
HAL Id: lirmm-00106687
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106687v1

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Detection and Resolution of BGP Oscillations
Ehoud Ahronovitz, Jean-Claude König, Clément Saad

To cite this version:
Ehoud Ahronovitz, Jean-Claude König, Clément Saad. Dynamic Detection and Resolution of BGP
Oscillations. [Research Report] 05039, LIRMM. 2005. �lirmm-00106687�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106687v1
https://hal.archives-ouvertes.fr


Dynamic detection and resolution of BGP oscillations

Ehoud AHRONOVITZ, Jean-Claude K̈ONIG, Clément SAAD

Universit́e Montpellier 2 - LIRMM
161 Rue Ada

F-34392 Montpellier Cedex 5, France

aro@lirmm.fr, konig@lirmm.fr, saad@lirmm.fr

Abstract

Autonomous Systems (AS) in the Internet use different protocols for internal and external routing.
BGP is the only external protocol. It allows ASes to define their own routing policy independently.
Many papers cited in reference deal with a divergence behavior due to this flexibility. In fact, when
routing policies are not conflicting, BGP is self-stabilising, which means that whatever network config-
uration, BGP converges to a stable solution. Unfortunately, as experienced on the Internet, AS routing
policies may be uncoherent, thus generating oscillations. In this paper we propose a distributed dy-
namic method for detecting and solving oscillations of BGP. It respects private policy choices and
requires only a few low level constraints in order to converge to a stable solution. Essentially, a router
has to maintain only local path stateful information to detect instabilities. In this case, it generates and
launches a token linked to a route. Each router makes the decision to forward or not the token accord-
ing to local data and local policy. If the originating router receives back the token, then it marks the
route asbarred. Nevertheless, routes may furtherly be unmarked. Finally, we express and define what
coherence between routing policies means.

1 Introduction

Border Gateway Protocol (BGP) is the only interdomain routing protocol used on the Internet. It allows
Autonomous Systems (hereafter denoted AS) to exchange routing data. An AS is a set of networks and
routers managed by a unique administration. Each AS uses an internal routing protocol such as RIP,
OSPF,... and defines its own external routing policy for BGP. These policies may be based on commercial,
performance, security criterions, etc. BGP was designed to let ASes freely choose their own policies.
Unfortunaly, this free choice may lead to global inconsistencies expressed by oscillations of routes.

Varadhan & al [1] have already shown that ASes private policies may lead to global inconsistencies.
Lobavitz & al [2][3] have studied the origins of routing instability.

Many suggestions were made to solve instability. In particular Griffin suggested static and dynamic
solutions [4][5][6][7]. Gao & Rexford [8][9] estabished conditions to avoid oscillations, using the relation-
ship customer-provider. Recently, Yilmaz & Matta [10] developed a dynamic solution using a randomized
algorithm to reorder preferred AS paths.

However all these solutions have important drawbacks. Indeed, static solutions do not only suppose
that the network is stable, but require huge amount of data, e.g. the graph of AS routers, and may involve
knowledge of policy data, thus conflicting with privacy. Dynamic solutions such as those suggested by
Griffin have much the same drawbacks : they use histories that can grow very long, reveal private policy
information and as histories are to be transmitted over the network, they lead to traffic overload.

In this paper we propose a dynamic method for detecting and solving oscillations. Each AS maintains
local stateful information on routes in order to detect any oscillation and the route involved in. Then it
generates a token linked to the oscillating route. The token is sent to the neighbouring AS routers. Routers

1



that receive the token have to decide whether to forward or drop the token. If the generator receives back
the token, we conclude that it is responsible for solving locally the problem. The solution consists in
marking the associated route asbarred. We show that if more tokens are generated by other routers for the
same oscillation, then only one route will be marked.

Our work relies on Griffin’s model called Stabel Path Problem, described in section 2. We show that
managing histories is a lot ressource consuming.

In section 3 we explain the principles of our method. Contrary to Griffin’s method, we maintain local
stateful information without having to transmit it. We study the properties, advantages and constraints of
such a method.

Section 4 deals with the token solution for oscillations. We show why it works then we study some
extensions as well as limitations. Finally, in section 5 we give a characterisation of coherent routing
policies. We do that because when routing policies are coherent, BGP is self-stabilizing. So we try to
connect the divergent behavior with uncoherent routing policies.

2 SPP and dispute digraph

2.1 The Stable Path Problem (SPP)

The Stable Path Problem (SPP) proposed by Griffin and Wilfong in [6] is a modelisation giving a simple
view on routing instabilities. It allows to focus on the origins of instabilities. SPP consists of an undirected
graph with a single destination. All functionalities and attributes of BGP which are not involved with
instabilities, such as MED, aggregation of paths,..., are not considered in SPP.

2.1.1 Construction

Let G = (V,E) be a graph such that the vertices (elements ofV ) and edges (element ofE) represent
respectively the autonomous systems and the BGP links. Each AS defines a list of paths ordered with a
ranking function from the most to the least preferred path. ASes will try to find and preserve the best
ranking path for each destination. An AS can choose a path, only if all ASes belonging to this path adopt
the corresponding sub-path. For example, in figure 1 if AS3 adopts path 30 then AS1 can select path 130.

Figure 1 a), represents the BAD GADGET instance of SPP. We assume that each AS defines its own
path to destination AS0. A possible simulation of BGP is: initially, each AS adopts either a direct path
to AS0, or the empty path notedε. AS1 does not know the paths of its neighbours. So, it adopts path 10
and broadcasts this to its neighbours. When AS2 gets this piece of information, it can select path 210 and
inform AS3. As path 20 is not available, AS3 preserves path 30. When AS1 will receive this information,
it will select path 130, thus loosing path 210, and so on ... This process cycles and illustrates a case of BGP
oscillation. Griffin & al. showed in [7] that the detection of oscillations in a SPP instance is NP-Complete,
through a reduction to 3-SAT.

Figure 1: BAD GADGET - A problem with no stable solution and its dispute digraph

2



2.2 Dispute digraph

Griffin & al. [6], construct a dispute directed graph, deduced from the SPP instance. In this graph, nodes
represent paths extracted from ASes lists, while arcs represent either compatibility or conflict between
paths.

2.2.1 Construction

Let G = (V,E) be a dispute graph, each node representing a path (figure 1 b) ). There are two types of
arcs, defined as follows:

• Transmission arc : Letu, v be two ASes,uvP andvP two paths belonging respectively tou andv.
If v adopts pathvP thenu can adopt pathuvP . In this case, there is an arc fromvP to uvP called
transmission arc. It is represented by a dotted line (figure 1 b) ).

• Dispute arc (figure 2) : LetvQ andvP be two possible paths for ASv, vQ being preferred tovP .
Let uvP anduvQ be two possible paths for ASu, uvP being preferred touvQ. If v adoptsvQ
(preferred tovP ) thenu cannot adoptuvP , since pathvP is not available. Thusu will choose
another path with a lower rank thanuvP . In this case, there is an arc fromvQ to uvP called dispute
arc. It is represented by a full line.

Figure 2: A dispute arcvQ− > uvP

Figure 1 b) shows the dispute digraph for BAD GADGET.

2.2.2 Dispute cycle

A dispute cycle in the dispute digraph represents conflicting routing policies.

Definition 1. A dispute cycle in the dispute digraph is a cycle containing at least two dispute arcs.

Let S be a SPP instance. Griffin shows in [6] that:

Theorem 1. If the dispute digraph ofS is acyclic thenS has a unique solution.

2.3 A dynamic solution using histories

We explain hereafter the dynamic method,SPV P3, using histories as proposed by Griffin ([6]).
While in BGP ASes exchange paths, inSPV P3, Ases exchange pairsm = {P, h} whereP is a path

andh a history related toP . The functionspath(m) andhist(m) are defined to return respectivelyP and
h.

Let B(u) be a set ofbarred paths. Let functionchoice(u) return the whole paths of ASu. Then
best(u) = max(choice(u)−B(u)) returns the best choice for ASu among the possible paths.

In SPV P3, When ASu receives a pairm from a neighbour, it comparespath(m) to best(u). If the
result is better, then it updates its path and the related history. Finally,u sends its updated route and the
related history to all its neighbours. With histories, ASes can detect cycles. If an AS detects a cycle, then
it adds the current path toB(u).

3



2.4 History construction

Each AS manages a history tracing all events that happened to its paths as well as their causes. For each
announce of a pathP , a router joins the associated historyh. When an ASu receives the pairm = {P, h}
from a neighbour, ifP implies a modification (i.e. pathX replacingY ), then the following is added to the
history ofu:

• h

• (+X), if X is preferred toY (u got a better choice),

• (−Y ), if Y is preferred toX (u lost a better choice).

This phenomenon is shown in table 1 steps 2 to 3. Table 1 represents an example of history management
with the BAD GADGET in figure 3. For example, AS4 announces its new pathε with the history (-
420)(+210) (h). AS3 looses path 3420 (Y ), and chooses path 30 (X). Therefore it adds in its own history
h and (-3420) since 3420 is preferred to 30.

Figure 3: BAD GADGET with five ASes

3 Maintaining path local stateful information (PLSI)

The history management seen above involves a lot of local and network ressources. So we rather propose to
maintain local stateful information on routes allowing to detect oscillations. The advantages of this method
are described hereafter.

3.1 Differences withSPV P3

SPV P3 uses histories in order to detect cycles. If a cycle is detected,SPV P3 adds a path toB(u). As soon
as an AS detects a cycle it considers that the chosen path is wrong and it adds it toB(u). For example, when
cycle (+210 -420 -3420 -130 +210) is detected (see table 1),SPV P3 adds 20 toB(u). We prefer consider-
ing 210 as wrong because, if we delete 210 we “break” the dispute cycle in the dispute digraph and due to
the previous theorem, we obtain a stable solution. In figure 3,SPV P3 converges towards (130),ε,(30),(430)
respectively for ASes 1,2,3,4. Our solution (PLSI) converges towards (10),(20),(3420),(420).

3.2 Characterisation of oscillations

3.2.1 General properties

Let us pay attention to the history in table 1. We can observe that cycle (-210 +130 -3420 -420 +210) has
been detected because a path (here 210) changed from state + to state -.

4



step u best(u) hist(u)
0 1 (10) *

2 (20) *
3 (3420) *
4 (420) *

1 1 (10) *
2 (210) (+210)
3 (3420) *
4 (420) *

2 1 (10) *
2 (210) (+210)
3 (3420) *
4 (ε) (-420) (+210)

3 1 (10) *
2 (210) (+210)
3 (30) (-3420) (-420) (+210)
4 (ε) (-420) (+210)

4 1 (10) *
2 (210) (+210)
3 (30) (-3420) (-420) (+210)
4 (430) (+430) (-3420) (-420) (+210)

5 1 (130) (+130) (-3420) (-420) (+210)
2 (210) (+210)
3 (30) (-3420) (-420) (+210)
4 (430) (+430) (-3420) (-420) (+210)

6 1 (130) (+130) (-3420) (-420) (+210)
2 (20) (-210) (+130) (-3420) (-420) (+210)
3 (30) (-3420) (-420) (+210)
4 (430) (+430) (-3420) (-420) (+210)

Table 1: History management for the BAD GADGET example in figure 3.

Theorem 2. In the case of an oscillation, a state change occurs in all paths of a cycle in the dispute
digraph. We calloscillating cyclesuch a cycle.

proof: Let C be an oscillating cycle. IfC oscillates then a state change occurs for at least one path.
However, according to the definitions of transmission and dispute arcs, if there is an arc fromX to Y , it
means thatY depends onX. So if a state change occurs inX then a state change occurs inY . Therefore
a state change occurs for all paths.

Note

• A state change from + to + (resp. from - to -) implies a previous move to state - (resp. state +).

• At the initial step, ASes adopt either the empty pathε or a direct path. Therefore each AS will begin
with a + state on one path.

Theorem 3. In an oscillating cycle, when we follow the cycle for the first time, at least one path in the
cycle will change from state + to state -.

proof: If a cycle is detected at the initial step then the theorem is prooved due to the previous note.

5



Assume that all paths changed from state - to state +. We know that an oscillating cycle contains at
least two dispute arcs. LetC be a cycle andX andY be two paths inC with a dispute arc fromX to Y .
This means that ifX is adopted thenY cannot be chosen. Therefore, ifX changed from state - to state
+ thenX is adopted. Consequently,Y cannot change from state - to state +. Thus, one cannot change
only from state - to state +. According to the previous theorem, an oscillation occurs in all paths, so the
oscillation inY is necessarily due to a state change from + to -.

3.2.2 Oscillations and cycles

These theorems allow us to consider only the state change from + to -. So, we calloscillation on a paththe
state change from + to -.

A state change for a path means that there is an oscillation but we don’t know if this path belongs
to the cycle or not. This phenomenon is illustrated in figure 4: AS1 detects an oscillation on path 1240
caused by BAD GADGET but 1240 does not belong to the cycle in the dispute digraph.

Figure 4: Error caused by a transmission arc

3.3 Identifying oscillating paths

Each AS maintains only the state of its own paths. Thus we have only local management of path states.
Moreover, messages exchanged between ASes contain only paths. Thus, we consume only low amount of
resources. Table 2 represents this local management. When moving from step 5 to step 6 in table 2, AS2
detects an oscillation on 210. If this path is involved in a dispute cycle then it will be markedbarred.

AS1 AS2 AS3 AS4
step 130 10 rib-in 210 20 rib-in 3420 30 rib-in 420 430 rib-in

1 * * 10 * * 20 * * 3420 * * 420
2 * * 10 + * 210 * * 3420 * * 420
3 * * 10 + * 210 * * 3420 - * ε

4 * * 10 + * 210 - * 30 - * ε

5 + * 130 + * 210 - * 30 - + 430
6 + * 130 - * 20 - * 30 - + 430
7 + * 130 - * 20 - * 30 + + 420
8 + * 130 - * 20 + * 3420 + + 420
9 - * 10 - * 20 + * 3420 + + 420

Table 2: Local management for BAD GADGET (rib-in is the currently selected path)

4 Detecting and resolving oscillations

As each AS maintains only local information, actions beetween ASes must be coherent. There are two
problems :

6



• The first concerns the detection of cycles. As we have seen, if there is an oscillation on a path that
does not mean necessarily that this path belongs to a cycle.

• The second problem is: when a cycle is detected which path among all paths involved in the cycle
should be marked?

4.1 Detecting cycles with a token

We describe hereafter how a token allows to detect cycles and why it works.

4.1.1 The token method

As soon as ASA detects an oscillation on pathX, it generates a token related toX and sends the new
chosen path with the token. If an ASB has not to update its path when receiving this message then it
destroys the token. But, ifB has to update its path then it forwards the token with its own newly selected
path to all its neighbours, and so on... IfA receives a pathY with its own token and ifY implies the choice
of X thenA concludes thatX belongs to a cycle and marksX barred.

Note that the token value does not reveal the oscillating path (the token value can be assigned with a
hashtable). Thus, whenB receives the token, it does not know which path oscillates.

Figure 5 is an example of a token flow. AS2 detects an oscillation on 210. It generates a token related
to 210 (denotedj210) and sends its new path (20) with the token. When AS3 receives this information
it chooses path (320) instead of (30). So it forwards tokenj210 with (320). AS1 receives the message
from AS3 and modifies its path to (10). It forwards tokenj210 with path (10) and when AS2 receives this
message it retreives its token and adopts (210). AS2 concludes that 210 is involved in a cycle. Then AS2
marksbarred this path and a new stable solution is found.

Figure 5: Token flow after oscillation on path 210

4.1.2 Why does it works ?

Assume the dispute digraph of BAD GADGET (figure 1 b) ). We state that the token follows the dispute
cycle. In fact, as AS2 detects the oscillation on 210, this means that 210 changed from state + to state - and
then 210 is not adopted. Thus 320 may be adopted making impossible the choice of 130 for AS1. Then
AS2 may adopt 210 and concludes that 210 is involved in a cycle. If the cycle oscillates, all listed previous
events did happen and for each cycle a token was generated by the first event. This token was forwarded
during the following events. Therefore the token follows exacly the cycle in the dispute digraph.

4.1.3 Which path should bebarred?

When a cycle is detected, all ASes having a path involved in a cycle will notice oscillation. So all these
ASes will generate a token. Each of them will retreive its own token and will markbarred the associated
path. It is not reasonable to markbarredall paths involved in a cycle since marking only one is sufficient
to break the cycle. Furthermore, ASes contain only local information. Our solution consists in totally

7



ordering tokens. This order allows to always forward only the highest priority token. Finally, only one
token is retreived by its generator. Let≺ be this order relation. When the AS who generated tokenj1
receives a tokenj2 it checks ifj1 ≺ j2. When this is true, j2 is not forwarded.

In figure 6, AS 1, 2, 3, detect an oscillation on respectively paths 130, 210 and 320. Assume that the
order relation is the lexicographic order and that the token value is “j” followed by the path value. For
example, AS1 generates token “j130”. When AS1 receives token “j320” it destroys it. Idem when AS1
receives “j210”. AS1 will retreive its token “j130” and will markbarredpath 130.

We must notice that making another choice for the order relation would allow sometimes a better
solution.

The process for oscillation detection is given in algorithm 1 and the token management in algorithm 2.

Figure 6: Token unicity

Notes

• It is possible that the AS who generates a token, retreives it, and that the path may not be involved
in a cycle. This phenomenon is caused by transmission arcs. Figure 4 illustrates this case. Indeed,
path 1240 oscillates because path 240 oscillates. 1240 is not involved in a cycle contrary to 240. It
is necessary to markbarredpath 240 and not 1240. The lower path length, the higher priority.

• We do not have to manage the loss of a token since BGP uses TCP transport and managing duplica-
tion of tokens is easy with identifiers.

Algorithm 1: Detection of an oscillation by ASu
Data : Table T of paths’ states
Result : A token if an oscillation occured, broadcasted to neighbours

/* detectOscillation(T) returns the oscillating path */
/* generator is true ifu generated a token, false else */
/* creatToken(op) generates a token related to oscillating path op */
/* choicePath() returns the best path related tou’s policy */

generator ← false;
oscillatingPath← detectOscillation(T );
if oscillatingPath 6= null then

generator ← true;
token← creatToken(oscillatingPath);
newPath← choicePath();
for v ∈ N(u) do

send(newPath, token, v);
end

end

8



Algorithm 2: Processing the reception of a token by ASu

Data : reception of message< oscillatingPath, token, v >

Result : Forwards or deletes the token received

/* path currently selected path */
/* getGenerator() returns the local path associated to the token */
/* markBarred(p) marksbarredpath p */
/* lgPath(t) returns the length of path related to token t */

newPath← choicePath();
if path 6= newPath then

path← newPath;
/* token has≺ higher priority or length of associated path is less than length of path associated
to own token (myToken) */
if generator = true and
(token ≺ myToken or lgPath(token) < lgPath(myToken)) then

generator ← false;

end
if generator = true and token = myToken then

if path = myToken.getGenerator() then
markBarred(path);
path← choicePath();
for v ∈ N(u) do

send(path, v);
end

end
end
else

for w ∈ N(u)− {v} do
send(newPath, token,w);

end
end

end

Limits Our method may unnecessarily markbarredsome paths.

• The first example (figure 7) illustrates a situation where path 120 is markedbarred because AS3
receives path 376540 too late.

Figure 7: Wrong marking

• The second example (figure 8) illustrates a situation where two paths will be markedbarred instead

9



of one. In fact, paths 130 and 150 will be markedbarred whereas marking path 320 would be
sufficient enough. Nevertheless, one marking instead of two is not necessarily a better solution.

Figure 8: Two paths marking instead of one

Figure 9: Solving systemu1, ..., un never implies oscillations of the dotted line system

Another possible question is: may solving one oscillation generate a bigger one? The answer is in the
next theorem.

Theorem 4. The resolution of an oscillation never generates a bigger oscillation.

proof: Consider figure 9. The system involving ASesu1, ..., un oscillates. We must check if resolving this
system does not generate an oscillation of the dotted line system. Letv be an AS connected tou1. v does
not detect any oscillation. We deduce two cases: either the paths ofv have no links with the paths ofu1, or
paths which could oscillate inv (for exampley andz) are never chosen becausev prefers pathx. In this
latter case, this means that the configuration of one ofv neighbours allowsv to preservex. This neighbour
has not detected any oscillation; otherwisex cannot be preserved. So, all the markings which occured on
u1 do not imply any modification onv ’s configuration. Idem forw with u2. Therefore, resolving system
u1, ..., un implies no oscillations of the dotted line system.

5 Coherence between routing policies

We saw that inconsistency of policies may induce oscillations. So what are coherent policies?

10



5.1 Characterisation

Let <α be an order on paths. We define locally this order, for paths belonging to the same AS, and globally
for inter AS paths. We can interpret<α as “better than”.

Definition 2. <α locally : LetA be an AS;∀P,Q paths ofA, if P is preferred toQ thenP <α Q.

This definition is coherent with AS policies.

Definition 3. <α globally : ∀P,Q paths belonging to two differents Ases, ifP is a sub-path ofQ then
P <α Q.

This definition allows to preserve coherence between AS policies. Clearly a path containingP cannot
be better thanP .

Theorem 5. If <α is a total order relation then the policies are coherent between themselves.

proof: There is a connection between these definitions and the dispute digraph.

• Let be a transmission arc fromP to Q. this means thatP is a sub-path ofQ. With the definition of
global order we haveP <α Q.

• Let be a dispute arc fromP to Q. this means thatQ cannot be chosen ifP is currently selected.
There is a pathR belonging to the same AS asP , with P preferred toR. If R is adopted thenP
is not adopted, soQ may be adopted. Locally we haveP <α R and globally we haveR <α Q
sinceR is a sub-path ofQ. By transitivity we haveP <α Q. Thus, we conclude that the dispute
digraph is acyclic if and only if<α is a total order relation. We know that policies are coherent (BGP
converges) if the dispute digraph is acyclic (section 2.2.2). So, if<α is a total order relation then the
policies are coherent between themselves.

Consider figure 10. With the total order relation we have

130 <α︸︷︷︸
local

10 <α︸︷︷︸
global

210 <α︸︷︷︸
local

20 <α︸︷︷︸
global

320 <α︸︷︷︸
local

30 <α︸︷︷︸
global

130.

Due to the contradiction, we deduce that BAD GADGET policies are not coherent between themselves.

5.2 A new dispute digraph

Now we can suggest a new definition for the dispute digraph: LetP andQ be two paths. There is an arc
from P to Q if P <α Q. If the digraph is acyclic then there is a stable solution. Figure 10 shows the new
dispute digraph for BAD GADGET. In our future works, we intend to develop the properties of this graph.

Figure 10: New dispute digraph

11



6 Conclusion

As BGP is currently the only external protocol in the Internet, instabilities such as ascillations should be
resolved as quickly as possible. In this paper, we studied route oscillations caused by globally incoherent
routing policies. We proposed a distributed dynamic method to solve the oscillations problem. In fact, it
is distributed because nor global data neither a central algorithm are invoked; local data and a circulating
ligthweight token are only required; dynamic because the network topology may change without affecting
the algorithm. We ended by an attempt to define coherence between routing policies, which may lead to
prevent instabilities, rather than detecting and resolving them.

Future work for the short term relies on simulating the behaviour of our algorithms on different network
topologies. For the mean term, we think that management of network failures may be treated by such a
method, but unlikely, recovery or appearence of links looks more difficult : a BGP router does not forward
recovery or appearence information unless it changes its routing tables.

For the long term, we shall have to study some byzantine behaviours. For example, what happens when
an AS detects an oscillation, but does not generate a token, as this may lead to suppress a route. Another
important problem is AS connectivity: should top priority be given to connectivity or efficiency? In other
words, if sovling an oscillation leads to breaking AS connectivity is it worth keeping the oscillation, rather
than disconnecting ASes?

References

[1] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent route oscillations in inter-
domain routing.Computer Networks, pages 32:1–16, 2000.

[2] Craig Lobavitz, G. Robert Malan, and Farnam Jahanian. Origins of internet routing instability.in
Proc. IEEE INFOCOM, vol. 1:pp. 218–226, 1999.

[3] Craig Lobavitz, G. Robert Malan, and Farnam Jahanian. Internet routing instability.IEEE/ACM
Trans. Networking, vol. 6:pp 515–528, October 1998.

[4] Timothy G. Griffin and Gordon Wilfong. An analysis of bgp convergence properties.Proc. ACM
SIGCOMM’99, pages pp. 277–288, 1999.

[5] Timothy G. Griffin, F. Bruce Sherpherd, and Gordon Wilfong. Policy disputes in path-vector proto-
cols. Proc. 7th Int. Conf. Network Protocols (ICNP’99), pages pp. 21–30, 1999.

[6] Timothy G. Griffin and Gordon Wilfong. A safe path vector protocol.Proc. IEEE INFOCOM,
vol.2:pp. 490–499, 2000.

[7] Timothy G. Griffin, F. Bruce Sherpherd, and Gordon Wilfong. The stable paths problem and interdo-
main routing.Proc. IEEE/ACM Transactions on Networking, 2002.

[8] Lixin Gao and Jennifer Rexford. Stable internet routing without global coordination.in Proc. ACM
SIGMETRICS, June 2000.

[9] Lixin Gao, Timothy G. Griffin, and Jennifer Rexford. Inherently safe backup routing with bgp.in
Proc. IEEE INFOCOM, April 2001.

[10] Selma Yilmaz and Ibrahim Matta. A randomized solution to bgp divergence.in Proc. of the 2nd
IASTED Int. Conf. on Communication and Computer Networks (CCN’04), November 2004.

12


