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Abstract.—

Diversification is nested, and early models suggested this could lead to a great deal

of evolutionary redundancy in the Tree of Life. This result is based on a particular set of

branch lengths produced by the common coalescent, where pendant branches leading to

tips can be very short compared to branches deeper in the tree. Here, we analyze

alternative and more realistic Yule and birth-death models. We show how censoring at the
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present both makes average branches one half what we might expect and makes pendant

and interior branches roughly equal in length. Although dependent on whether we

condition on the size of the tree, its age, or both, these results hold both for the Yule

model and for birth-death models with moderate extinction. Importantly, the rough

equivalency in interior and exterior branch lengths means the loss of evolutionary history

with loss of species can be roughly linear. Under these models, the Tree of Life may offer

limited redundancy in the face of ongoing species loss.

(Keywords: Phylogenetic tree, Yule process, extinction, phylogenetic diversity )

In a well-cited paper, Nee and May (1997) state that “80% of the underlying tree of

life can survive even when approximately 95% of species are lost.” This quote has

percolated through the literature (see, e.g. (Erwin 2008; Purvis 2008; Roy et al. 2009;

Santos et al. 2010; Vamosi and Wilson 2008)). This high level of phylogenetic redundancy

is due to Nee and May using coalescent-type models of tree shape, where pendant edges are

expected to be much shorter than interior edges. Here, we test the robustness of this result

by building on recent algebraic results from Steel and Mooers (2010) to derive the expected

branch lengths on phylogenies produced under alternative Yule and birth-death models of

diversification. We highlight three findings: (i) the average length of branches in pure-birth

(Yule) trees is roughly one half our naive expectation; (ii) the expected length of the

interior branches and those leading to species are the same or nearly so, and this means

that (iii) the relationship between the loss of species to extinction and the loss of

phylogenetic diversity (Faith 1992) can be much more precipitous than that quoted above



(Nee and May 1997). All three findings hold for birth-death trees with low to moderate

relative extinction rates.

For much of what follows, we will consider a pure-birth Yule tree with diversification

rate λ. We note that inferred phylogenetic trees are often more imbalanced than Yule trees

(Mooers and Heard 1997), but currently, no biological model captures this empirical

distribution. More importantly for what follows, the Yule process produces a distribution

of splitting events on the tree from past to present that is intermediate between that

expected under an adaptive radiation (Gavrilets and Vose 2005; Rabosky and Lovette

2008), where splits are concentrated nearer the root, that expected under long-term

equilibrium models of diversification (Hey 1992; Hubbell 2001), where splits are

concentrated nearer the present. Our main motivation for focusing on this model is that

trees sampled from the literature tend to have splitting times concentrated nearer the root

(McPeek 2008; Morlon et al. 2010), making the Yule model a conservative model when

measuring phylogenetic redundancy.

We refer to branches that lead to the tips of a tree as pendant edges (with expected

average length pn, where n is the number of tips) and branches found deeper within the

tree as interior edges (with expected average length in). The term ‘expected average

length’ clarifies that two random processes are at work – the production of a Yule tree and

the selection of an edge from that tree. The expected phylogenetic diversity of such a tree

is the sum of the expected pendant and interior edge lengths, i.e. Ln = npn +(n-2)in. We

will assume throughout that the tree starts as an initial bifurcation, such that at some time

t in the past it has two lineages each of length 0 (as in Nee (2001)). After time t from the

initial bifurcation, we produce a binary tree with n tips (as in Nee (2001); Yang and

Rannala (1997)), and several properties of this process have been well-studied by these and

other authors. In particular, the expected number of tips in the tree is 2eλt.

Given rate λ, the time that a given lineage persists until it splits on a Yule tree has



an exponential distribution with a mean of 1
λ
. This motivates our naive expectation that

the expected average edge length on such a tree would also be 1
λ
. We first present a simple

proof that the expected average edge length in a Yule tree is actually 1
2λ
. This provides an

underlying intuition that is absent from the purely algebraic proof of Steel and Mooers

(2010). We then summarise and extend some results from Steel and Mooers (2010) to

describe how the relative lengths of pendant and interior edges are affected by (i)

conditioning on, (ii) estimating, or (iii) not knowing, three related quantities: n, the

number of tips of the tree; t, the depth of the tree; and λ, the diversification rate. We then

further extend our results to birth-death trees, and finally revisit the provocative question:

at what rate do we lose phylogenetic diversity as we lose species on a tree?

Expected length of a branch on a Yule tree

sampled at the present

Let us assume that we observe a Yule tree at the moment that it has grown to n +

1 tips (n = 4 in Fig. 1). We do not condition on its depth (t). We can designate the edge

that has just split as an interior edge, and disregard the two zero-length branches that have

just arisen. Doing so designates an equal number (n− 1) of interior and pendant edges on

this tree. One might think of this Yule tree as one that has been ‘cut at’ (or conditional

on) the observation of n+ 1 tips. Intuitively, even though the expected length of an edge

on an uncensored tree would be 1
λ
, the designated pendant edges will be shorter due to this

conditioning. However, interior branches are also affected by this censoring: particularly

long interior branches would stretch to the present, and so would be pendant edges. This

means that the expected lengths of interior edges are also shorter than 1
λ
.

Theorem 1. In a Yule tree, at the latest speciation event, the expected length of a

randomly drawn edge is 1
2λ
.



Proof: Consider the late sampling scenario described in the preceding paragraph,

and let the n− 1 remaining pendant edges each grow under the Yule process until they also

split, disregarding all the new infinitesimal edges that result. Each of these grown pendant

edges has an expected length gn and is made up of two segments - its expected length

before the tree had n+1 edges (= pb), and its expected length as it continued to grow after

the tree had n+ 1 tips (= pa), such that gn = pb + pa. Importantly, given the memoryless

nature of exponential processes, the length of any pendant edge segment observed from the

time that n + 1 tips are produced (the dashed lines in Fig. 1) is drawn from one common

exponential distribution, with the same parameter λ. Also, pn on the censored tree = pb on

the uncensored tree.

Given an equal number of interior and pendant edges on this uncensored tree, we

can write an expression for the expected length (call it E[L]) of any randomly drawn edge

on this tree as:

E[L] =
1

2
· in +

1

2
· (pb + pa) =

1

2
· in +

1

2
· (pb +

1

λ
). (1)

Any single lineage has E[L] = 1
λ
, and so we can substitute this for E[L] to obtain:

1

2
· in +

1

2
· pb =

1

2λ
, (2)

because pn = pb. The left member in equation (2) is the expected length of a randomly

drawn edge in the censored Yule tree, which completes the proof.

This proof does not say anything about the relative lengths of internal vs. pendant

edges per se - it might be that internal edges are still much longer than pendant ones on

Yule trees that we observe at a single time slice, and it may be that the result hinges on

observing the tree at exactly the moment that a speciation event occurs. We turn to these

issues now.



tree reaches n+1 = 5 tips

Figure 1: Growing a Yule tree, to illustrate the proof of Theorem 1. The horizontal line is
the observation time, when n+1 tips first appear. Below this line is the censored tree whose
edge lengths we are modelling. The uncensored tree has each pendant edge continuing to
lengthen till it speciates in turn. The thick lines denote interior branches, the thin lines are
pendant edges on the censored tree, and the dashed lines are the segments that accrue to
produce the uncensored tree.

Expected pendant vs. interior edge lengths as

function (only) of n

In the above construction of the Yule tree we made the convention that the edge

that has just split is an interior edge of the resulting tree. However, we could have

alternatively classified it as a pendant edge. In that case we have n pendant edges and

n− 2 interior edges, and one can again consider the expected average pendant and interior

branch lengths, which we will denote as i′n and p′n. Steel and Mooers (2010) used a

recursive argument to establish the following exact result: For all n ≥ 3, we have:

i′n = p′n =
1

2λ
. (3)



This result tells us exactly how 1
λ
is shared out between the two terms in Theorem 1.

Due to the memoryless nature of the exponential distribution, the pendant edge that was

chosen to split at our observation time is random with respect to its length, and so we can

express the lengths of the interior and pendant edges on the censored tree as:

in =
1

n− 1
((n− 2)i′n + p′n), and pn =

1

n− 1
(np′n − p′n).

Eqn. (3) implies that, for all n ≥ 3:

in = i′n =
1

2λ
and pn = p′n =

1

2λ
.

In particular, the terms in and pn in Theorem 1 are equal. We note that Theorem 1 is for a

late sampling scenario, when we show up just when n + 1 tips first appear. However, if we

only condition on n, but show up at a random time between the interval when n and n+1

tips exist (i.e. if we ’show up’ at the present to sample our tree), any pendant edge has the

same expected average length as in the late sampling scenario. This result is analogous to

the bus-stop problem: if buses arrive at a certain rate b under an exponential process, if

one shows up at a random time, the expected time since the last bus is b−1 rather than

something less than that. This property was formally proven for model trees (Gernhard

2008a) and also used recently by Hartmann et al. (2010) in the context of sampling trees

from evolutionary models.

Expected pendant vs. interior edge lengths as

functions of t (alone or with n)

The expected number of tips in a Yule tree at time t is given by N(t) = 2eλt, since each of

the two initial lineages has a geometrically distributed distribution, with a mean of eλt (see



e.g. Nee et al. (1994), or Beichett and Fatti (2002) (Example 6.10, pp. 193)). We now

introduce P as the sum of all pendant edges, I as the sum of all interior edges, and, as in

the introduction, L as the total tree length, L=P+I. These quantities, conditional on

either n or t or both, should be noted, as they will be useful for many of the proofs that

follow. If we let P (t) and I(t) denote, respectively, the expected sum of the lengths of the

pendant and interior edges of a Yule tree grown for time t and let L(t) = P (t) + I(t), then,

from Steel and Mooers (2010), we have the following equalities:

L(t) =
2

λ
(eλt − 1);P (t) =

1

λ
(eλt − e−λt) and I(t) =

1

λ
(eλt + e−λt − 2). (4)

Thus the ratio of the expected average lengths of the pendant and interior edges of

a Yule tree of depth t converges to 1 exponentially fast with increasing t. P (t) is slightly

larger than than I(t), but the difference becomes rapidly negligible. In particular, the ratio

P (t)/L(t) converges quickly to 1/2; we will consider this ratio further when we allow for

extinction.

Importantly, for most phylogenetic trees, both n and t will be known from the data.

Do the observations on edge lengths made above also hold when we condition on both n

and t? The expected total length of a Yule tree conditional on it having grown for time t

and having exactly n tips at time t is given by:

Ln(t) = t ·
(

2 +
n− 2

x
(1− y(x))

)

, (5)

where x = λt and y(x) := xe−x

1−e−x , which is a function that decreases from 1 towards 0 as

x ≥ 0 grows (for details, see Steel and Mooers (2010)). Let In(t) and Pn(t) denote the

expected sum of the interior and pendant edge lengths (respectively) of a Yule tree,



n = Pn(t) Ln(t) R̂n(t)
4 3.03296 · t 2.8854 · t 1.0511
16 3.8697 · t 6.7326 · t 0.5748
64 9.2373 · t 17.8894 · t 0.5163
256 26.3815 · t 52.3492 · t 0.5040
1024 82.0735 · t 163.8260 · t 0.5010

Table 1: Sum of pendant edges (Pn(t)), sum of all edges (Ln(t)) and their ratio (R̂n(t)) for
various tree sizes n when both n and t are fixed and λ is set to its maximum likelihood value.

conditional on it having grown for time t and having exactly n tips at time t. Thus,

In(t) + Pn(t) = Ln(t) (given by Eqn. (5)).

A proof of the following result is provided in the Appendix.

Theorem 2. The expected length of a randomly picked pendant edge in a Yule tree on n

extant species and of age t is,

1

n
Pn(t) = t·

(

2

n(n− 1)
+

(n− 2) [(n+ 5)− 4(1 + n+ 2x)e−x + (3n− 1 + 2(n+ 1)x)e−2x]

2xn(n− 1)(1− e−x)2

)

,

where x = λt.

In particular, if we set λ to its maximum likelihood estimate, i.e. λML = log(n
2
)/t

(Magallon and Sanderson 2001), then the ratio R̂n := Pn(t)/Ln(t) of the expected total

length of the pendant edges to the expected total length of all edges in a Yule tree on n

extant species and age t is independent of t and is given by:

R̂n =
n3 − 3n2 − 4n log(n/2) + 4n− 4

2(n− 1)(n− 2)2
,

which tends to 1/2 as n→ ∞.

Table 1 presents Pn(t), Ln(t) and their ratio R̂n(t) (ie, Rn(t) conditioned on λ

taking its maximum likelihood estimate) for a range of tree sizes.



Extension to birth-death models

Allowing for random extinction (as well as speciation) introduces additional complexity

into the analyses presented above. We first consider what happens if we condition just on n

(and adopt the assumption that the time of origin of the initial linage is a parameter of the

birth-death model). To do this, we have to assume a prior distribution for the time of

origin when conditioning the trees to have n extant species. We make the common

assumption that the first species originated at any time in the past with uniform

probability (Aldous and Popovic 2005). This is also called an improper prior on (0,∞).

Conditioning the resulting tree to have n extant species yields a proper distribution for the

time of origin (Gernhard 2008a). Note that, under the Yule model where µ = 0, this

scenario is equivalent to stopping the process just before the n+ 1-th speciation event

(Hartmann et al. 2010), which is the setting we considered in the first two sections of this

paper. The following result generalizes those earlier findings to birth-death models (a proof

is provided in the Appendix). As usual, λ is the per lineage speciation rate and µ is the

per-lineage extinction rate.

Theorem 3. The expected length of a pendant edge on a birth-death tree conditioned on n

is, for 0 < µ < λ,

E[p|n] = µ+ (λ− µ) log(1− µ/λ)

µ2
; (6)

for µ = λ, we have:

E[p|n] = 1

λ
;

and for µ = 0, we have:

E[p|n] = 1

2λ
.

We can also obtain exact results for the lengths of the edges in a birth-death tree if

we condition (just) on time. In particular, we can provide extensions to equation (4)to



allow for extinction. We begin, as usual, with two lineages of length 0. Let TR(t) denote

the tree that is spanned by those taxa that are extant at time t; TR(t) is therefore referred

to as the ‘reconstructed’ birth-death tree (the tree consisting of edges that survive to time t

while extinct lineages are pruned away) (Nee et al. 1994; Gernhard 2008a). If there are no

taxa extant at time t, we say that TR(t) is empty. Let NR(t) denote the expected number

of tips in the reconstructed birth-death tree, given by the well-known formula:

NR(t) = 2e(λ−µ)t, t ≥ 0.

Note that although NR(t) tends to infinity as t grows when λ > µ, it is quite possible that

the actual number of lineages at time t is 0, in which case TR(t) is empty. Let LR(t) be the

expected total length of the reconstructed birth-death tree, and let PR(t) be the expected

sum of the pendant branch lengths of this tree. The proof of the following result is

provided in the Appendix.

Theorem 4. Consider a birth-death tree with speciation rate λ > 0 and extinction rate µ

that starts from two lineages of length 0. Let ρ = λ
µ
, r = λ− µ and let fρ(s) =

ρes−1
(ρ−1)es

.

Then, for t ≥ 0:

(i) LR(t) = 2ert

µ
· (ln fρ(rt)).

(ii) PR(t) = 2ert

µ

(

1− (ρ− 1) ·
[

(ln fρ(rt)) +
1

ρert−1

])

.

(iii) For ρ > 1, the limiting ratio τρ := limt→∞
PR(t)
LR(t)

is given by:

τρ =
1

ln
[

ρ
ρ−1

] − ρ+ 1.

The function τρ from part (iii) is shown in Fig. 2. Note that the 0.5 asymptote

agrees with the ratio of PR(t) and LR(t) as in the pure-birth model as calculated earlier
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Figure 2: Graph of τρ, which is the limiting ratio (for large t) of the sum of pendant edge
lengths to the sum of all edge lengths in a birth-death tree, in which the speciation rate is
ρ > 1 times the extinction rate.

(i.e. τρ → 1
2
as ρ→ ∞). Interestingly, the asymptote is reached fairly quickly on large

trees. For example, from Fig. 2, we see that when the extinction rate is one-third of the

extinction rate (ρ = 3), then τρ = 0.47 and the expected pendant edge length is 87% the

expected interior edge length. Mild extinction in a uniform birth-death model does not

produce particularly short pendant edges. At the other extreme, as the extinction rate

approaches the speciation rate (so r and ρ converge to 0 and 1 respectively) τρ can be

easily shown to converge to 0, as suggested by Fig. 2. It is interesting to note that the

expected sum of pendant edge lengths in the reconstructed tree at time t (i.e. PR(t))

divided by the expected number of extant taxa at time t (i.e. 2e(λ−µ)t) converges to the



same expression as given in Eqn. (6) as t→ ∞.

Expected PD under simple Field-of-Bullets model

for Yule trees

The expected lengths of edges in a tree are directly relevant for quantifying the

expected loss of ‘phylogenetic diversity’ (PD) under simple models of extinction in which

each tip is deleted with some fixed probability. In these models, edges that are ‘deep’

within the tree are more likely to contribute to the PD score of the surviving taxa than

pendant edges of similar length, since they are more likely to have at least one non-extinct

taxon in the clade they support. This redundancy leads to the nonlinear decrease of PD as

more species are removed from a tree (Nee and May 1997). However, the ratio of the

lengths of pendant to interior edges is also critical, as pendant edges will be the first to be

deleted from the tree. In this section, we analyse the expected PD score of a Yule tree

under random taxon deletion. Note that there are two random processes at play here: the

Yule process that produces the tree, and then the extinction process that deletes taxa.

Consider then a Yule tree that starts with a split into two lineages at time 0 and is

grown until time t > 0. At that time, each tip is selected independently with probability s,

and the remaining tips are deleted (pruned). Thus s is the ‘survival probability’ of a taxon.

Let ψt(s) be the PD of the resulted pruned tree, and let πt(s) = E[ψt(s)], where E[.]

denotes expectation with respect to the random Yule tree and the random pruning

operation. Thus, πt(1) is the expected PD of the (entire) Yule tree, namely

L(t) = 2
λ
(eλt − 1) (Eqn. 4). For s < 1, πt(s) is the expected PD one obtains by generating

a Yule tree until time t and then applying a field-of-bullets pruning with survival

probability s for each tip. The proof of the following result is provided in the Appendix.



Theorem 5.

πt(s) =
2s

(1− s)λ
eλt ·

[

− log
(

s+ (1− s)e−λt
)]

.

The ratio πt(s)/πt(1) of the expected PD in the pruned tree to the expected PD of the total

tree therefore converges (quickly) with t to the limit:

π(s) :=
−s log(s)
1− s

Theorem 5 implies that πt(s) ≥ s · πt(1) for all t > 0. Moreover, the limiting ratio

π(s) is a continuous and concave, positive function that approaches 0 as s→ 0 and

approaches 1 as s→ 1 (see Fig. 3). For s = 0.5, π(s) = log(2) = 0.69. The slope function

π′(s) approaches infinity as s approaches 0 from above and π′(s) approaches 1
2
as s

approaches 1 from below. This latter result can be seen by considering that pendant edges

are the first to be lost from a tree undergoing extinction; under the Yule model, the sum of

the pendant edges constitutes 0.5 of the total PD (Theorem 4).

The high level of redundancy reported by Nee and May (1997) is due to their use of

coalescent-type models of tree shape with a constant population-size, where the pendant

edges are expected to be much shorter than the interior edges. More precisely, the ratio of

the expected total length of the pendant edges to the expected total length of the interior

edges converges to 0 with increasing n, at a rate 1/ log(n), see e.g. (Fu and Li 1993) (Eqns.

(10-12)). An example of the relationship between s and the proportion of the tree

remaining under Nee and May’s model (for n = 1000) is shown in Fig. 3.

Under a Yule model, where interior and pendant edges have roughly the same

expected length, the situation is quite different. If we take s=0.05, then π(s) = 0.157.

That is, in a large tree, if we lose 95% of species (randomly) then we would expect to lose

more than 84% of the tree. This lower level of redundancy is also more in line with

statistical (Morlon et al. 2011) and empirical estimates of tree loss under extinction
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Figure 3: Lower solid line shows the proportion of PD remaining when random extinction
occurs with probability 1- s on a Yule tree (from π(s) from Theorem 5). The dotted line
shows the same quantity for the coalescent-style tree used by (Nee and May 1997), for
n=1000. The curve in between these two shows the same quantity but on a birth-death tree
with µ = 0.5λ, as described by Eqn. (7).

regimes (von Euler 2001; Purvis et al. 2000; Vamosi and Wilson 2008), where tree shape

and non-random extinction interact (see also (Heard and Mooers 2000; Nee 2005)).

Similar results hold with birth-death trees under mild extinction (see Fig. 2), where

the sum of the pendant edges constitutes τρ of the total PD. In particular, for λ > µ > 0,

the second formula presented in Theorem 5 can be modified as follows (see Appendix):

π(s) =
s

(a− s)
· log

(s

a

)

· 1− a

log(a)
, (7)

where a = 1− µ/λ.



Fig. 3 exhibits an example curve π(s) on a birth-death tree constructed with µ =

0.5λ.

We note that this modified formula for µ > 0 should be used with care for larger

values of µ for two reasons. Firstly, birth-death trees are increasingly likely to die out as µ

approaches λ and so an asymptotic ratio of expected values such as π(s) may be a poor

estimate of expected PD loss in such situations. Note in particular that in the limit as

µ/λ→ 1, we have π(s) = 1 for all s > 0. This of course does not mean that if 99.9% of the

taxa are eliminated, then we would still expect to retain 100% of the phylogenetic diversity!

The second reason for caution is more empirically based. In the extreme (critical)

case where µ = λ then, as we have noted already, if we condition on a tree having n extant

leaves (assuming a uniform prior distribution for the time of the origin of the tree, as in

(Aldous and Popovic 2005)), then the expected distribution of branch lengths in this tree

would be precisely that given by the coalescent process (Gernhard 2008b) that was used in

the analysis by Nee and May (1997) . The problem now is that typical species-level

phylogenetic trees look very different from such constant-size coalescent-shaped trees. Hey

(1992), using a sample of only eight trees, was the first to point out that the coalescent

model produced unreasonably short pendant edges (see also Morlon et al. (2011), while

McPeek’s recent compilation McPeek (2008) of 245 fairly-well sampled chordate,

arthropod, mollusk, and magnoliophyte phylogenies, showed that these trees tended to

have a branch length distribution in the opposite direction to the coalescent, with edges

near the leaves tending to be, on average, slightly longer than expected under the Yule

model. McPeek used the gamma statistic from (Pybus and Harvey 2000) to describe the

distribution of branch lengths as one moves from the root of the tree to the tips, and found

that the majority of trees had negative gamma values, rather than having them centered

on 0 as expected under the Yule model (Pybus and Harvey 2000) and the positive values

expected under the coalescent (Pybus et al. 2002). Indeed, we show in the appendix that



the expected value of gamma for a coalescent tree of increases indefinitely at a rate of
√
3n.

Morlon et al. (2010) applied a coalescent framework that allows for incomplete

taxon sampling to an overlapping set of 289 trees and found that the majority of trees

(> 80%) had splitting times that were either consistent with the Yule model or

concentrated nearer the root. Though nonrandom sampling may be a concern (Cusimano

and Renner 2010), the observation that most nearly-complete phylogenetic trees have

gamma values close to zero (or negative), as well as the explicit test of the Yule model by

Morlon et al. (2010) suggest that our use of this model in analyzing expected loss of PD

may be conservative.

Conclusion

Although the Yule model of diversification is nearly 100 years old, it still holds some

surprises. The fact that real trees are conditioned on t and that we show up at some

random time after n tips have been produced leads to the observation that average

pendant edge lengths (species ages) and internal edge lengths (those that anchor higher

clades) are expected to be nearly equal under the Yule model. Although all edges are not

expected to be the same length – for instance the two edges incident to the root are longer

than others (results not shown) – this conditioning also makes randomly selected edge

lengths one half of the naive expectation. These observations may be useful in informing

prior distributions on edge lengths for tree inference.

Mild amounts of uniform extinction do not change these general observations.

Indeed, the ‘push of the past’ (Harvey et al. 1994; Phillimore and Price 2008), which

describes the expectation that those groups which diversified faster than expected early on

are more likely to be sampled in the present, would lead to internal edges being even

shorter relative to pendant edges. Non-uniform models, such as adaptive radiations where



diversification actually slows down through time (Rabosky and Lovette 2008; Morlon et al.

2010), would do the same. All these processes work against the redundancy inherent in the

Tree of Life. We predict that this redundancy may not be as great as hoped for. Of course,

this prediction must await more complete, dated trees.
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Santos, B. A., V. Arroyo-Rodŕıguez, C. E. Moreno, and M. Tabarelli. 2010. Edge-related

loss of tree phylogenetic diversity in the severely fragmented brazilian atlantic forest.

PLoS ONE 5:e12625.

Stadler, T. 2008. Lineages-through-time plots of neutral models for speciation. Math.

Biosci. 216:163–171.

Steel, M. and A. O. Mooers. 2010. The expected length of pendant and interior edges of a

yule tree. Appl. Math. Lett. 23:1315–1319.

Vamosi, J. and J. R. U. Wilson. 2008. Nonrandom extinction leads to elevated loss of

angiosperm evolutionary history. Ecol. Lett. 11:1047–1053.

von Euler, F. 2001. Selective extinction and rapid loss of evolutionary history in the bird

fauna. Proc. Roy. Soc. Lond. B. 268:127–130.

Yang, Z. and B. Rannala. 1997. Bayesian phylogenetic inference using dna sequences: A

markov chain monte carlo method. Mol. Biol. Evol. 14:717–724.



Appendix: Proofs of Theorems

Proof of Theorem 2

We can modify the argument that leads to the differential equation dI(t)
dt

= λP (t)

from (Steel and Mooers 2010) so as to take into account conditioning on n as well as t –

the analysis consists of calculating quantities such as P[Xt = n− 1|Xt+δ = n], where Xt

denotes the number of species present at time t, for which Eqn. (4) of (Nee 2001) is

helpful. In this way one can derive the following sequence of first-order linear differential

equations for In = In(t):

dIn
dt

+
λ(n− 2)

1− e−λt
· In =

λ(n− 2)

1− e−λt
·
(

In−1 +
1

n− 1
Pn−1

)

. (8)

Notice that the term Pn−1 = Pn−1(t) on the right-hand side of (8) can be replaced

by Ln−1(t)− In−1(t) (with Ln−1(t) given by (5)). Moreover, when n = 2 we have the initial

solution I2(t) = 0 (and P2(t) = 2t) for all t ≥ 0, and for each n we have the boundary

condition In(t) = 0 at t = 0.

It can now be verified that the expression given in Theorem 2 for Pn(t) satisfies this

system of linear differential equations subject to the boundary condition, and so is the

unique solution.

For the second claim if we set λ to its maximum likelihood estimate, i.e.

λML = log(n
2
)/t, then,



Pn(t) =
2 log(n/2)

λ(n− 1)
+

(n− 2)
[

(n+ 5)− 4(1 + n+ 2 log(n/2))e− log(n/2) + (3n− 1 + 2(n+ 1) log(n/2))e−2 log(n/2)
]

2λ(n− 1)(1− e− log(n/2))2

=
2 log(n/2)

λ(n− 1)
+

(n− 2)
[

(n+ 5)− 4(1 + n+ 2 log(n/2))2n−1 + (3n− 1 + 2(n+ 1) log(n/2))(n/2)−2
]

2λ(n− 1)(1− 2/n)2

= t
n3 − 3n2 − 4n log(n/2) + 4n− 4

2 log(n/2)(n− 1)(n− 2)

The sum of all edge lengths is in expectation (Steel and Mooers 2010),

Ln(t) = t n−2
log(n/2)

, and therefore the ratio Rn is the expression given Theorem 2. From this

expression it is easily seen that limn→∞
Pn(t)
Ln(t)

= 1/2. ✷

Proof of Theorem 3

The probability v(k) that a leaf is attached to the kth speciation event in a tree on

n extant species under the Yule or birth-death model is, from Stadler (2008), given by:

v(k) =
2k

n(n− 1)
. (9)

For 0 ≤ µ < λ, let:

p0(t) :=
(1− e−(λ−µ)t)

λ− µe−(λ−µ)t
, and p1(t) :=

(λ− µ)2e−(λ−µ)t

(λ− µe−(λ−µ)t)2
,

while for µ = λ, let:

p0(t) :=
t

1 + λt
, and p1(t) :=

1

(1 + λt)2
.



The probability that a lineage produces 0 (resp. 1) offspring after time t is µp0(t) (resp.

p1(t)) Kendall (1949). We first establish the following result:

Lemma 6. The length of a randomly picked pendant edge in a birth-death tree on n extant

species has probability density function fp(t|n) = 2λp1(t)(1− λp0(t)).

Proof. For proving the lemma, we will use the probability density of the time of the k-th

speciation event in a birth-death tree with n extant species which is derived in Gernhard

(2008a), and for µ < λ, we get,

fn,k(t) = (k + 1)

(

n

k + 1

)

λn−k(λ− µ)k+2e−(λ−µ)(k+1)t

(

1− e−(λ−µ)t
)n−k−1

(λ− µe−(λ−µ)t)n+1
. (10)

Using Equation (9) and (10), we can write,

fp(t|n) =
n−1
∑

k=1

v(k)fn,k(t)

= 2
n−1
∑

k=1

(

n− 2

k − 1

)

λn−k(λ− µ)k+2e−(λ−µ)(k+1)t

(

1− e−(λ−µ)t
)n−k−1

(λ− µe−(λ−µ)t)n+1

= 2λn−1(λ− µ)3e−2(λ−µ)t

(

1− e−(λ−µ)t
)n−2

(λ− µe−(λ−µ)t)n+1

n−1
∑

k=1

(

n− 2

k − 1

)(

(λ− µ)e−(λ−µ)t

λ(1− e−(λ−µ)t)

)k−1

= 2λ(λ− µ)3
e−2(λ−µ)t

(λ− µe−(λ−µ)t)3
.

For µ = λ, we take the limit µ→ λ (using the property e−ǫ ∼ 1− ǫ), which establishes the

lemma.

Note that the length of a pendant edge is independent of n. Theorem 3 now follows

directly from Lemma 6 by evaluating
∫∞
0
tfp(t|n)dt. ✷

Proof of Theorem 4



The quantity 1
fρ(rt)

= r
λ−µe−rt is the probability that a birth-death tree that starts

with a single lineage at time 0 has at least one extant lineage at time t (Eqn. (2) of (Nee

et al. 1994)). Thus, by considering the first δ period of time in a birth-death tree that

begins with a single lineage, the expected total sum S(t) of branch lengths spanning the

leaves present at time t satisfies the differential expression:

S(t+ δ) = 0 · µδ + 2S(t) · λδ + (S(t) + δ
1

fρ(rt)
) · (1− (µ+ λ)δ) +O(δ2),

(by considering whether or not the lineage becomes extinct, speciates, or persists

unchanged within this initial δ period). Since LR(t) = 2S(t) this leads to the following

differential equation:

dLR(t)

dt
= rLR(t) + 2/fρ(rt). (11)

Solving Eqn. (11) subject to LR(0) = 0, gives part (i) of the Theorem. By considering the

evolution of the tree from time t to t+ δ a straightforward dynamical argument leads to a

second differential equation that links LR(t) to PR(t) :

dLR(t)

dt
= NR(t)− µPR(t). (12)

Part (ii) follows by equating the right-hand sides of Eqns. (11) and (12) to express PR(t)

in terms of quantities already determined. For Part (iii), observe that r > 0 and

fρ(rt) → (ρ− 1)/ρ as t→ ∞ and so, from parts (i), (ii), we have the asymptotic

equivalences LR(t)/2ert ∼ µ−1 ln[ρ/(ρ− 1)], PR(t)/2ert ∼ µ−1(1− (ρ− 1) ln[ρ/(ρ− 1)]).

Taking the ratio of these quantities gives the result claimed.

Proof of Theorem 5



Let φt = φt(s) be the analogue of ψt(s) if we start the Yule tree with a single (rather

than 2) lineages at time t = 0; thus,

πt(s) = E[ψt(s)] = 2E[φt(s)], (13)

(the behaviour of φ is slightly easier to analyse than ψ). Let Xt denote the number of tips

in the Yule tree (starting with a single lineage at time 0) at time t. Consider φt+δ, for a

small value δ > 0. In the first δ period of time the initial lineage can either (i) speciate

(with probability λδ +O(δ2)) or (ii) fail to speciate (with probability 1− λδ +O(δ2)) and

so we have:

φt+δ =















φ1
t + φ2

t +O(δ), with probability λδ +O(δ2);

φ0
t + Yt, with probability 1− λδ +O(δ2);

(14)

where

E[Yt|Xt+δ = n] = δ · (1− (1− s)n),

and φ0
t , φ

1
t and φ2

t are independent random variables having the same distribution as φt

(the contribution of δ to the PD score of the tree applies precisely if at least one of the tips

at time t+ δ is sampled, and this event, conditional on Xt+δ = n, has probability

1− (1− s)n). Now,

P(Xt+δ = n|Xδ = 1) = P(Xt = n|X0 = 1),

and it is a classic result that this latter probability has a geometric distribution with mean

eλt (see e.g. Beichett and Fatti (2002), Example 6.10, pp. 193) and so:

E[Yt] = δ · (1− E[(1− s)Xt ]) = δ ·
(

1−
∑

n≥1

(1− s)ne−λt(1− e−λt)n−1

)

=
δ · s

s+ qe−λt
(15)



where q = 1− s. Let π′
t(s) := E[φt(s)]. Taking expectation of (14) (with respect to both

the Yule tree and the random sampling process) and applying (15) leads to the following

differential relationship for π′
t(s):

π′
t+δ(s) = 2λδ · π′

t(s) + (1− λδ) ·
(

π′
t(s) +

δ · s
s+ qe−λt

)

+O(δ2).

This leads to the following first-order, linear differential equation for π′
t(s):

dπ′
t(s)

dt
− λπ′

t(s) =
s

s+ qe−λt
.

Solving this equation gives π′
t(s), and thereby the stated value for µt(s) = 2π′

t(s) (by (13)).

The modification of this result to give Eqn. (7) in the birth-death setting, with

0 < µ < λ following a similar case analysis (but allowing for the possibility of extinction)

leads to the differential equation for Mt(s) = E[φt(s)]:

dMt(s)

dt
= (λ− µ)Mt(s) + P(φt(s) 6= 0). (16)

Now, by Eqn. (1) of (Yang and Rannala 1997) (or see (Nee et al. 1994)) we have:

P(φt(s) 6= 0) =
as

s− (s− a)e−(λ−µ)t
, (17)

where a = 1− µ/λ. Now πt(s) lies between 2Mt(s) and 2Mt(s)− t (depending on whether

we add the lengths of all the edges from the extant taxa to the root, or just the edges from

the extant taxa to their most recent common ancestor), from which Eqn. (7) follows by

evaluating the limit of the ratio πt(s)/πt(1) as t→ ∞.

✷.



The expected value of gamma under the coalescent process

Under a Yule (pure-birth) model, the gamma statistic has a standard normal

distribution with mean 0, while under a coalescent model it is positive. Under the

coalescent model, the original γ statistic grows at the asymptotic rate of
√
n as the number

of tips n grows.

Theorem 6. For a coalescent tree with n leaves, γ/
√
n converges in

probability to
√
3 with increasing n.

For a rooted binary tree with n ≥ 2 leaves, let g2, g3, . . . , gn be times between

successive speciation events, measured from the root to the leaves, and let Tn =
∑n

j=2 jgj.

From Pybus and Harvey (2000) we have γ = Xn

Yn
, where Xn can be written in the form:

Xn =
1

n− 2

n
∑

i=2

αigi, where αi = i(n/2)− 2

(

i

2

)

,

and

Yn = Tn

√

1

12(n− 2)
.

Now, under the coalescent, the random variables g2, . . . , gn are independently distributed,

and with gj having an exponential distribution with mean 1

(j
2
)
. It follows that Tn

2 log(n)
and

Xn

log(n)
have expected values that converge to 1, and variances that converge to 0 as n→ ∞,

and so Tn

2 log(n)
and Xn

log(n)
each converge in probability to the constant 1 as n→ ∞.

Consequently, the ratio Xn/Tn converges in probability to 1/2 as n→ ∞, and so

γ(n)/
√
n = Xn

Tn
·
√

12(n−2)
√
n

converges in probability to
√
3, as claimed.

Finally, a more careful asymptotic analysis provides a closer approximation to γ/
√
n

by the formula
√
3 · (1− 2

loge(n)+C
) where C is Euler’s constant (0.5772...), and simulations

confirm this improved fit.

✷


