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Abstract

A graphG is (k, 0)-colorable if its vertices can be partitioned into subdétandV; such that
in G[V1] every vertex has degree at mastwhile G[V] is edgeless. For every integer> 1, we
prove that every graph with the maximum average degree emhﬁn“"‘j“ is (k, 0)-colorable.
In particular, it follows that every planar graph with girdh least7 is (8, 0)-colorable. On the
other hand, we construct planar graphs with giitthat are not(k, 0)-colorable for arbitrarily
largek.

1 Introduction

A graphG is calledimproperly(ds, . . ., dy)-colorable or just(ds, .. ., dy)-colorable if the vertex
set of G can be partitioned into subséts, . . ., Vi such that the grap@[ 3] induced by the vertices
of V; has maximum degree at magtfor aII 1 < ¢ < k. This notion generalizes those of proper
k-coloring (whend; = ... = di = 0) andd-improperk-coloring (whend; = ... =d =d > 1).

Proper and-improper colorings have been widely studied. As shown bgéland Haken [1, 2],
every planar graph is 4-colorable, i@, 0,0, 0)-colorable. Eaton and Hull [11] and independently
Skrekovski [15] proved that every planar graph is 2-imprip8-colorable (in fact, 2-improper
choosable), i.e. (2,2,2)-colorable. This latter resuls watended by Havet and Sereni [14] to not
necessarily planar sparse graphs.

Theorem 1 [14] For everyk > 0, every graphG with mad(G) < 45t is k-improperly 2-colorable
(in fact k-improperly 2-choosable), i.€k, k)-colorable.

Recall thatmad(G) = max {2‘%1{))' HC G} is the maximum average degree of a gr&ph

In this paper, we focus of¥;, 0)-colorability of graph. So, a grapfi is (k, 0)-colorableif its
vertices can be partitioned into subsktsandV such that inG[V;] every vertex has degree at most
k, while G[V4] is edgeless.

Let g(G) denote the girth of grap@ (the length of the shortest cycled). Glebov and Zambal-
aeva [12] proved that every planar gra@hs (1, 0)-colorable ifg(G) > 16. This was strengthened
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by Borodin and lvanova [6] by proving that every gra@his (1, 0)-colorable ifmad(G) < % which
implies that every planar graghis (1, 0)-colorable ifg(G) > 14.
The purpose of our paper is to extend the result in [6] asviallo

Theorem 2 Letk > 1 be a integer. Every graph with maximum average degree snthb@ 3,fj24
is (k, 0)-colorable.

On the other hand, we construct n@n-0)-colorable graphs whose maximum average degree

exceed% not much (in fact, by less tha;a}r—, see Section 3).

Since each planar graghsatisfies

29(G)

mad(G) < m,

from Theorem 2 we have:

Corollary 1 Every planar graplG is:

1. (1,0)-colorable ifg(G) >
2. (2,0)-colorable ifg(G) >
3. (3,0)-colorable ifg(G) > 9,
4. (4,0)-colorableifg(G) > 8, a
5. (8,0)-colorable ifg(G) > 7.

Note that Corollary 1.5 is best possible in the sense thaarfigrc > 1 there is a planar graph
with girth 6 which fails to bgk, 0)-colorable:

2k +1 2k+1

2k+1 2k+1

Figure 1: A non(k, 0)-colorable grapltz with girth 6.

The key concepts in the proof of our main result, Theorem @ tlaose of soft component and
feeding area. These further develop those of soft cycle aadifig path introduced by Borodin,
Ivanova, Kostochka in [7] and used in [7, 5] to improve resutt [10, 8] about homomorphisms
of sparse graphs to the circulafit5; 1,2) and cycleCs. A distinctive feature of the discharging
in [7, 5] is that charge can be transferred along "feedinggetio an unlimited distance. Note that
similar ideas of "global discharging” were also used by Harel Sereni in [14]. In fact, the proof
of Theorem 2 below further develops the argument in [6].

Aninduced cycle” = vyvs ... vg, in @ graphG is called2-alternatingif d(vy) = d(vs) = ... =
d(vak—1) = 2. This is perhaps the first and simplest example of a "globediucible configuration
in some graph-theoretic problems. The feeding area in #88s s a tree consisting of edges incident
with vertices of degree 2. This notion, introduced by Borotti [3], as well as its subsequent
variations, turned out to be useful in some coloring and etiEEmposition problems on sparse and
quasiplanar graphs (see, for example, [9, 4, 13, 16, 17]).

Section 2 is dedicated to the proof of Theorem 2. Section Batmmsome final remarks.



2 Proof of Theorem 2

Let G be a minimal counterexample to Theorem 1. Due to [6], we canrae that: > 2. Fur-
thermore, the proofs below fdr = 2 andk > 3 will differ a little (namely, in the treatment of
(1,1, 1,0)-vertex, which will be defined later). [Words concerningyoasek = 2 appear three or
four times, in brackets.]

Clearly,G is connected and its minimum degr&g&) is at least 2. By definition, we have

> <d(v) - 3:;:24) <0,

veV

whered(v) is the degree of a vertex This can be rewritten as

§(<2+%)d(v)—(6+%>) <0. (1)

Let thechargey(v) of each vertex of G be (2 + £) d(v) — (6 + £). Sinced(G) > 2, it follows
thatinG only 2-vertices have negative charge (equal to -2). We sleaitribe a number of structural
properties ofG (Section 2.1) which make it possible to vary the charges abttie new charge*
of every vertex becomes nonnegative (Section 2.2). Siresudim of charges does not change, we
shall get a contradiction with (1), which will complete thepf of Theorem 2.

In what follows, by a-pathwe mean a path consisting of precisglyertices of degree 2, while
by a(ki, ko, . . .)-vertexwe mean a vertex that is incident with-, ko-, . . . paths. A vertex of degree
k (resp. at least, at mostk) is called ak-vertex(resp.> k-vertex < k-vertey. We will color the
vertices of the independent set by the color 0, and the esrti€ the subgraph of maximum degree
at mostk by the colork.

A vertex of degree at least+ 2 is calledsenior Note that if a vertex is senior, then

J(v) = <2+%>d(v)— (6+%> Z2d(v)+%(k+2)—6—%:Qd(v)—Q.

2.1 Structural properties

Lemmal Every< (k + 1)-vertex is adjacent to at least one senior vertex.

PROOF. We delete such a vertexand extend a coloringof the graph obtained t@' as follows.
If v has all its neighbors colored with, then we are done by puttindv) = 0. Now, if v has at
mostk neighbors colored witt, then we put(v) = k. We are in trouble only i is adjacent to a
(k + 1)-vertexx which is colored withk together with all its neighbors. But then we can recalor
with 0. The same argument is then applicable to every othighber of v. |

It follows that:
Corollary 2 G has no> 3-paths.

A triangle isspecialif has at least two 2-vertices. Sin€e+# Cj3, a special triangle actually has
just two vertices of degree 2.

Corollary 3 There is no> 3-vertex of degree at most+ 1 incident with a 2-path, or a special
triangle, or adjacent to d1, 1, 0)-vertex. Moreover it: > 3, then there is ng> 3-vertex of degree
at mostk + 1 adjacent to(1, 1, 1, 0)-vertex.

A vertex isbadif it is either a 2-vertex belonging to a 2-path oflg 1, 0)-vertex. Otherwise, a
vertex isgood



Lemma 2 Every> 3-vertex ofG has at least one good neighbor; furthermore; it 3 then it has
a good neighbor that is not @1, 1, 1, 0)-vertex.

PROOF. By contradiction, assume that a verieaf GG is not adjacent to good vertices. We delete
the vertexv and all its neighbors. To extend a colorin@f the graph obtained t&', we color the
vertexv with 0 and color all neighbors af by k.

a

Corollary 4 G hasno(2,2,...,2)-vertices.

By asoft vertexwe mean a senior vertex whose each neighbor either has dzgnes a(1, 1, 0)-
vertex, or [unles& = 2] a (1, 1,1,0)-vertex.

By afeeding areadenoted by A, we mean a maximal (by inclusion) subgrapttirtonsisting
of:

(7) soft vertices mutually accessible from each other alongthg of

(77) the following three types of vertices adjacent to soft wediof " A: 2-vertices|(1,1,0)- and
[unlessk = 2] (1,1, 1,0)-vertices. See Figure 2.

(7i7) 2-vertices belonging to those 1-paths whose both endeesrbelong td A.

Note that according to this definition, every edgejoining x € FA with y ¢ FA has the
following properties: (a) ifd(x) = 2, theny is not soft ; (b) ifx is a(1,1,0)- or [unlessk = 2]
(1,1,1,0)-vertex, theni(y) = 2.

O senior vertex
@ 2-vertex

A (1,1,0)-vertex
or[unless k = 2] (1,1, 1, 0)-vertex

] soft vertex

Figure 2: Example of a feeding area.

By asoft componenve mean a feeding ardaA such that every edge frofA to G\ F'A leads
to a non-senior vertex.

Lemma 3 G has no soft components.



PROOF Let F'A be a soft component. (It is not excluded titat = G.) We first take a coloring
cof G\ FA. Now for each edgey such thatr € FA andy ¢ F'A, we colorz with k. Now if y is a
(k+1)-vertex colored: together with all its neighbors, we recolpwith 0. Then we color every soft
vertex of A with 0. Finally, we color all yet uncolored vertices BfA (namely, 2-(1, 1,0)-, and
[unlessk = 2] (1,1, 1,0)-vertices adjacent only to vertices Bf4) with & to get a desired coloring
of G. m]

Corollary 5 For each feeding are& A of G there exists a 1-pathyz such thatr € F A is a soft
vertex, whiley € F'A, z ¢ F'A, wherez is a senior vertex incident with at least one 0-path.

A feeding area isveak and denoted F' A, if it has only one 1-pathryz such thatr € F'A is a
soft vertex, whilez ¢ F'A, wherez is a senior vertex incident with at least one 0-path.

By aspecial vertexve mean a senior vertexsuch that:

(i) z is incident with precisely one 0-path going to a vertex whikheither(1, 1, 0)-vertex nor
[unlessk = 2] (1,1, 1,0)-vertex, and

(77) every 1-path fromx leads to dV F A.

Figure 3: Example of a special vertex.

The notion of a special soft component, denat&t”, is very close to that of a soft component.
The only difference is that SC includes just one vertex, called its special vertex, h@tfails to
include. Namely, apecial soft componestSC consists of a special vertex all 2-, (1, 1,0)-, and
[unlessk = 2] (1,1, 1,0)-vertices adjacent te, and the vertices of all thosé F' A’s joined to z
along their unique outgoing 1-paths. Informally speakam§,SC is a collection ofiV F A’s joined
by a special vertex.

Note that a smalless'SC' consists of its special vertex and & + 1 adjacent 2-vertices, all
belonging to 2-paths incident with Furthermorez; is incident with precisely one 0-pathx, andx
is neither(1, 1, 0)-vertex nor [unlesg = 2] (1,1, 1, 0)-vertex.

Lemma4 Each(1,0,0)-vertexw is adjacent to a(t least one) senior non-special vertex.

PROOF Suppose 1, 0, 0)-vertexw is adjacent to> 3-verticesz, 22 such that each; is either
a special vertex; € SSC; or hasd(z;) < k + 1, wherel < i < 2. Deletew; if z; € SSC; then
also deleteSSC; (together withz;). We first take a coloring of the graph obtained and recolor
the 2-vertex adjacent t@ with a color different from the color of its undeleted neigihhbNow if
zi € SSC; thenSSC; can be colored as in the proof of Lemma 5; in particular, eadh s; is
colored with 0. Next, we colotw with k. Now, the only obstacle is that there iszasuch that
d(z;) = k+1 (z; is a non-senior vertex) ang is coloredk together with all its neighbors. However,

then nothing prevents us from recoloring such avith 0.
O



2.2 Discharging procedure

Our rules of discharging are:

R1. Every 2-vertex that belongs to a 1-path gets charge 1 froenits, while each 2-vertex that
belongs to a 2-path gets charge 2 from the neighbor verteggries greater than 2.

R2. Each(1, 1, 0)-vertex gets charge 2 from its senior neighbor.
R3. If k£ > 3, then eaclfl, 1, 1, 0)-vertex gets charge 1 from its senior neighbor.
R4. Each(1,0, 0)-vertex gets charge 1 from its senior non-special neighbor.

R5. Every weak FA gets charge 1 along its only 1-path that lead$ a7 A.

Lemma5 The total charge.*(F A) of all soft vertices in each feeding area FA after applyinipsu
R1-4 is nonnegative if FA is not weak and is at leadtotherwise.

PROOF We perform a series of transformations, each of which makéseding ared” A
into another, "more standard”, feeding arBal’ of the same type (weak or otherwise) such that
w(FA") < u(FA). Eventually, any original feeding ardadA will be transformed into a(n ultimate)
feeding ared’ A, which consists of &k + 2)-vertexv whose all neighbors have degree 2. Further-
more, if F' A is weak then precisely one of the neighbors @fill belong to a 1-paths, which means
thatu(F Ag) > —1in this case; ifF Ay is not weak then the number of 1-paths incident withvill
be at least 2, so that( FAy) > 0. We reduceF" A to F' Ay as follows:

Step 1. If FA has a cycle of 1-paths, then we replace one of its 1-paths byad?and get a feeding
areaF' A’ such thatu(FA’) = u(FA) — 2 due to R1. We repeat this procedure until all the
cycles of 1-paths disappear.

Step 2. If F'A has a 2-pattP joining verticesu, w of F'A, then we replacé by two 2-paths one of
which is incident only withu, while the other only withw, so that the other ends of these new
2-paths "are loose” (do not belong fo4’). As a result we have(FA’) = u(FA).

Step 3. If FA has a(1, 1,0)-vertexv joined to verticesw andw by 1-paths, then we delete the 2-
neighbors ob. Now add a loose 1-path toand add a loose 2-path to each vertexinw} N
FA. As aresultwe have(FA') = u(FA) — [{u,w} N FA| < u(FA) due to R1 and R2.

Step 4. If FA has a(1, 1, 1,0)-vertex then arguing as in Case 3, we hayé'A’) < u(FA) by R1
and R3.

From now on, oulF' A is a tree consisting of senior (soft) vertices and 2-vestigigh the property
that each path between two senior vertices is a 1-path.

Step 5. Let P, = z;y;2;, 1 < i < t be all 1-paths such that € F'A while {z;} N FA = (). (Recall
thatt > 1 andF A is weak if and only ift = 1.) If ¢ > 3 then we replace each; with i > 3
by a 2-pathe;y;y;z;. This results inu(FA") < u(FA).

Note that in none of Steps 1-5 we changed the statis%fo be weak or non-weak. The same
is true for remaining two subcases.

Step 6. Supposé' A has at least two senior vertices. kdie a pendent senior vertex#t, i.e. joined
by 1-path with precisely one senior vertexe I['A. Suppose is incident withp outgoing
1-paths. Sincé’ A has at least two pendant vertices and at most two outgoirsgtispwe can
assume thagp < 1. If p = 0 then we replace and its neighbors by a 2-path incident with
w, which impliesu(FA’) = p(FA). If p =1, we replace» and and its neighbors by a loose
1-path going out ofv, which again implieg:(FA") = u(FA) by R1.



Step 7. If v is the only senior vertex in FA ant{v) > k + 2, then we make into a(k + 2)-vertex by
deleting incident 2-paths. This resultsiiF’ A’) = u(FA) —2(d(v) —k—2) =2k+2 <
p(FA).

Finally, we obtainF' Ay with p(FAg) = —1is F'Aq is weak and withu(F'Ay) > 0 otherwise.
O

We now check that after applying R1-R5, the new chargef each non-soft vertex and of
each feeding area is nonnegative.

Indeed, ifd(v) = 2 theny*(v) = =2+ 2 = 0 by R1 due to Corollary 2.

Supposel(v) = 3. By Lemma 1pis nota(> 1,> 1,> 1)-vertex andv is not incident with a
2-path. Ifvis a(1,1,0)-vertex therp* (v) = £ — 2 x 142 > 0 by R1 and R2 due to Lemma 1. If
visa(l,0,0)-vertex theru*(v) = £ — 14 1 > 0 by R1 and R4 due to Lemma 4. Finally,ifis a
(0,0,0)-vertex therp* (v) = £ > 0.

Next supposé > 3 andd(v) = 4. Now pu(v) = 2 + % > 2. By Lemma 1 and Corollary 3; is
adjacent to a senior vertex and is not incident with 2-pafhgs implies thaj* (v) = 2+2 —2x1 >
0, unlessv is a(1,1,1,0)-vertex, in which case*(v) = 2+ 2 —3 x 1+1 > 0 by R1 and R3
combined with Lemma 1.

Now supposé > 4 and5 < d(v) < k + 1. By Lemma 1 and Corollary 3; gives 1 to at most
d(v) — 1 vertices of degree 2 by R1 and does not participate in otHes iof discharging, which
impliesy*(v) > 2(d(v) —3) — (d(v) — 1) x 1 =d(v) = 5> 0.

Finally, letv be senior, i.e., having(v) > k + 2. Recall thatu(v) > 2d(v) — 2. It follows
from the first part of Lemma 2 thatcannot give 2 along each incident path according to R1 and R2,
which implies thap.*(v) > u(v) — 2(d(v) = 1) =1 > —1.

Supposey is not soft. Ifv is special theny does not give charge 1 along its (only) 0-path by
R4, which implies that only gives away at most 2 along its 1-paths by R1 and R5. Thus,
i (v) > p(v) — 2(d(v) — 1) > 0.

It remains to consider a senior vertexvhich is neither soft nor special. Suchydas either at
least two O-paths that do not lead(th 1, 0)-vertices (and thus take away at most 1 frorhy R3
and R4), in which casg* (v) > p(v) — 2(d(v) —2) —2 x 1 > 0, or has just one 0-path that leads to
a vertex other thafi, 0, 0)-, (1, 1,0)- or [unlessk = 2] (1,1, 1, 0)-vertex (so that this 0-paths takes
away no charge from), in which caseu*(v) > p(v) — 2(d(v) — 1) > 0.

By Lemma 5, after applying rules R1-R5, the total chaugeF A) of all soft vertices in each
feeding ared’ A of G, both weak and non-weak, is nonnegative. Since the feed@agare disjoint,
it follows that the tota).*-charge of all soft vertices it is nonnegative.

This contradiction with (1) completes the proof of Theorem 2

3 Conclusion

We proved that, forx > 1, every graph with maximum average degree smaller l%f@é is
(k,0)-colorable. We present now a ndh;0)-colorable graphs with small maximum average de-
gree. Letp,k > 1 be two integers. Led, ; be the graph obtained from an odd cy€lg,; =
122 ... Top4121 Dy addingk triangles on each vertex with odd¢, as depicted in Figure 4.



Figure 4: A non(k, 0)-colorable grapltz with small maximum average degree.

One can observe thét, ;, is not(k, 0)-colorable. Indeed, suppose the contrary; then there dhoul
exist two consecutive vertices andv, 1 in Cs,41 both belonging ta=[V;] due to parity. W.l.o.g.,
let i be odd; this implies that; has at least one neighbor@{V;] in each ofk incident triangles, so
thatA(G[V1]) > k + 1, a contradiction.

Furthermore, by consecutively adding pendant triangleSsin i, we see that the average de-
gree ofGGp, . is less than 3. The opposite process of removing vertices &g ; then shows that
mad(Gp,x) > mad(H) for eachH C G, 5. Thus,

2|E(Gpr)] 3k +2— Jlrl
d G L) = D, = p
e (e [

)

1
2(p+1)

. 3k 42 1 3k +4 1
plingomad(G,;,k)— a1 _3_k+1 < kE+2 +k+3'

Finally we propose the following conjecture:

Conjecture 1l Every graph with maximum average degree less Pﬁ%ﬁ can be partitioned into an
edgeless induced subgraph and an induced subgraph withhmiaxidegree at most

Acknowledgement

The first author is thankful to the University of Bordeaux iioviting him as a visiting professor
in the first half of 2009 and especially to Andre Raspaud ferdoirdial hospitality in Bordeaux.

References

[1] K. Appel and W. Haken, Every planar map is four colorali®art I. Discharging. lllinois J.
Math., 21 (1977) 429-490.

[2] K. Appel and W. Haken, Every planar map is four colorali®art 1. Reducibility lllinois J.
Math., 21 (1977) 491-567.

[3] O.V.Borodin, On the total coloring of planar graphs,elne angew. Math., 394 (1989) 180-185.

[4] O.V. Borodin, A.O. Ivanova, and T.K. Neustroeva, Sufiai conditions for planar graphs with
girth 6 to be 2-distance colourable, Siberian Electroni¢iMReports (http://semr.math.nsc.ru/),
3 (2006) 441-450 (in Russian).

[5] O.V. Borodin, S.G. Hartke, A.O. lvanova, A.V. Kostochkand D.B. West(5, 2)-Coloring of
Sparse Graphs, Siberian Electronic Math. Reports, rgmf.math.nsc.ru, 5:417-426, 2008.



[6] O.V. Borodin and A.O. Ivanova, Near-proper list vertek@orings of sparse graphs, submitted.

[7] O.V. Borodin, A.O. Ivanova, and A.V. Kostochka, Oriedteertex 5-coloring of sparse graphs,
Discrete analis and operations reseach, 13, no 1 (2006 R1(@+Russian).

[8] O.V.Borodin, S.J. Kim, A.V. Kostochka, and D.B. West, iHomorphisms of sparse graphs with
large girth. J. of Combin. Theory B, 90 (2004) 147-159.

[9] O.V. Borodin, A.V.Kostochka, and D.R.Woodall, List eglgnd list total colourings of multi-
graphs, J. Combin. Theory (B) 71, 2 (1997) 184—204.

[10] O.V.Borodin, A.V. Kostochka, J. Nesetril, A. Raspaadd E. Sopena, On the maximal average
degree and the oriented chromatic number of a graph, Désbtath., 206 (1999) 77-89.

[11] N. Eaton and T. Hull, Defective list colorings of plarnguaphs, Bull. Inst. Combin. Appl., 25
(1999) 79-87.

[12] A.N. Glebov, D.Zh. Zambalaeva, Path partitions of plagraphs, Siberian Electronic Math.
Reports, http://semr.math.nsc.ru, 4 (2007) 450—-459 (isskRn).

[13] W. He, X. Hou, K. W. Lih, J. Shao, W. Wang, and X. Zhu, Edggrtitions of planar graphs and
their game coloring numbers, J. Graph Theory, 41 (2002) 307-—-

[14] F. Havet and J.-S. Sereni, Improper choosability oppsaand maximum average degree, Jour-
nal of Graph Theory, 52 (2006) 181-199.

[15] R. Skrekovski, Listimproper coloring of planar grapB®mb. Prob. Comp., 8 (1999) 293-299.

[16] W. Wang, Edge-partitions of graphs of nonnegative abtaristic and their game coloring num-
ber. Discrete Math., 2 (2006) 262— 270.

[17] J.L. Wu, On the linear arboricity of planar graphs of negative characteristic and their game
coloring number, J. Graph Theory, 31 (1999) 129-134.



