin. Random uniform csp
generators. URL: http://www.ics.uci.edu/˜dfrost/csp/generator.html, 1996.

[Gas78] J. Gaschnig. Experimental case studies of backtrack vs waltz-type vs new
algorithms for satisficing assignment problems. In Proceedings CCSCSI’78,
pages 268–277, 1978.

[GMP+97] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The constrained-
ness of arc consistency. In Proceedings CP’97, pages 327–340, Linz, Aus-
tria, 1997.

[ILO99] ILOG. User’s manual. ILOG Solver 4.4, ILOG S.A., 1999.

[Lab00] F. Laburthe. User’s manual. CHOCO, 0.39 edition, 2000.

[LBH03] C. Lecoutre, F. Boussemart, and F. Hemery. Exploiting multidirectionality
in coarse-grained arc consistency algorithms. In Proceedings CP’03, pages
480–494, Kinsale, Ireland, 2003.

[Mac77a] A.K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8:99–118, 1977.

[Mac77b] A.K. Mackworth. On reading sketch maps. In Proceedings IJCAI’77, pages
598–606, Cambridge MA, 1977.

[McG79] J.J. McGregor. Relational consistency algorithms and their application in
finding subgraph and graph isomorphism. Information Science, 19:229–
250, 1979.

21

[MF85] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems. Artificial
Intelligence, 25:65–74, 1985.

[MH86] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial
Intelligence, 28:225–233, 1986.

[MM88] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings
ECAI’88, pages 651–656, Munchen, FRG, 1988.

[Per92] M. Perlin. Arc consistency for factorable relations. Artificial Intelligence,
53:329–342, 1992.

[Pro96] P. Prosser. An empirical study of phase transition in binary constraint satis-
faction problems. Artificial Intelligence, 81(1–2):81–109, 1996.

[SF94] D. Sabin and E. Freuder. Contradicting conventional wisdosdom in con-
straint satisfaction. In Proceedings of the Second Workshop on Principles
and Practice of Constraint Programming, pages 10–20, Rosario, Orcas Is-
land, Washington, 1994.

[Sin96] M. Singh. Path consistency revisited. Int. Journal on Art. Intelligence Tools,
6(1&2):127–141, 1996.

[VDT92] P. Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc-consistency
algorithm and its specializations. Artificial Intelligence, 57:291–321, 1992.

[Wal93] R.J. Wallace. Why AC-3 is almost always better than AC-4 for establish-
ing arc consistency in CSPs. In Proceedings IJCAI’93, pages 239–245,
Chambéry, France, 1993.

[WF92] R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consistency al-
gorithms. In Proceedings Ninth Canadian Conference on Artificial Intelli-
gence, pages 163–169, Vancouver, Canada, 1992.

[ZY00] Y. Zhang and R.H.C. Yap. Arc consistency on n-ary monotonic and linear
constraints. In Proceedings CP’00, pages 470–483, Singapore, 2000.

[ZY01] Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithm. In Proceed-
ings IJCAI’01, pages 316–321, Seattle WA, 2001.

22

