
HAL Id: lirmm-00112669
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00112669v1

Submitted on 9 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rules Dependencies in Backward Chaining of
Conceptual Graphs Rules

Jean-François Baget, Eric Salvat

To cite this version:
Jean-François Baget, Eric Salvat. Rules Dependencies in Backward Chaining of Conceptual Graphs
Rules. ICCS 2006 - 14th International Conference on Conceptual Structures, Jul 2006, Aalborg (DK),
Denmark. pp.102-116, �10.1007/11787181_8�. �lirmm-00112669�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00112669v1
https://hal.archives-ouvertes.fr

Rules Dependencies in Backward Chaining of

Conceptual Graphs Rules

Jean-François Baget1 and Éric Salvat2

1 INRIA Rhône-Alpes jean-francois.baget@inrialpes.fr
2 IMERIR salvat@imerir.com

Abstract. Conceptual Graphs Rules were proposed as an extension of
Simple Conceptual Graphs (CGs) to represent knowledge of form “if A
then B”, where A and B are simple CGs. Optimizations of the deduction
calculus in this KR formalism include a Backward Chaining that unifies
at the same time whole subgraphs of a rule, and a Forward Chaining
that relies on compiling dependencies between rules.
In this paper, we show that the unification used in the first algorithm
is exactly the operation required to compute dependencies in the second
one. We also combine the benefits of the two approaches, by using the
graph of rules dependencies in a Backward Chaining framework.

1 Introduction

Conceptual graphs (CG) rules [14] were proposed as an extension of simple CGs
[13] to represent knowledge of form ”if A then B”, where A and B are simple
CGs. This graph-based knowledge representation (KR) formalism (named SR
in [3]) was further formalized in [12]. Notwithstanding the interest of graphical
representation of knowledge for an human interaction purpose, we are mainly
motivated in using the graph structure of CGs to improve deduction algorithms,
that are sound and complete w.r.t. the FOL semantics Φ [14] of the language.
Using graph-theoretical operations to compute reasonings, instead of translat-
ing CGs into their equivalent formulaes and use a FOL solver, the algorithms
presented in this paper explore a different optimization paradigm in KR.

Simple CGs [13] form the basic KR formalism (named SG in [3]) on which
CG rules are built. The semantics Φ identifies them with formulaes in positive,
conjunctive, existential FOL (without function symbols) [14]. Sound and com-
plete reasonings in SG (a NP-hard problem) can be computed with a kind of
graph homomorphism named projection [5]. This graph-theoretical operation is
the kernel of reasonings for extensions of simple CGs (e.g. the SG family [3]).

In particular, projection is the elementary operation in Forward Chaining
(FC) of CG rules [12], a graph-based algorithm computing deduction in SR.
Since CG Rules can be translated into FOL formulaes having the form of Tuple
Generating Dependencies (TGDs) [7], SR-deduction is semi-decidable.

A Backward Chaining (BC) framework is often used to avoid a major pitfall in
FC: applying rules that are unrelated to the query. Though CG Rules deduction

can be computed using a PROLOG-like BC algorithm, successively unifying
predicate after predicate in the equivalent FOL formulaes, [11] proposed to rely
upon the structure of the graph and unify at the same time whole subgraphs of
the rule (called pieces), effectively reducing the number of backtracks [7].

To optimize FC (more adapted to some extensions of simple CGs, e.g. [3]), [4]
introduces the notion of neutrality (and its complementary notion, dependency)
between rules: a CG Rule R1 is neutral w.r.t. a rule R2 if no application of R1 on a
CG can create a new application of R2. Building the graph of rules dependencies
(GRD) compiles enough information to reduce the number of checks for rule
applicability as well as the cost of these checks in FC.

In this paper, we show that the criterium used to compute dependencies in
[4] and the piece unification of [11] are very similar operations. In particular,
we show that piece unification generalizes computation of dependencies to rules
having individual markers in their conclusion (excluded in [4]). On the other
hand, we generalize piece unification to any type hierarchy (and not only lattices,
as in [11]). We propose solutions to use the GRD in a BC framework.

Organization of the paper Sect. 2 and 3 are respectively devoted to simple
CGs (the SG language) and CG rules (SR). We present the syntax, the semantics
(via the translation Φ to FOL), and a sound and complete calculus (projection in
the first case, basic FC in the latter) of both languages. The first enhancement
of SR-deduction, the BC based upon piece unification [12, 11], is presented
in Sect. 4. The graph of rules dependencies (GRD) [4], its use in FC, and its
relationships with piece unification, are presented in Sect. 5. Finally, in Sect. 6,
we show how to efficiently use the GRD in a BC framework.
Caveat: For space requirements, no examples are included in this paper, they
can be found in the references. For the same reason, non essential technical
details will be printed in small.

2 Simple Conceptual Graphs

We recall fundamental results on simple CGs (without coreference links) [13, 14].
Sect. 2.1 presents their syntax, and Sect. 2.2, their semantics via the transfor-
mation Φ into FOL [14]. We use these formulas to define simple CGs’ deduction
problem (SG-deduction in [3]). In Sect. 2.3, we use the graph homomorphism
named projection [5] as a calculus for SG-deduction. Up to a normality con-
dition [10], projection is sound and complete w.r.t. the semantics Φ.

2.1 Syntax

Definition 1 (Vocabulary). A vocabulary is a tuple (TC , (T 1
R, . . . , T N

R), I, κ)
where TC , T 1

R, . . . , T N
R are pairwise disjoint partially ordered sets (partial orders

are denoted by ≤), I is a set, and κ : I → TC is a mapping. Elements of TC

are called concept types, elements of T i
R relation types of arity i, elements of

I individual markers, and κ is the conformity relation.

Definition 2 (Simple CGs). A simple CG over a vocabulary V is a tuple
G = (E, R, ε, γ) where E and R are two disjoint sets, respectively of entities
and relations. The mapping ε labels each entity of E by a pair of TC × (I ∪{∗})
(its type and marker). An entity whose marker is ∗ is called generic, otherwise
it is an individual. For each individual x ∈ E, type(x) = κ(marker(x)). The
mapping ε also labels each relation of R by a relation type (its type). We call
degree of a relation the arity of its type. The mapping γ maps each relation of
degree k to a k-tuple of Ek. If γ(r) = (x1, . . . , xk) we denote by γi(r) = xi the
ith argument of r. If x and y are two arguments of r, x and y are neighbours.

Simple CGs can be seen both as bipartite multigraphs, as in [5] (γi(r) = e
means that there is an edge labelled i between the concept node e and the relation
node r); or as directed multiple hypergraphs, as in [2] (γ(r) = (x1, . . . , xk) is a
directed hyperarc whose ends are the concept nodes x1, . . . , xk).

Whatever the structure used to encode them, they share the same drawing. An

entity e with ε(e) = (t,m) is represented by a rectangle enclosing the string “t: m”.

A relation r typed t is represented by an oval enclosing the string “t”. If γ(r) =

(x1, . . . , xk), then for 1 ≤ i ≤ k, we draw a line between the oval representing r and

the rectangle representing xi, and write the number i next to it.

2.2 Semantics

In logics, semantics are provided to evaluate if a formula is true. Then we define
H as a logical consequence of G iff H is true whenever G is true. These semantics
are defined by sets over a domain. Simple CGs semantics are often expressed via
a translation Φ through first-order logics [14], and deduction of simple CGs is
defined as the logical consequence of the associated formulas. Model theoretic
semantics of these formulas can be directly expressed on the simple CGs [10].

Interpretation of a vocabulary Let V be a vocabulary. Its interpretation
Φ(V) is a FOL formula built as follows.

We first associate to each concept type tc ∈ TC a distinct predicate name of arity

1, also noted tc; to each relation type ti
r ∈ T i

R a distinct predicate name of arity i,

also noted ti
r; and to each individual marker i ∈ I a distinct constant symbol, also

noted i. Let us now consider the partial orders noted ≤ on TC , T 1
R, . . . , T N

R . We call

covering relation and note ≺ the smallest relation whose reflexo-transitive closure is

≤ (i.e. t ≺ t′ iff t ≤ t′, t �= t′, and there is no t′′ s.t. t′′ �= t, t′′ �= t′ and t ≤ t′′ ≤
t′). A covering pair (t, t′) in V is a pair of types in TC , T 1

R, . . . or T N
R s.t. t ≺ t′.

The interpretation of a covering pair (t, t′) is the first-order logic formula φ((t, t′)) =

∀x1 . . .∀xk(t(x1, . . . , xk)→ t′(x1, . . . , xk)), where k is the arity of the predicate names

t and t′. Finally, the interpretation Φ(V) of the vocabulary V is the conjunction of the

interpretations φ((t, t′)) of all covering pairs (t, t′) in V.

Interpretation of a simple CG Let G = (E, R, , ε, γ) be a simple CG over
V . The interpretation Φ(G) of G is the FOL formula built as follows.

Predicate names and constant symbols are obtained from types and markers as above. We first

associate to each generic entity e ∈ E a distinct variable name f(e). If e is an individual, we define

f(e) = marker(e). The interpretation of an entity e with type(e) = t is the predicate φ(e) = t(f(e)).

The interpretation of a relation r ∈ R with type(r) = t and γ(r) = (e1, . . . , ek) is the predicate

φ(r) = t(f(e1), . . . , f(ek)). The interpretation Φ(G) of the simple CG G is the existential closure of

the conjunction of the interpretations φ(x), for all x ∈ E ∪ R.

Definition 3 (Deduction in SG). Let G and H be two simple CGs over a
vocabulary V. We say that G entails H in V (and note G |=V H) iff Φ(H) is a
logical consequence of Φ(G) and Φ(V) (i.e. Φ(V), Φ(G) � Φ(H)).

2.3 Calculus

Definition 4 (Projection). Let G and H be two simple CGs over a vocabulary
V, with G = (EG, RG, εG, κG) and H = (EH , RH , εH , κH). A projection from H
into G (according to V) is a mapping π : EH → EG such that:
– For each entity e ∈ EH , type(π(e)) ≤ type(e). If, moreover, e is an individ-

ual, then marker(π(e)) = marker(e).
– For each relation r ∈ RH , with γH(r) = (x1, . . . , xp), there exists a relation

r′ ∈ RG such that type(r′) ≤ type(r) and γG(r′) = (π(x1), . . . , π(xk)).

Complexity As a generalization of graph homomorphism, projection is
an NP-complete problem. As indicated in [2], thanks to a reduction from con-
straint networks (CSP) that preserves the structure of the projected graph [9],
all structural restrictions on CSPs leading to polynomial algorithms (e.g. hyper-
trees decompositions in [8]) translate to structural restrictions on the projected
simple CG leading to polynomial algorithms. In the same way, many backtrack-
ing optimization schemes studied in CSPs can be translated for projection of
simple CGs (e.g. Backmark + Forward Checking + NFC2 in [2]).

Normal form of a simple CG If two individuals e1, e2 of a simple CG have
same marker i, then they have same type t = κ(i) (thanks to the conformity
relation κ, Def. 1). Then their interpretations are equal: φ(e1) = φ(e2) = t(f(i)),
and their conjunction introduces a redundancy in Φ(G). Removing one of these
predicates produces an equivalent formula Φ, and the graph operation on G used
to obtain a simple CG G′ s.t. Φ(G′) = Φ is the join of the two individuals e1

and e2. To join e1 and e2 in G, replace both entities in G by a single entity
e = join(e1, e2), having same type and marker than e1 and e2; then for every
relation r ∈ R, replace each occurence of e1 or e2 in γ(r) by e.

A simple CG G over V is said normal if all its individuals have distinct
markers. A simple CG G is put into its normal form nf(G) by successively
joining all pairs of individuals having the same marker. Putting a simple CG
into its normal form is linear in the size of the graph.

Theorem 1 (Soundness and completeness [10]). Let G and H be two sim-
ple CGs over a vocabulary V. Then G |=V H if and only if there is a projection
from H into nf(G), the normal form of G, according to V.

3 Conceptual Graphs Rules

Conceptual graphs rules (CG rules) have been introduced in [14] as an extension
of simple CGs allowing to represent knowledge of the form “if H then C”,
where H and C are simple CGs. As for simple CGs, we first present their syntax
in Sect. 3.1. In Sect. 3.2, their semantics (via the transformation Φ to FOL [14])
allows to define the CG rules deduction problem (SR-deduction in [3]). Finally,
as a sound and complete calculus for SR-deduction, we present the Forward
Chaining (FC) algorithm [12], based upon projection of simple CGs.

3.1 Syntax

Definition 5 (CG rules). A conceptual graph rule (or CG rule) over a vo-
cabulary V is a triple R = (λ, H, C) where H = (EH , RH , εH , γH) and C =
(EC , RC , εC , γC) are two simple CGs over V, and λ is a bijection between a
distinguished subset of generic entities of EH (called connecting entities of H)
and a subset of generic entities of EC (called connecting entities of C), s.t.
λ(e) = e′ ⇒ type(e) = type(e′). The simple CG H is called the hypothesis of R,
and C its conclusion. They are respectively denoted by Hyp(R) and Conc(R).

This definition of CG rules clearly relates to a pair of λ-abstractions [12],
without naming connecting entities.

The usual way to represent such a rule is by drawing two boxes next to each other.
The box to the left is the hypothesis box, and the box to the right the conclusion box.
Draw between these boxes an implication symbol ⇒. Draw the simple CG H (as done
in Sect. 2.1) in the hypothesis box and the simple CG G in the conclusion box. Finally,
for each pair (e, λ(e)) of connecting entities, draw a dashed line (a coreference link)
between the rectangle representing e and the rectangle representing λ(e).

Another graphical representation of CG rules has been used in [3, 4], it relies on

the representation of CG rules by colored graphs. Draw the simple CGs H and C,

as indicated in Sect. 2.1. Rectangles and ovals representing the entities and relations

of C are given a grey background, while rectangles and ovals originated from H keep

their white bakckground. Join (as defined in Sect. 2.3) all pairs (e, λ(e)) of connecting

entities (it is possible since they have the same type). The rectangles representing the

resulting entities have a white backround.

3.2 Semantics

Interpretation of a CG Ruleset Let R = {R1, . . . , Rk} be a CG ruleset over
V , i.e. a set of CG rules over V . Its interpretation Φ(R) is the conjunction of the
FOL formulas Φ(R1), . . . , Φ(Rk) interpreting its CG rules.

Predicate names and constant symbols are obtained from types and markers as in

Sect. 2.2. Let us now build the interpretation Φ(R) of a CG rule R. As done for simple

CGs, we associate a variable name f(e) to each generic entity e ∈ EH ∪EC . If (e, λ(e))

is a pair of connecting entities, then f(e) = f(λ(e)), otherwise these variable names are

all distinct. If e is an individual, f(e) = marker(e). As detailed in Sect. 2.2, a predicate

φ(e) = t(f(e)) interprets each entity e typed t in EH ∪ EC , and a predicate φ(r) =

t(f(x1), . . . , f(xk)) interprets each relation r ∈ RH ∪ RC , with γ(r) = (x1, . . . , xk)

and type(r) = t. We note ΦH(R) (resp. ΦC(R) the conjunction of the interpretations

φ(x), for all x ∈ EH ∪ RH (resp. for all x ∈ EC ∪ RC). Let x1, . . . , xp be the variable

names associated with generic entities of EH , and y1, . . . , yq be those associated with

generic entities of EC , but not EH . Then the interpretation of the CG rule R is the

FOL formula Φ(R) = ∀x1 . . .∀xp(ΦH(R)→ (∃y1 . . .∃yqΦC(R))).

Definition 6 (Deduction problem in SR). Let G and H be two simple CGs
over a vocabulary V, and R be a CG ruleset. We say that G,R entails H in
V (and note G,R |=V H) iff Φ(H) is a logical consequence of Φ(G), Φ(R) and
Φ(V) (i.e. Φ(V), Φ(R), Φ(G) � Φ(H)).

3.3 Calculus

Application of a CG rule Let R = (λ, H, C) be a CG rule and G = (E, R, ε, γ)
be a simple CG over V . The CG rule R is said applicable to G iff there is a
projection π from Hyp(R) into nf(G), the normal form of G. In that case, the
application of R on G following π produces a simple CG G′ = α(G, R, π) built
as follows. We define the disjoint union of two graphs G1, G2 as the graph whose
drawing is the juxtaposition of the drawings of G1 and G2. We first build the
disjoint union of a copy of nf(G) and of a copy of Conc(R). Then, for each
pair (e, λ(e)) of connecting entities in R, we join (see Sect. 2.3) the entity x in
the copy of nf(G) obtained from π(e) and the entity y in the copy of Conc(R)
obtained from λ(e). Since ε(e) = ε(λ(e)), the label of x (i.e. the label of π(e)) is
a specialization of the label of y, and ε(x) is used as the label of join(x, y).

Deriving a simple CG with CG rules Let R be a CG ruleset and G, G′

be two simple CGs over a vocabulary V . We say that G′ is immediately derived
from G in R (and note G

R	→ G′) iff there is a rule R ∈ R and a projection π
from Hyp(R) into G such that G′ = α(G, R, π). We say that G′ is derived from
G in R (and note G

R
� G′) iff there is a sequence G = G0, G1, . . . , Gn = G′ of

simple CGs over V such that, for 1 ≤ i ≤ n, Gi−1
R	→ Gi.

Theorem 2 (Soundness and completeness [12]). Let R be a CG ruleset,
and G and H be two simple CGs over a vocabulary V. Then G,R |=V H if and
only if there is a simple CG G′ such that G

R
� G′ and H projects into nf(G′).

Forward Chaining of CG rules The Forward Chaining (FC) algorithm [12]
immediately follows from theorem 2 and the property of confluence (Prop. 1).

Property 1 (Confluence). Let R be a CG ruleset, and G and H be two simple
CGs over a vocabulary V . Let us suppose that G,R |=V H . Then for every
simple CG G′ such that G

R
� G′, the entailment G′,R |=V H holds.

Any algorithm exploring all rule applications (Th. 2), e.g. using a breadth-
first method, in any order (Prop. 1), will lead to a simple CG entailing the query
H , if it exists. Such an algorithm, named FC, is proposed here (Alg. 1).

Algorithm 1: Forward Chaining
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: yes iff G,R |=V H (infinite calculus otherwise).
ProjList ← ∅ ;
while true do

for R ∈ R do
for π ∈ Projections(Hyp(R), G) do

ProjList ← ProjList ∪{(R, π)} ;

for (R, π) ∈ ProjList do
G← α(G, R, π) ;
if Projects?(H, G) then return yes ;

Decidability Since FOL formulaes associated with CG rules have the same form
as TGDs [7], SR-deduction is semi-decidable (a sound and complete algorithm
can compute in finite time whenever the answer is yes, but cannot always halt
otherwise). Some decidable subclasses of the problem are proposed in [3]: let us
suppose that, after the nth execution of the while loop in Alg. 1, the simple CG
G obtained is equivalent to G as it was at the beginning of this loop. In that
case, the algorithm could safely stop and answer no. A CG ruleset ensured to
have this behaviour is called a finite expansion set. Examples of finite expansion
sets are disconnected CG rules (having no connecting entities) or range restricted
CG rules (having no generic entity in the conclusion). Note that the union of
two finite expansion rulesets is not necessarily a finite expansion ruleset.

4 Piece Unification and Backward Chaining

FC generates explicitely knowledge implicitely encoded in CG rules. By opposi-
tion, a Backward Chaining (BC) algorithm starts with the query H and rewrites
it using unification. The interest of piece unification [12, 11] w.r.t. a PROLOG-
like unification, is that it unifies at the same time a whole subgraph, instead of
a simple predicate. Sect. 4.1 present preliminary definitions and Sect. 4.2 piece
unification. A BC algorithm using piece unification is presented in Sect. 4.3.

4.1 Preliminary definitions

Definition 7 (Cut points, pieces). Let R = (λ, H, C) be a CG rule over V.
A cut point of C is either a connecting entity (Def. 5) or an individual (Def. 2)
of C. A cut point of H is either a connecting entity of H or an individual of
H whose marker also appears in C. A piece P of C is a subgraph of C whose
entities are a maximal subset of those of C s.t. two entities e1 and e2 of C belong
to P if there is a path e1, x1, . . . , xk, e2 where the xi are not cut points of C.

Conjunctive CGs When a CG rule R is applied to a simple CG G, in the
resulting graph α(G, R, π) the entities obtained from a join between a connecting
entity of Conc(R) and an entity of G may have a more specific label than the
former connecting entity (Sect. 3.3). So to compute unification, we have to find
which cut points of Conc(R) have a common specialisation whith entities of the
query. In [12, 11], such common specialisation of two entities e1 and e2 was typed
by the greatest lowerbound (glb) of type(e1) and type(e2). The existence of the
glb was ensured by using a lattice as the partial order on concept types. However,
we do not impose here this partial order to be a lattice. To obtain a type having
the same semantics, we will consider, as in [2, 6], conjunctive types.

A conjunctive CG is defined as a simple CG, but the type of an entity can be

the conjunction of several types of TC . The interpretation of an entity e with ε(e) =

(t1 . . . tp, m) is the conjunction φ(e) = t1(f(e))∧ . . .∧ tp(f(e)). The partial order on

TC is extended to the partial order ≤� on conjunctive types: t1 . . . tp ≤� t′1 . . . t′q
iff ∀t′i, ∃tj with tj ≤ t′i. The join operation (Sect. 2.3) between two entities e1 and

e2 having different (conjunctive) types can now be defined: the type of the resulting

entity e = join(e1, e2) is the conjunction of the types of e1 and e2. If both e1 and e2 are

individuals with same marker m, or generic entities with m = ∗, the marker of e is also

m. If e1 has individual marker m and e2 is generic, the marker of e is m. The label ε(e)

defined here is the common specialization of ε(e1) and ε(e2). The projection algorithm is

the same as in Sect. 2.3, but relies on ≤� to compare conjunctive types. Normalization

relies on the above-mentioned join operation. Up to these two differences, the soundness

and completeness result (Th. 1) remains the same.

Compatible partitions A set of entities E is join compatible iff there is a
concept type of TC more specific than all types in E and there is at most one
individual marker in E. Let G be a simple or conjunctive CG and E be a join
compatible subset {e1, . . . , ep} of entities of G. The join of G according to E
is the conjunctive CG obtained by joining e1 and e2 into e, then by joining G
according to {e, e3, . . . , ep}, until this subset contains a single entity e: we note
e = join(E). Let S and S′ be two disjoint sets of entities. Let P = (P1, . . . , Pn)
and P ′ = (P ′

1, . . . , P
′
n) be two ordered partitions, resp. of S and S′ (a partition

of X is a set of pairwise disjoint sets whose union equals X). P and P ′ are
compatible partitions of S and S′ iff Pi∪P ′

i is a join compatible set, for 1 ≤ i ≤ n.

Definition 8 (Specialization according to a compatible partition). Let
G and G′ be two simple or conjunctive CGs over V. Let E and E′ be respective
subsets of entities of G and G′. Let P = (P1, . . . , Pn) and P ′ = (P ′

1, . . . , P
′
n)

be two compatible partitions of E and E′. The specialization of G according to
(P, P ′) is the conjunctive CG sp(G, (P, P ′)) built from G by building the join of
G according to Pi, for 1 ≤ i ≤ n, then by replacing the label of each join(Pi)
with its common specialization join(P ′

i).

The join of G and G′ according to compatible partitions P and P ′ is the
conjunctive CG obtained by making the disjoint union of the specialization of
G according to (P, P ′) and of the specialization of G′ according to (P, P ′), then
by joining each join(Pi) with join(P ′

i).

4.2 Piece Unification

Definition 9 (Piece unification). Let Q be a simple (or conjunctive) CG
(denoting a query) and R = (λ, H, C) be a CG rule over V. Q and R are said
unifiable iff there is a piece unification between Q and R, i.e. a triple μ =
(PC , PQ, Π) where:

– PC and PQ are two compatible partitions, resp. of a subset of cut points of
C and a of subset of entities of Q that will be considered as cut points of Q;

– Π is a projection from a non-empty set of pieces of μ(Q) = sp(Q, (PC , PQ))
(cut points of μ(Q) are entities resulting from the join of cut points of Q)
into μ(R) = sp(C, (PC , PQ)) such that Π(join(PQ

i)) = join(PC
i).

Rewriting of a query If a query Q is unifiable with a CG rule R, then an
unification μ between Q an R determines a rewriting of Q (that can become a
conjunctive CG). To put it simply, we remove from the new query the conclusion
of R and add its hypothesis, that has still to be proven (by unification with
another rule or with the facts graph G that can be considered as a CG rule with
an empty hypothesis).

More precisely, let Q be a simple (or conjunctive) CG, R = (λ, H,C) be a CG
rule, and μ = (P C , P Q, Π) be a piece unification between Q and R. We call unification
result of μ on Q and note β(Q, R, μ) the conjunctive CG buit as follows:

1. Let SC and SQ be the subpartitions of P C and P Q formed respectively from the
codomain and the domain of Π ;

2. Let SH be a partition of the subset of cut points of H that correspond to the
partition SC of cut points of C (if e is an entity of a partition SC

i of SC , the
entities g1, . . . , gq of H that correspond to e, i.e. either q = 1 and λ(g1) = e or
g1, . . . , gq and e have the same individual marker, belong to the partition SH

i);
3. Build the conjunctive CGs Q′ = sp(Q, (SH , SQ)) and H ′ = sp(H, (SH , SQ));
4. Let P be a piece of Q whose entities are in the domain of Π . We remove from Q′

all relations of P and all entities of P that are not cut points of Q′;
5. We finally join Q′ and H ′ according to (SH , SQ).

Definition 10 (Resolution). Let H be a simple CGs, and R be a CG ruleset
(that includes the facts CG G as a rule with an empty hypothesis) over V. We
call resolution of H in R a sequence H = H1, H2, . . . , Hp+1 of conjunctive CGs
such that, for 1 ≤ i ≤ p, there is a piece unification μ between Hi and a rule
R ∈ R, Hi+1 = β(Hi, R, μ) and Hp+1 is the empty CG.

[12, 11] proves that if H = H1, H2, . . . , Hp+1 = ∅ is a resolution of H in R
using successively the rules Ri1 , . . . Rip = G, then there is a derivation sequence
(see Sect. 3.3) G = G1, . . . , Gp that successively applies the rules Ri1 , . . .Rip−1

in reverse order, and such that H projects into Gp. Conversely, from a derivation
sequence, we can extract a subsequence that corresponds to a resolution using
the same rules in reverse order. The soundness and completeness theorem is a
consequence of this correspondences between Forward and Backward Chaining.

Theorem 3 (Soundness and completeness [12]). Let G and H be two sim-
ple CGs, and R be a CG ruleset over V. Then G,R |=V H if and only if there
is a resolution of H in R∪ {G} (G = (λ, ∅, G) is a CG rule equivalent to G).

4.3 Backward Chaining

The following algorithm (Alg. 2) provides a version of Backward Chaining using
the resolution and piece unification presented in Sect. 4.2.

Algorithm 2: Backward Chaining
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: If Backward Chaining halts on yes, then G,R |=V H , if it halts on no,

then G,R �|=V H (but it can run infinitely).
UnifList ← NewFilo() ;
for R ∈ R ∪ {G} do

for μ ∈ Unifications(R, H) do
UnifList ← AddFilo(UnifList, (μ, R, H)) ;

while UnifList �= ∅ do
(μ, R, H) ← FiloRemove(UnifList) ;
H ′ ← Rewrite(μ, R, H) ;
if H ′ = ∅ then return yes ;
for R

′ ∈ R do
for μ′ ∈ Unifications(R′, H ′) do

UnifList ← AddFilo(UnifList, (μ′, R′, H ′)) ;

return no ;

Forward Chaining and Backward Chaining It is well known (e.g. [1]) in
Logic Programing that, from BC or FC, no algorithm is always better than the
other. The main differences are that 1) FC enriches the facts until they contain an
answer to the query while BC rewrites the query until all its components have
been proven; 2) FC derivation is a confluent mechanism, while BC rewritings
depends upon the order of these rewritings, and thus requires a backtrack; and
3) FC enumerates all solutions to the query by applying rules breadth-first, while
BC usually (as we did in Alg. 2) tries to find them quicker by rewriting the query
depth-first (eventually missing solutions). It is to be noted that a breadth-first
version of BC, that misses no solution, can be implemented by replacing the Filo
structure of UnifList in Alg. 2 by a Fifo structure. In that case, completeness
is achieved at the expense of efficiency. Finally, [7] compares BC using piece
unification with the standard PROLOG BC that unifies only one predicate at a
time. Though piece unification leads to fewer backtracks in the query rewriting
mechanism, it does not translate to the overall efficiency of the algorithm, since
these backtracks are hidden in the computation of unifications, that relies on a
projection. Optimization of projection (Sect. 2.3) and compilation of unifications
in the graph of rules dependencies (Sect. 6) are solutions to this problem.

5 Rules Dependencies in Forward Chaining

The notions of neutrality/dependency between CG rules were introduced in [4]
to enhance the basic FC (Alg. 1). The basic idea can be expressed as follows:

suppose that the conclusion of R1 contains no entity or relation that is a special-
ization of an entity or a relation in the hypothesis of R2. Then an application
of R1 on a given simple CG does not create any new application of R2. This
is a simple case of neutrality between rules. A general definition is provided in
Sect. 5.1.We present in Sect. 5.2 a characterization of dependency (the inverse
notion of neutrality), based upon piece unification, that generalizes the charac-
terization of [4]. Finally, in Sect. 5.3, we show that encoding all dependencies of
a CG ruleset (in the graph of rules dependencies [4]) enhances FC.

5.1 Neutrality and Dependency

Though the definition of neutrality and dependency expressed below seems
strictly identical to [4], it is indeed more general. A component of this defin-
ition is rule application (Sect. 3.3). In this paper, the graph on which the rule is
applied is put into normal form, and not in [4]. As a consequence, the algorithm
was not complete for CG rulesets containing rules having individuals in the con-
clusion. Since our definition of derivation takes into account the need to put a
simple CG into its normal form after each application of a rule, the following
definition of neutrality/dependency is more adapted to SR-deduction.

Definition 11 (Neutrality, Dependency). Let R1 and R2 be two CG rules
over a vocabulary V. We say that R1 is neutral w.r.t. R2 iff, for every simple CG
G over V, for every projection π of Hyp(R1) into G, the set of all projections of
Hyp(R2) into α(G, R1, π) and the set of all projections of Hyp(R2) into G are
equal. If R1 is not neutral w.r.t. R2, we say that R2 depends upon R1.

5.2 Piece Unification and Dependency

Since we have changed the definition of derivation used in [4] the characterization
of dependency must take that change into account. We prove here that this
updated characterization corresponds to the piece unification of [12, 11], for CG
rules that are not trivially useless. A CG rule R is said trivially useless if, for
every simple CG G, for every projection π of Hyp(R) on G, G = α(G, R, π). We
can remove in linear time all trivially useless rules from a CG ruleset.

Theorem 4. Let R1 and R2 be two CG rules over a vocabulary V, where R1 is
not trivially useless. Then R2 depends upon R1 if and only if Hyp(R2) and R1

are unifiable (see Def. 9).

Let us introduce the composition of unification and projection (noted �). Let
G and H be a simple CG, and R be a CG rule over V . Let μ = (PC , PQ, Π)
be a unification between H and R. Let π be a projection from Hyp(R) into G.
We say that μ and π are composable iff for each compatible partition PH

i whose
join belongs to the domain of Π , the entities of Hyp(R) associated (by λ−1 or
by sharing the same individual marker) with the compatible partition PC

i of
Conc(R) are all mapped by π into the same entity noted f(PH

i). If μ and π are

composable, then we note μ � π : H → α(G, R, π) the partial mapping defined
as follows: if e is a cut point of PH

i in the domain of Π , then μ� π(e) = f(PH
i),

otherwise, if e is an entity in the domain of Π that is not a cut point, μ � π(e)
is the entity of α(G, R, π) that corresponds to Π(e) in Conc(R). It is immediate
to check that μ � π is a partial projection from H into α(G, R, π).

Proof. Let us successively prove both directions of the equivalence:

(⇐) Suppose that Hyp(R2) and R1 are unifiable, and note μ such an unification.
Let us consider the conjunctive CG G = β(Hyp(R2), R1, μ). We transform it into
a simple CG by replacing all its conjunctive types by one of their specializations
in TC (it exists, by definition of compatible partitions, Sect. 4.1). There exists a
projection π from Hyp(R1) into G: if e has been joined in G, π(e) is this join,
and π(e) = e otherwise. This mapping π is a projection. It is immediate to check
that μ and π are composable (see above). Then μ� π is a partial projection from
Hyp(R2) into G′ = α(G, R1, π) that uses an entity or relation of G′ that is not in
G (or R1 would have been trivially useless). Since BC is sound and complete, μ�π
can be extended to a projection π′ of Hyp(R2) into G′, and π′ is not a projection
from Hyp(R2) into G. Then R2 depends upon R1.
(⇒) Suppose that H = Hyp(R2) and R1 are not unifiable. Let us consider a simple
CG G, and a projection π from H = Hyp(R1) into G. If there is a projection from
H) into α(G, R1, π) that is not a projection of H into G, it means that there is a
solution to the query H that requires the application of R1. Since H and R1 are
not unifiable, such a solution could not be found by BC, which is absurd. �

5.3 Graph of Rules Dependencies in Forward Chaining

In this section, we present an enhancement of FC (Alg. 1) that relies upon the
graph of rules dependencies (GRD) [4].

Building the Graph of Rules Dependencies Let R be a CG ruleset over
V . We call graph of rules dependencies (GRD) of R, and note GRDV(R) the
(binary) directed graph whose nodes are the rules of R, and where two nodes R1

and R2 are linked by an arc (R1, R2) iff R2 depends upon R1. In that case, the
arc (R1, R2) is labelled by the non-empty set of all unifications between Hyp(R2)
and R1. By considering the simple CG G encoding the facts as a CG rule with an
empty hypothesis and the simple CG H encoding the query as a CG rule with
an empty conclusion, we can integrate them in the graph of rules dependencies,
obtaining the graph GRDV(R, G, H). Finally, we point out that if a rule R is
not on a path from G to H , then no application of R is required when solving
SR-deduction [4]. The graph SGRDV(R) obtained by removing all nodes that
are not on a path from G to H , called the simplified GRD, is used to restrain
the number of unnecessary rules applications.

The problem SR-dependency (deciding if a CG rule R2 depends upon a
CG rule R1) is NP-complete (since a unification is a polynomial certificate, and
when R1 is disconnected, a unification is exactly a projection). Building the
GRD is thus a costly operation, that requires |R| calls to a NP-hard operation.

Using the Graph of Rules Dependencies in Forward Chaining The GRD
(or its simplified version) can be used to enhance FC (Alg. 1) as follows. Let us
consider a step of FC (an execution of the main while loop). The PartialProjList
contains all partial projections from the hypothesis of the CG rules in R into
G. If one of these partial projections can be extended to a full projection π of
the hypothesis of a rule R, then R is applicable and the only rules that will
be applicable on α(G, R, π) (apart from those already in PartialProjList) are
the successors of R in the GRD. Moreover, the operator � is used to efficiently
generate partial projections of the hypothesis of these rules.

Algorithm 3: Forward Chaining using Rules Dependencies
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: yes iff G,R |=V H (infinite calculus otherwise).
D ← SimplifiedRulesDependenciesGraph(R, G, H) ;
PartialProjList ← NewFifo() ;
for R �= H ∈ Successors(D, G) do

for μ ∈ Unifications(D, G, R) do
PartialProjList ← AddFifo(PartialProjList, (R, μ)) ;

while true do
(R, π) ← FifoRemove(PartialProjList) ;
for π′ ∈ ExtendPartialtoFullProjections(Hyp(R), G, π) do

G ← α(G, R, π′) ;
if Projects?(H, G) then return yes ;
for R

′ �= H ∈ Successors(D, R) do
for μ ∈ Unifications(D, R, R′) do

if Composable(μ, π′) then
PartialProjList ← AddFifo(PartialProjList, R

′, μ� π′) ;

Evaluating the algorithm With respect to the standard FC, FC with rules
dependencies (FCRD, Alg. 3) relies on three different optimizations:

1. using the simplified GRD allow to ignore some CG rules during derivation;
2. though FC, at each step, checks applicability of all rules in R, FCRD only

checks the successors of the rules applied at the previous step;
3. the operator �, by combining projections and unifications into a partial

projection, reduces the search space when checking applicability of a rule.

Though generating the GRD is a lengthy operation, it can be done once and for
all for a knowledge base (G, R), leaving only to compute the n unifications of
the query Q at run time. Moreover, even if the KB is used only once, the cost of
the operations required to compute the GRD is included in the two first steps
(the main while loop) of the FC agorithm.

Finally, the GRD has been used in [4] to obtain new decidability result. If the
GRD (or the simplified GRD) has no circuit, then SR-deduction is decidable.
Moreover, if all strongly connected components of the GRD (or simplified GRD)
are finite expansion sets (see Sect. 3.3), then SR-deduction is decidable.

6 Rules Dependencies in Backward Chaining

The identification of dependencies and unifications (Th. 4) naturally leads to
the following question: how to efficiently use the GRD in a Backward Chain-
ing framework ? We consider the three interests of the simplified GRD in a FC
framework, at the end of Sect. 5.3, and show how they translate to a BC frame-
work (Sect. 6.1). In Sect. 6.2,we provide an update of BC (Alg. 2) that relies on
the simplified GRD. Further works on that algorithm are discussed in Sect. 6.3.

6.1 Reducing the number of searches for unification

The simplified GRD can be used as in Forward Chaining to remove rules that
are not involved in reasonings: if there is no derivation sequence from G into
a solution of H that involves the rule R, then the correspondence between FC
and BC proves that no rewriting of H into ∅ involves that same CG rule R. We
should note that, if there is a path from R to H , but no path from G to R in
the GRD, simplifying the GRD removes this rule though the standard Backward
Chaining may try to use it in a rewriting sequence.

The second optimization brought by the GRD to Forward Chaining consists
in reducing the number of checks for applicability of a rule. To translate that
feature to Backward Chaining, we must ask if, after unifying a query with a
rule and rewriting this query w.r.t. this unification, we need to compute the
unifications of this new query with all the rules in the CG ruleset R. By giving a
negative answer to this question, Th. 5 shows that the GRD can be used during
BC for added efficiency.

Theorem 5. Let H be a simple CG, and R be a CG ruleset over a vocabulary
V. Let μ be an unification between H and R ∈ R. Let H ′ = α(H, R, μ) be the
rewriting of H according to μ. The following property holds: if R

′ and H ′ are
unifiable then R′ is a predecessor of H or R in GRD(R, G, H).

Proof. Suppose R′ and H ′ are unifiable, by a unification μ′. We note H ′′ =
β(H ′, R′, μ′). Let us consider the simple CG G′ that specializes the conjunctive
CG H ′′, built in the same way as in the proof of Th. 4. Since G′ proves H ′′,
the correspondence between FC and BC implies that there exists a derivation
sequence G′, G′′ = α(G′, R′, π1), G′′′ = α(G′′, R, π2) such that H projects into
G′′′. Since FC with rules dependencies is complete, it means that either H de-
pends upon R

′, or that R depends upon R
′. �

6.2 Backward Chaining with Rules Dependencies

The following algorithm uses the graph of rules dependencies in a Backward
Chaining framework to include the two optimizations discussed in Sect. 6.1.

Algorithm 4: Backward Chaining using Rules Dependencies
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: If Backward Chaining halts on yes, then G,R |=V H , if it halts on no,

then G,R �|=V H (but it can run infinitely).
D← SimplifiedRulesDependenciesGraph(R, G, H) ;
UnifList ← NewFilo() ;
for R ∈ Predecessors(D, H) do

for μ ∈ Unifications(D, R, H) do
UnifList ← AddFilo(UnifList, (μ, R, H)) ;

while UnifList �= ∅ do
(μ, R, H) ← FiloRemove(UnifList) ;
H ′ ← Rewrite(μ, R, H) ;
if H ′ = ∅ then return yes ;
for R

′ ∈ Predecessors(R) do
for μ′ ∈ ComputeNewUnifications(R′, H ′) do

UnifList ← AddFilo(UnifList, (μ′, R′, H ′)) ;

return no ;

6.3 Further work: combining unifications

Finally, we point out that we have not translated in this BC framework the third
optimization of FC brought by the GRD. In FC, the composition operator �
between the current projection and the unifications between the current rule and
its successors is used to reduce the size of projections that have to be computed
during the following execution of the main while loop. A similar operator, com-
posing unifications into a partial unification, would be required to achieve the
same optimization result in BC.

7 Conclusion

In this paper, we have unified two optimization schemes used for computing
deduction with conceptual graphs rules [14, 12] (SR-deduction), namely piece
unification in Backward Chaining [12, 11], and the graph of rules dependencies
in Forward Chaining [4]. Our main contributions are listed below:

1. Unification of syntax: [12, 11] defines simple CGs as bipartite multigraphs
and CG rules as pairs of λ-abstractions, while [4] defines them as directed hy-
pergraphs and coloured CGs. We unify these different syntaxes in a common
structure (Sect. 2.1 and 3.1).

2. Generalization of piece unification: the definition of piece unification in
[12, 11] does no longer rely on concept types being ordered by a lattice.

3. Generalization of dependencies: the definition of dependencies in [4]
does not take into account the modification of structure induced by nor-
malization, and thus is restricted to CG rules having no individual in the
conclusion for completeness of algorithms. This restriction is dropped here.

4. Identification of piece unification and dependencies: Up to the gener-
alizations above, we prove that piece unification and neutrality (the inverse
of dependency)are equivalent (Th. 4 in Sect. 5.2).

5. Use of the graph of rules dependencies in a Backward Chaining
framework: we show how the optimizations allowed by the graph of rules
dependencies of [4] in a Forward Chaining framework can be adapted to the
Backward Chaining framework of [12, 11] (Th. 5 in Sect. 6).

Perspectives Though the graph of rules dependencies already increases effi-
ciency in both FC and BC, we are now considering the following problems:

1. Traversals of the graph of rules dependencies: FC and BC rely respec-
tively on a breadth-first and a depth-first traversal of the GRD. Different
types of traversals can be tested.

2. Rewriting of a CG ruleset: Some transformations of rules preserve their
semantics (e.g. a rule with k pieces is equivalent to k rules with one piece).
What transformations can give a more efficient FC or BC?

3. Finding a composition operator for unifications: (Sect. 6.3)

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. J.-F. Baget. Simple Conceptual Graphs Revisited: Hypergraphs and Conjunctive
Types for Efficient Projection Algorithms. In Proc. of ICCS’03, volume 2746 of
LNAI. Springer, 2003.

3. J.-F. Baget and M.-L. Mugnier. The Complexity of Rules and Constraints. JAIR,
16:425–465, 2002.

4. Jean-François Baget. Improving the forward chaining algorithm for conceptual
graphs rules. In Proc. of KR2004), pages 407–414. AAAI Press, 2004.

5. M. Chein and M.-L. Mugnier. Conceptual Graphs: Fundamental Notions. Revue
d’Intelligence Artificielle, 6(4):365–406, 1992.

6. M. Chein and M.-L. Mugnier. Types and Coreference in Simple Conceptual
Graphs. In Proc. ICCS’04, volume 3127 of LNAI. Springer, 2004.

7. S. Coulondre and E. Salvat. Piece Resolution: Towards Larger Perspectives. In
Proc. of ICCS’98, volume 1453 of LNAI, pages 179–193. Springer, 1998.

8. G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decom-
position methods. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI), pages 394–399. Morgan Kaufmann, 1999.

9. M.-L. Mugnier. Knowledge Representation and Reasoning based on Graph Ho-
momorphism. In Proc. ICCS’00, volume 1867 of LNAI, pages 172–192. Springer,
2000.

10. M.-L. Mugnier and M. Chein. Représenter des connaissances et raisonner avec des
graphes. Revue d’Intelligence Artificielle, 10(1):7–56, 1996.

11. E. Salvat. Theorem proving using graph operations in the conceptual graphs for-
malism. In Proc. of ECAI’98, pages 356–360, 1998.

12. E. Salvat and M.-L. Mugnier. Sound and Complete Forward and Backward Chain-
ings of Graph Rules. In Proc. of ICCS’96, volume 1115 of LNAI, pages 248–262.
Springer, 1996.

13. J. F. Sowa. Conceptual Graphs. IBM Journal of Research and Development, 1976.
14. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley, 1984.

