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Abstract

In the last 10 years, there has been increasing interest in interval valued data
in signal processing. According to the conventional view, an interval value suppos-
edly reflects the variability of the observation process. Generally, the considered
variability is associated with either random noise or the uncertainty that underlies
the observation process. In most sensor measure based applications, the raw sensor
signal has to be processed by an appropriate filter to increase the signal to noise
ratio or simply to recover the signal to be measured. In both cases, the output filter
is obtained by convoluting the sensor signal with a supposedly known appropriate
impulse response. However, in many real life situations, this impulse response can-
not be precisely specified. The filtered value can thus be considered as biased by
this arbitrary choice of one impulse response among all possible impulse responses
considered in this specific context. In this paper, we propose a new approach to
perform filtering that aims at computing an interval-valued signal that contains all
outputs of filtering processes involving a coherent family of conventional linear fil-
ters. This approach is based on a very straightforward extension of the expectation
operator involving appropriate concave capacities.
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1 Introduction

In the last 10 years, there has been increasing interest in interval valued data
[11]. Generally, replacing a precise value by an interval value generally reflects
the variability or uncertainty that underlies the observation process. There
are, however, different possible interpretations of an interval in the framework
of data analysis and processing. An interval value can be seen as:

e a range in which one could have a certain level of confidence of finding the
true value of the observed variable [24],

e a range of values that the real data can take when the measurement process
involves quantization and/or sampling [11,12],

e representation of the known detection limits, sensitivity or resolution of a
sensor [15].

In signal processing, a major difficulty is often to have access to a process
with a truly reliable knowledge on the properties of the expected variations
and errors that contaminate the observations. In the state estimation context,
some very well established state estimation processes, e.g. Kalman filtering,
can lead to developments that are mathematically complicated and exceed
the engineer’s expertise in process control. To overcome this difficulty, some
interval observation based algorithms have been proposed for state estimation
(see e.g. [22,4]). The same problem arises in the sensor fusion setting. In [24],
an interval estimation fusion based on sensor interval estimates is considered
that leads to fused values that have advantages with respect to their precise
equivalents in terms of robustness, specificity and easy extension to higher
dimensionality. In [9], Brito considered replacing precise valued by interval
valued data to perform a robust data analysis.

However, within any interval-based signal processing application, there is still
a strong need for a reliable representation of the variability domain of each
involved observation. An important issue concerns the meaning of the inter-
val and the consistency of this meaning with respect to the tools used for a
further analysis or processing. In many practical applications, a confidence in-
terval with a probability of one is too wide to obtain useful values. Therefore,
one problem of practical interest is to be able to obtain an interval valued ob-
servation with a particular guaranteed property but which is also as specific
as possible.

Single or double bootstrapping has been proposed as a nice way for recovering
the confidence interval of an estimated value [17]. However, the computing
resources required by such methods may be prohibitive. In [13], a Monte-Carlo
method based on a Cauchy distribution is used to provide the interval valued
expected error of a function whose inputs are intervals. Quantile estimates can



also be involved to obtain specific confidence intervals [3].

Random set theory would be required to use these interval data (see e.g. [9]
and references therein). Kreinovich et al. [15] propose to extend expectation
or variance of interval valued data. In [8], the authors propose to design an
interval observer of a time varying process that provides online estimation
of upper and lower bounds of unmeasured states of the observations. This
estimation is said to contain, with certainty, the true observation based on
supposed pre-knowledge of the input signal bounds and reasonable knowledge
on the equation that applies to the observed process. An interesting property
is that generally the width of the observed interval directly depends on the
uncertainty range of the unknown variables.

This property can be very useful for signal processing applications. Moreover,
it would be necessary to account for a known pre-calibrated observation vari-
ability, but also for a lack of knowledge on the proper model to be used. In
this context, here we propose a new interpretation of an interval-valued piece
of information.

Consider a linear process involving an expectation-like operation for which you
have partial information about the suitable probability function to be used.
Thus, a way to account for this mis-knowledge is to consider every possible
(suitable) function. Then the exact output value of the process cannot be pre-
cisely computed. It seems natural to replace the notion of precise expected
value by an imprecise expected value that represents all possible precise ex-
pected values given by all possibly appropriate models. An interval can be a
compact and useful representation of this imprecise expected value.

The problem of computing an expected value based on an ill-known proba-
bility has been proposed in the past in the decision making context (see [23]
and references therein). The more general framework involves sets of probabil-
ities called credal sets [18]. However, expectation based on general credal sets
often lead to computationally complicated methods involving at least linear
constrained programming. A simpler way to account for the mis-knowledge
on the suitable probability to be used is to consider an interval-based repre-
sentation of the cumulative distribution function (cdf). This approach, also
called p-box [1], has been successfully used in the past (see references in [13]).
However, as shown by Kreinovich and Ferson in [14], this representation can
sometimes lead to estimates that are not specific enough, in contradiction
with the underlying confidence representation, or else to NP-hard computa-
tions. Interval-valued probabilities have also been studied [23] but, considering
reasonable requirements, this approach leads to a precise valued expectation
operator. A more specific and very useful way of representing probability den-
sity function (pdf) family is to consider a class of non-additive confidence
measures called concave Choquet capacities [2].



In this paper, we propose to represent the notion of partial lack of probabilistic
information by replacing the pdf, commonly used for performing aggregation
in signal processing applications, by a concave capacity. Such a capacity aims
at representing a convex hull of a credal set called the core of this capacity.
We thus propose a very simple extension of the expectation operator whose
output is an interval instead of a single value. We show that this interval
is the most specific that includes every precise expected value based on a
probability that belongs to the core of the capacity. This generalization makes
use of asymmetric or symmetric Choquet integrals. Then, by considering the
conventional linear filtering as a linear combination of at most two linear
expectations, we make use of our new interval valued expectation operator to
design interval valued output filtering processes that contains all the outputs
of filtering processes involving a coherent family of conventional linear filters.

This article is organized as follows: section 2 presents the framework and
notations. Section 3 deals with the construction of our imprecise expectation
operators. Section 4 explains how to use our imprecise operators for performing
imprecise filtering. Section 5 presents some illustrative experiments.

2 Framework and notations

In this section, we present notations, definitions and technical results useful for
this article. A first part introduces the notations. A second subsection briefly
presents the expectation operator. A third part deals with symmetric and
asymmetric Choquet integrals. Finally, a last subsection recalls some results
concerning generalized real intervals.

2.1 Notations

This section presents the notations which will be used througout this article.

Q={1,..., N} is a finite set,

P () is the set of subsets of €,

X : 2 — R denotes a real function defining the observation process on (2,
V ={X :Q — R} is the set of all real functions on €2,

Vne{l,...,N}, VX € V, X(n) is denoted X,, and throughout this paper
we denote X = (X,,)n=1,.n-

p : @ — [0,1] is the probability associated to each observed value. Vn €
{1,...,N}, p(n), denoted p,, is the probability associated to the nth oh-
servation.

On IR, max denotes the maximum operator and msn the minimum operator.



2.2 The expectation operator

In probability theory, the expected value of a discrete random variable is the
sum of probabilities of each possible outcome of the experiment multiplied by
the outcome value. It represents the average when identical odds are repeated
many times.

Considering N observations, {X1,..., Xy}, the expected value of X based on
N
the probability distribution p is: ¥ =) p, X,

n=1

Note that the aggregated value Y considering the N observations is obtained
by a weighted sum. A minimal requirement for such an operator is:
minne{l,...,N}Xn S Y S maxne{l,...,N}Xn'

Moreover, if all observations equal a same real value ¢, then the expected value
N

should equal to c. This property leads to Z pn = 1. More precisely, p is a
=1

discrete probability measure P on each subset of :

VACQ, P(A) = pn.

neA

Based on this probability measure P, one can define the expectation operator
as follows:

Definition 1 Let X € V be a real function on Q and p be a probability asso-
ciated to each values which defines a probability measure P. The expectation
of X according to P is defined by:

Y = Ep(X) =Y puX,. (1)

nes

A first straightforward idea to account for ill known probability weights is to
replace the precise probability in expression (1) by an interval valued probabil-
ity [pn, pn]. However, as shown in [23], when this aggregation to be consistent
with the usual precise probability based aggregation, this approach leads to
a very simple but precise expected value, which does not comply with the
desired properties.



2.8  Symmetric and asymmetric Choquet integral

This section presents the symmetric and the asymmetric Choquet integral
with some useful properties.

Definition 2 e A capacity v is a set function v : P(2) — [0,1] such that
v(0) =0, v(Q) =1, and VA C B = v(A) < v(B).
e V¢, the conjuguate! capacity of v, is the capacity defined by:
VA e P(Q), v(A) =1—v(A9,

where A° denotes the complementary set of A in Q.
e A capacity v is concave if and only if

VA, B € P(Q), v(AUB)+v(ANB) <v(A) +v(B).
e The core of a capacity v is
core(v) = {P probalility on P(2) such that v(A) < P(A), VA € P(Q)}.

Let X € V be a function, then (-) denotes the permutation function on the
set {1,..., N} such that the function X is a non-decreasing function. More
precisely, we have X1y < ... < X(ny. Hence, Vi € {1,..., N}, A is the set
defined by Ay = {(4), ..., (N)}. When the values of a function X are positive,
we can define the Choquet integral of X.

Definition 3 Let X : Q — R be a function and v be a capacity on P(S2).

e The Choquet integral of X with respect to the capacity v is:

N
Co(X) =D Xy (v(Apy) — v(Ams1))) with Ayyry =0
n=1

o A dual Choquet integral can be computed using the conjuguate capacity:

Coe(X) = §X<n)(v(A?n+1)) — v(Af))-

When X is a real function two solutions exist to extend the Choquet integral:
the asymmetric Choquet integral and the symmetric Choquet integral, also
called the Sipos integral.

I The classical ¥ notation will not be used in this paper so as to make the equations
below more easily understandable.



Definition 4 Let X € V be a function, we define the positive functions X~
and X as follows:

Vne{l,---,N}, X, =maz(—X,,0) and X,” = max(X,,0).

Throughout this article, we refer to X~ = maz(—X,0) and Xt = maxz(X,0),
where 0 denotes the function equal to 0 everywhere.

The asymmetric Choquet integral and the symmetric Choquet integral are
defined as follows:

Definition 5 Let X be a function from Q= {1,...,N} to R.

o The asymmetric Choquet integral of function X with respect to a capacity v
18!

év(X) - Cv(XJr) - CvC(Xi)'

o The symmetric Choquet (or Sipos ) integral of function X with respect to a
capacity v 1S:

Sy(X) = Cy(XT) — Cp(X 7).

Both asymmetric and symmetric Choquet integrals are non-decreasing func-
tions, but they do not have the same behavior, for example we have the fol-
lowing property:

Proposition 6 Let X € V be a real function on Q.

Va > 0,V8 € R, Cy(aX + B) = Co(aX1+ 3,...,aXy + ) = aCy(X) + 3,
Va € R, S,(aX) = aS,(X),

Proof: See [7]. m

2.4  Generalized real intervals

Using the symmetric Choquet integral to generalise the expectation operator
can lead to an improper interval valued output.

A generalized real interval a is denoted a = [«, 5] with a, 8 € IR such that the
inequality a < (3 is not always satisfied [11]. There are two sorts of intervals:
proper intervals and improper intervals:

e A proper interval is an interval [a, (], , f € IR where a < §.
e An improper interval is an interval [a, 8], a;, f € IR where § < a.



In this article, we use the following generalized interval operators.
Let a = [«, 3] be a generalized interval.

dual(a) = |8, al,

a if a is a proper interval
pro(a) =
dual(a) else.

Definition 7 When a = [, §], a, 8 € IR is a generalized interval, then

la| = pro(a) = [a,a] denotes the proper interval such that a = min(a, ) and
a = max(a, 3).

IR denotes the set of proper intervals of IR.

Definition 8 Let [a], [b] € IR be two proper intervals,

e the Minkowski addition is: [a] @ [b] =
e the dual Minkowski addition is: [a] B |

As [a] and [b] are two proper intervals, [a] @ [b] is a proper interval but [a] B [b]
is not always a proper interval.

If 0 € [b], then the Minkowski addition can be interpreted as a dilation, and
the dual Minkowski addition can be interpreted as an erosion [19].

Note that [a| B [b] = [a] ® dual([b]).
We also defined two substraction operators:

Definition 9 Let [a], [b] € IR be two poper intervals.

© is the Minkowski subtraction and the H operator is identical to the difference
operator defined by Hukahara in [10] when [a] = [b] @ [z] has a proper solution.

3 Imprecise expectation operators, F,(-) and 3,(-), according to a
concave capacity v.

This section deals with the presentation of E,(-) and 3,(-) which are operators
from V' to IIR.



Let © be a finite set of N elements, v be a concave capacity on P(£2) and
v¢ be the conjuguate capacity of v. The functions on 2 are denoted X and
the set of all functions is denoted V. When X € V', we use the decomposition
X = X — X" presented in Definition 4. To begin, let us recall a result proved
by Denneberg [5]:

Theorem 10 Ifv is a concave capacity on P(2), then

e VX cV,Cy(X)= sup FEp(X),

Pecore(ve)

e VX eV, Cpe(X)= inf Ep(X),

Pecore(ve)

o VX €V, Cpe(X) < Cy(X),
where Ep(-) is the expectation operator according to probability P.

So we can define a minimum operator and a maximum operator, denoted
respectively Cpe : V. — IR and C, : V — IR. Hence, a proper interval
[Che (X)), Cy(X)] can be associated with each function X € V.

Note that, if v is a concave capacity and if VP € core(v®), Ep(X) are equal and
then Cye(X) = C,(X). If X is a constant function equal to ¢, then Cye(X) =
Co(X) =c.

When working with the symmetric Choquet integral, the order relation be-
tween S,(X) and S,(X) is unknown, so the interval [S,e(X), S,(X)] can be
an improper inteval. In such cases, we have to specify pro([Sy(X), Sy(X)]),
where pro(-) is the operator defined in subsection 2.4. Hence, we have the

following definition:

Definition 11

E:V—HI]R and E:V—JI]R

X = [Coe(X), Co(X)] X = pro([Sye(X), S,(X)]).

Note that if X € V is a positive function, then the asymmetric Choquet
integral and the symmetric Choquet integral are equal and coincide with the
Choquet integral. In this case, £,(-) denotes this common operator.

FE,(-) and 3,(+) are two imprecise expectation operators based on the concave
confidence measure v. We now present some useful properties of these new
operators.

Proposition 12
VX eV, 3,(X) C E,(X).



Proof: v is a concave capacity so, according to Theorem 10,
VX €V, Cpe(X) < Cy(X). Using the definition of symmetric and asymmetric
Choquet integrals, the following equalities can be written:

* 5u(X) = C(X+) ( ) S Cu(XT) = Cue(X7) = Cu(X).

© Sue(X) = Coe(XT) = Cpe(X7) < Cp(XT) — C(X)Z o(X).
® Supe(X) = Cue(XT) = Coe(X7) =2 Cie(X ) Co(X7) = Cpe(X).
o Cpe(X) — 5() CU(+)—C(X) (*) Co(X7) =
Cpe(XT) = Cy(XT) <0

So we have proved that Ce(X) < min(Sy(X), Spe (X)) and maz (S, (X), Sy (X)) <

Cy(X). m

Definition 13 VX € V, S, (X) = min(Sy(X), Sy(X)) and S,(X) = maz (S, (X), Sy(X))
denote the bounds of 3,(X).

Proposition 14 VX €V, the mclusw 3,(X) C E,(X) is symmetric, i.e the
equality Cy(X) — Sy (X) = S, (X) — Cye(X) is satisfied ( see Figure 1 ).
Proof: We have to prove that C,(X) — S,(X) = S,(X) — Cpe(X).
(Co— Coe)(X7) (Cy— Ce)(XT)
TN
CUC(X) (
L[ 1
L L ]

v
(Cy — Cpe)(XF) (Cy = Ce)(X7)

Fig. 1. ”Symmetric” inclusion

Co(X) = Co(XT) = Cue(X7) = Co(XF) = Co(X7) + Co(X7) = Cue(X7)

évc(X) = CvC(X+> - CU(X_) - OvC(X+> - OvC(X_> + CUC(X_) - CU(X_)

LX) = Coe(X7) = Cu(XH) — Cue(XH) + Coe (X+) — Ce(X7)
= Spe(X) 4 (Cy — Cue)(XT)

Cor(X) = Cue(X) = ColX7) = Co(XT) = Oy X) + Coe(XH) — Cy(X7)
= 5u(X) = (Cy — Cpe)(XT)

10



So we have C\(X) — Spe(X) = Sy(X) — Cpe(X). m

Corollary 15 Let X € V such that X = X+ — X~. Hence,

5
P
=
:

(Co = Coe)(X) & 8,(X) = Spe(X) and S(X) = S,(X)

(OU - OUC)(Xi) = (OU - OUC)(XJr) <~ ﬁv(X) = SUC(X) = S(X) = SU(X)

SUC(X) - Sv(X) - CvC(XJr) - CvC(Xi) - (Cv(XJr) - OU(Xi))
- (Cvc - Cv)(X+) - (CUC - Cv)(X_)

Note that if X € V is a real function such that X* = X~ then S,(X) =
S,(X). This property is not satisfied for Cyc(X) and C,(X).

Proposition 16

VX €V, Ey(X) = Ey(XT) 6 Ey(X7)
VX €V, 3,(X) = pro(E,(XT) B E,(X7))

4 Imprecise expectation for imprecise filtering

Linear filtering consists of convolving an input signal with a particular func-
tion called the impulse response of the filter. Since the specific knowledge of
the impulse response of the filter cannot usually be justified, it would be use-
ful to be able to account for this ill-knowledge by replacing a unique impulse

11



response by a coherent family of impulse responses. In this section, we propose
to use the new operator presented in the previous section to provide such new
filtering tools for representing the lack of knowledge on the proper impulse
response to be used on the precision of the filter output. We first show that
any discrete filter can be considered as a weighted sum of at most two usual
expectations. We use this property to design linear filtering processes with an
imprecise output. Then we propose a method for designing concave capaci-
ties that induce a particular property on the imprecision of the output. This
method consist of deriving capacities from the knowledge a user has about
the impulse response of one (or more) filters that should be appropriate for
the considered application. We propose two approaches to derive an impre-
cise filter from a precise filter. The first approach consists of constructing the
most specific possibilistic capacity that encloses the probabilities involved in
the filtering. The second approach simply consists of designing capacities that
account for imprecision induced by the sampling.

4.1  Summative kernel based filtering and expectation operators

We consider a discrete summative kernel [16] the impulse response of a discrete
filter having only positive values and a unitary gain, i.e. (p;), 7 is a discrete
summative kernel if and only if: Vi € 7, p; > 0 and Z pi = 1.

icZl,
Since most kernels used in signal processing are bounded, we only consider

this case: (p;), 77 is bounded, means that IN € IN, i & [-N, N| = ¢; = 0.

As noted in section 2, a summative kernel defines a probability measure P on

each measurable subset A of 7ZZ by P(A) = Z pi- Therefore, computing the
icA

discrete convolution of an input signal X = (X,,),=1_.~ € V is equivalent

to a discrete expectation operation involving the probability measure P. The

computation of Y;, the k'™ component of the filter output is given by:

N
Y, = Z Pr—nXn = Ep, (X)’ (2)
n=1

with P, being the probability measure defined by the translated summative
kernel (px—n), 77

Proposition 17 Any real finite impulse response of a bounded discrete filter
can be expressed as a linear combination of, at most, two summative kernels.

Proof: Let (¢;),_77 be the real finite impulse response of a discrete filter (i.e.

12



> i < 00). Let ¢ = maz(0,¢;) and ¢; = maz(0, —p;). Let At = Y~ of

/4 icZl,

and A~ = Z ¢ . By construction o; = ¢ — ;. Let p;
icZl,

By construction, p; and p; are summative kernels. Now ¢ = pf AT and

©0; = p; A, therefore ; = pf AT — p; A=. m

23
=

+
A+ a’nd pz =

Corollary 18 Any discrete linear filtering operation can be considered as a
weighted sum of, at most, two expectation operations.

Corollary 19 Let P, (rsp.P, ) be the probability measure based on the sum-
mative kernel pi_, (rsp.pi_; ), then Y}, = A+EP: (X) — A"Ep- (X).

Proof: Let X = (X,,)n=1..n be the discrete signal to be filtered and (‘Pi)ieﬂ
the impulse response or the filter Y}, the k' component of the filter output, is

computed by the discrete convolution of the impulse response of the filter and
N N

the imput signal: Y, = Z Pr—nXp. Since p; = gpg" —; L, Y = Z(gp;n —

n= 1 n=1

Phn) Zsok n Zsok nXn Now ¢ = pfA* and @i = pi A7,
n=1
N
therefore Y, = A* Z PrnXn — A™ Y pi_, Xy By construction, Y pf =1
n=1 n=1 /4
and %pi =1 ,thus Y} = A+EPJ(X) —AEp- (X). m
i€

We call the decomposition of (¢;), 7z into (o] ),c7z > (pi )iczz. AT and A~ the
canonical decomposition of ¢, the impluse response of the filter.

4.2 How can an tmprecise filtering operator be derived from a conventional
filtering operator ¢

Since no tool is currently available to derive a suitable capacity from objective
criteria, we propose in a signal processing context, to derive an imprecise
filtering operator from one (or several) conventional filters that have been
validated for his particular application.

Let us consider a discrete filter whose finite impulse response is (;),. 77 Let
, us also consider the canonical decomposition of ¢ into p*, p~, AT and A~.
Let PT (rsp. P~) be the probability measure induced by p* (rsp. p~). The
method we propose consists of finding two capacities v and v~ such that
Pt € core(v?) and P~ € core(v™). By translating the confidence measures,
we also define vl and vy such that P € core(v) and P, € core(vy,) .

13



Let X = (X,,)n=1..~n be the discrete signal to be filtered. Due to the proper-
ties of the imprecise expectation operators, we have Ep+(X) € Ej(X ) and
Ep-(X) € E,(X). Therefore, let Y; be the k* component of the output of
the precise filter:

Yi = A" Eps (X) — A Ep-(X) € Vi = A'E, (X) 0 A E, (X)) (3)

with [Y;] the k™ component of the output of the imprecise filter.

Note that in expression (3) the imprecise expectation operator E(-) can also
be replaced by the symmetric Choquet integral-based operator 3(-). Also the
Minkowsky subtraction © can be replaced by the dual Minkowsky subtraction
H. Replacing the expectation operator can be warranted if the zero value has
a special meaning in the signal. Replacement of the Minkowsky operator can
be required if their is a strong link between the two dominated summative
kernels p* and p~ as will be shown in the section 5.2.

4.8  Imprecise filtering based on a possiblity distribution

A possibility measure is a particular concave capacity. In fact, a possibility
measure is the only capacity measure (except for the probability measure)
that can be defined by a distribution. (7;), 77 is a possibility distribution if
and only if: m; > 0,Vi € 7ZZ and m%({m} =1

1€
A possibility distribution induces, on each finite subset A of 7, a possibility
measure denoted II(A) that is computed as follows: II(A) = rlneehx{m} = 1.

As shown in [16], the most suitable way to associate a discrete possibility
distribution with a discrete probability distribution (p;), 77, in an objective
context, consists of computing the most specific transformation proposed by
Dubois and Prade [6]. This transformation leads to defining a possibility dis-
tribution (m;),.77:

= > peX(pr < pi), (4)
kel

with x(pr < pi) = 1 if pr. < p; and 0 otherwise. The possibility measure II,
induced by (’/Ti)iez, is then the most specific that dominates the probabil-
ity measure P induced by (p;), 7. This possibility distribution can also be
thought of as a maxitive kernel [16].

Another transformation can also be used, that is usually prefered in a subjec-

14



tive context, called the subjective transformation and leading to a possibility
distribution (7;), 77, such that: 7; = Z min(pr, pi)-
keZl

This subjective transformation always defines a possibility distribution that
is less specific than the previous one, i.e. Vi € Z, ©; > ;.

Finally, since a broad range of summative kernels used for signal processing are
monomodal and symmetric, a triangular maxitive kernel is a good candidate
since it defines a possibility measure that dominates any probability measure
defined by a summative kernel having the same mode and any lower bandwidth
[16].

4.4 Imprecise filtering based on accounting for sampling

Another way to derive an imprecise filtering operator from a precise filtering
operator is to account for imprecision due to sampling. Indeed, most discrete
filters used in digital signal processing are designed to be a sampled version
of a continuous filter. Let (p;),_.7z be the discrete probability distribution as-
sociated with the considered filter. Let us suppose that this distribution is
bounded, i.e. there is a subset 2 of ZZ such that Vi ¢ Q, p; = 0.

The fact that this discrete filter is derived from a continous filter means that
each value p; associated with the i" sampled time (iT") with 7" being sample
time, is obtained by integrating a continuous function p(t) in a neighborhood
of ¢T" defined by a continuous sampling kernel 7:

pi= [ ol —iT)d. (5)

The neighborhood sampling kernel (e.g. splines [21]) is usually a monomodal

positive function bounded by the interval [T, T], such that / n(t)dt =1. A

way to recover the continuous original function p(¢) from the discrete kernel
(pi)iez7 is to use an interpolating kernel. Most of these kernels lead to func-
tions p(t) whose value, when ¢ € [iT, (i+1)T], belongs to the interval [p;, p;41].
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Thus a simple way to account for this imprecision is to define a capacity v by:

v:Q — [0,1]
maz(pg, pr+1) if k€ Aand (k+1) € A
;%¢“@ _ pr ifkeAand (k+1)¢ A
A — v(A) = E—— with ga(k) =
2;%%) prar k@ Aand (k+1) € A
ke
0 else.

Proposition 20 The above capacity is concave.

Proof: Let A, B € Q, v is concave if v(A)+v(B)—v(AUB)—v(ANB) > 0. Let
a =Y ¢o(k), thus v is concave if av(A)+av(B)—av(AUB)—av(ANB) > 0
keQ

ie Y (galk)+ ¢5(k) — daup(k) — danp(k)) > 0 because a > 0.
keQ

To prove the inequality, we consider all possible situations in the following
table:

ke Ak+1¢eAlk € Blk+1¢€ Blpak) + ¢p(k) — paup(k) — danp(k)
yes yes yes yes 0
yes yes yes no 0
yes yes no yes 0
yes yes no no 0
yes no yes yes 0
yes no yes no 0
yes no no yes Pk + pre1 — max(pg, prr1) > 0
yes no no no 0

So Vk € Q, ¢pa(k) + ¢p(k) — paun(k) — panp(k) > 0 which proves that v is a
concave capacity. m
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5 Experimentations

5.1 Experimentation on filtering a signal

This experiment is based on a signal issued from the STS? pressure sensor
of the AUV 2 Taipan300 acquired during sea-trial experiments at Salagou
Lake in France [20]. The measurement range is between 0 and 10 m, with an
accuracy of 0.5% of its full scale.

During this experiment, the depth of the AUV was controlled by sliding-mode
[20] at a subsurface depth of around 2 m. The signal is partly represented
in Figure 2. It is composed of a signal induced by the depth of the vehi-
cle corrupted by variations caused by waves, errors in trajectory control and
measurement errors. The height of waves (about 0.5m) is not negligible at
this depth. Moreover, the main goal of these sea-trial experiments was to tune
the different coefficients of the used command law and the pitch was not yet
properly controlled.

Since the raw signal depicted in Figure 2 is very noisy, it is usually post-
processed by using a low-pass filter. For this experiment, we used an order-
3 Butterworth low-pass filter with a cutoff frequency equal to 0.15-fold the
sample rate frequency. The filter shape is depicted in Figure 3. Note that
the signal is positive, thus any approach ( asymmetric or symmetric Choquet
integral) give the same result. Moreover, in this context, zero does not have
any particular significance. Therefore the symmetric Choquet integral based
approach could not be justified.

In the first experiment, we consider dominating the probability measure by
a possibility measure. In the second experiment, we consider dominating the
probability measure by a capacity that accounts for sampling.

The first experiment is plotted in Figure 5, the second experiment is plotted in
Figure 6. In all figures, the precise Butterworth filtered depth value is plotted
in black and superimposed on the original signal (in cyan). The imprecise
filtered value is plotted in red (lower value) and blue (upper value). When
considering Figures 5 and 6, it can easily be seen that the precise filtered value
belongs to the imprecise filtered value. The imprecise filtered value provided
by the accounting-for-sampling approach is more specific than the possibilistic
based approach. Moreover, when considering the possibilistic domination, the
imprecision of the imprecise filtered value reflects the overall distance between
the filtered signal and the original signal, providing a good measure of the

2 Sensor Technik Sirnach AG.
3 AUV stands for autonomous underwater vehicule
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Fig. 2. Raw depth signal.
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Fig. 3. Butterworth filter impulse response ¢

noise level. Note that, with the Butterworth filter being a real-time filter (i.e.
its impulse response is causal), the filtered signal is slightly delayed compared
to the original signal. The same applies for the imprecise filtered signal.

5.2 Experimentation on derivating a signal

Signal derivation has been a great topic of interest in the image processing
community since it is very useful for performing edge detection and image seg-
mentation. Derivation consists generally of convolving a signal with a discrete
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Fig. 4. Decomposition into two positive impulse responses ¢ and ¢~

25r

depth in meter.

0.5 L 1 1 1 1 1 J
90 100 110 120 130 140 150 160
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Fig. 5. Depth signal filtered by the precise Butterworth filter (black) and the impre-
cise possibility-based Butterworth filter (blue-upper, red-lower) superimposed with
the original signal (cyan).

kernel obtained by sampling the derivative of an interpolative continuous ker-
nel. In the image community, the Canny-Deriche filter is said to be optimal for
edge detection since it respects Canny’s detection criteria. The Canny-Deriche
derivative filter ¢ is given by: ¢; = —%iﬁm, where 5 € [0, 1] is a parameter
that defines the filter bandwidth. The shape of the filter is depicted in Figure
7 for 3 ~ 0,4. This kernel can be considered as bounded by assuming that

;i = 0 if |¢;| < €, where € represents the precision of the computer.

This second experiment we propose consists of derivating a signal by using
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Fig. 6. Depth signal filtered by the precise Butterworth filter (black) and the
imprecise accounting-for-sampling capacity based Butterworth filter (blue-upper,
red-lower) superimposed with the original signal (cyan).
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Fig. 7. (a). Deriche and (b). Deiche canonical decomposition

a Canny Deriche filter and its imprecise version. This experiment aims at
highlighting the usefulness of the dual Minkowsky difference in such a setting.

Since most kernels used for derivation are positive and symmetric, the deriva-
tion kernel is composed of two identical symmetric functions. The Canny-
Deriche filter acts in the same way. Therefore, the canonical decomposition of
the filter leads to ¢; = Ap; — Ap_;, where p is a causal filter, i.e. such that
pi = 0if ¢ < 0. Thus, let X = (X,,),=1.n be the discrete signal to be filtered,
the value of Xy, then the k' estimate of the temporal derivative of X is given
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by:

Xk: = A(EP+ (X) - EP— (X))7

k k

(6)

where P/ (rsp. P, ) is the probability measure based on p; (rsp. p_; ) at the
k" sample. Ept (X) (rsp. Ep- (X)) can be seen as a right (rsp. left) mean

value of signal X around the k' time sample. If these two mean values are
equal, then the derivative equals 0.

Now, let us consider two capacities v™ and v~ and their respective cores.
The situation can arise that, for any PT € core(v™) and P~ € core(v™),
Ep+ (X)=F P (X) and therefore Xj = 0 regardless of the considered prob-
ability measure. However, there can be two probability measures P, Q" be-
longing to core(v*), such that Ep+(X) # Eg+ (X). Thus B, (X) = E,-(X),
but Xj, = A(E,, (X) © E, (X)) # 0. When this situation occurs and if the
capacity is chosen such that, usually £, (X)) = L, (X) means that for any
Pt e core(vt) and P~ € core(v™), Ep, (X) = Ep-(X), then the Minkowsky
difference must be replaced by the dual Minkowsky difference in order to ob-
tain a more specific (but also more risky) interval.

Let us consider the synthetic signal of the form z(t) = Atcos(wt) depicted in
Figure 8.a and the same signal degraded by an additive gaussian noise whose
standard deviation increases with time (i.e. the noise is not stationary), as
depicted in Figure 8.b.

1 T T T T T T T T ; //

0.8
0.6

041

simulated signal
simulated signal

0.2

of / \

WA I
21 M‘“.M}A,!,NL’W ﬁ

2‘2
time

Fig. 8. Original signal without noise (a) and with noise (b).

Since the signal is known, its derivative is also known, which enables us to
illustrate the behavior of the derivation algorithm. Figures 9, 10, 11 and 12
present the derivative of both original (a) and noisy signals (b). In each figure,
the real derivative is plotted in magenta, the precise estimated derivative is
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plotted in black while the imprecise derivative estimate is plotted in blue for
upper and red for lower estimates. Figures 9 and 10 presents an imprecise
estimate that uses the Minkowsky difference. Figures 11 and 12 present an
imprecise estimate based on the dual Minkowski difference. In each Figure, we
have expanded a specific detail of the signal (around time=14 ms.).
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Fig. 9. Derivative estimate of the original signal based on the Minkowsky difference.
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Fig. 10. Derivative estimate of the noisy signal based on the Minkowsky difference.

When comparing Figures 9 and 10 to Figures 11 and 12 it can easily be
seen that the imprecise estimation of the derivative is always more precise
when using the dual Minkowsky difference. This increased precision is an ad-
vantage when the signal is not noisy, i.e. the only noise is due to sampling
(Figures 8.a and 9): the dual Minkowsky difference based imprecise estimate,
the precise estimate and the real derivative are almost identical. However,
when the signal is noisy, the fact that the two intervals E, . (X) and E,-(X)
are equal cannot be considered as a signature that, for any P™ € core(v™)

22



N
3
1

N
T

simulated signal derivative

T4 6 8 10 12 14 16 18 20 22 . 24
e/ time

Fig. 11. Derivative estimate of the original signal based on the dual Minkowsky
difference.

simulated signal derivative
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Fig. 12. Derivative estimate of the noisy signal based on the dual Minkowsky dif-
ference.

and P~ € core(v™), EPI:F(X) = Ep- (X). Therefore, the imprecise estimate
based on the dual Minkowsky difference can be seen as a too risky interval
valued estimate since it does not always include the real derivative or the pre-
cise estimated derivative (Figure 12). On contrary, when the filter is properly
designed, the Minkowsky difference approach always includes the real signal
(Figure 8.b). Moreover, the precise expected value is always included in the
imprecise expected value due to Property 10.
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6 Concluding remarks

In this paper, we have proposed a new interpretation and a new way of com-
puting the imprecision associated with an observed value. According to this
interpretation, the imprecision of an observation can be due to the observation
process but also to poor knowledge on the proper post-processing to be used
to filter the raw measured signal.

The conventional approach for signal filtering requires perfect knowledge of
the proper function for modeling the impulse response of the filter to be used.
However, such precise knowledge is usually difficult to justify, since it usually
requires a lot of expert prior assumptions (shape of the function, identifica-
tion criterion, data used in the identification process, etc.). In this article,
we propose to extend this conventional approach by designing filtering tools
that are able to account for imprecise knowledge of the impulse response of
the filter. Our new filtering tool is based on replacing a single precise impulse
response by a set of impulse responses that is consistent with the user’s expert
knowledge. Our approach is based on considering the usual linear filtering as
a linear combination of two expectation operations and extending these ex-
pectation operations to concave capacities. We have proposed straightforward
methods to enable a user to design capacities that are likely to represent the
convex hull of all the saught-after impulse reponses. Several properties of this
approach have been proved that show its consistency with the conventional
approach. Particularly, when considering the Minkowski sum-based extension,
the imprecise output of our filter contains all outputs of the filters whose im-
pulse response belongs to the considered convex hull. However, as mentionned
in the article, this output can be too imprecise, i.e. it contains output signals
that are not outputs of the set of filters envisaged by the user. Thus, we also
considered another approach based on the dual Minkowski sum. However, this
approach can lead to a too specific filtered output. In fact, the filter output
can be guaranteed to be the most specific interval-valued output only when
all the considered impulse responses are either positive or negative. Future
work should be focused on finding a way to design a method that can ensure
this property for sets of impulse reponses that are both negative and positive
(which is the most general case). Note that our actual approach only considers
a precise signal input. It would be useful to consider extending our work to
an imprecise signal input, whose imprecision comes from a previous imprecise
filtering or is due to pre-calibration of the expected signal error.
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