
HAL Id: hal-03927198
https://hal.science/hal-03927198

Submitted on 6 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bandwidth-efficient threshold EC-DSA revisited:
Online/Offline Extensions, Identifiable Aborts Proactive

and Adaptive Security
Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta,

Ida Tucker

To cite this version:
Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, Ida Tucker. Bandwidth-
efficient threshold EC-DSA revisited: Online/Offline Extensions, Identifiable Aborts Proactive and
Adaptive Security. Theoretical Computer Science, 2023, 939, pp.78-104. �10.1016/j.tcs.2022.10.016�.
�hal-03927198�

https://hal.science/hal-03927198
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Bandwidth-efficient threshold EC-DSA revisited:
Online/Offline Extensions, Identifiable Aborts

Proactive and Adaptive Security

Guilhem Castagnos1, Dario Catalano2, Fabien Laguillaumie3,
Federico Savasta2, and Ida Tucker4

1 Université de Bordeaux, CNRS, INRIA, IMB, UMR 5251, F-33400 Talence, France
2 Università di Catania, Italy.

3 LIRMM, Univ Montpellier, CNRS, Montpellier, France
4 IMDEA Software Institute, Madrid, Spain.

Abstract. Due to their use in crypto-currencies, threshold ECDSA sig-
natures have received much attention in recent years. Though efficient
solutions now exist both for the two party, and the full threshold sce-
nario, there is still much room for improvement, be it in terms of protocol
functionality, strengthening security or further optimising efficiency.
In the past few months, a range of protocols have been published, al-
lowing for a non interactive – and hence extremely efficient – signing
protocol; providing new features, such as identifiable aborts (parties can
be held accountable if they cause the protocol to fail), fairness in the
honest majority setting (all parties receive output or nobody does) and
other properties. In some cases, security is proven in the strong simu-
lation based model. We combine ideas from the aforementioned articles
with the suggestion of Castagnos et al. (PKC 2020) to use the class group
based CL framework so as to drastically reduce bandwidth consumption.
Building upon this latter protocol we present a new, maliciously secure,
full threshold ECDSA protocol that achieves additional features without
sacrificing efficiency. Our most basic protocol boasts a non interactive
signature algorithm and identifiable aborts. We also propose a more ad-
vanced variant that achieves adaptive security (for the n-out-of-n case)
and proactive security. Our resulting constructions improve upon state
of the art Paillier’s based realizations achieving similar goals by up to a
10 factor in bandwidth consumption.

Keywords: Threshold Cryptography, EC-DSA, Digital Signatures, Multi-
Party Computation, Provable Security, Class Groups

1 Introduction

Threshold signatures allow a set of n mutually mistrusting users to share a
common signing key sk and to issue signatures as long as a quorum of them
decides to do so. A key feature of this primitive is that at no stage during the
signing process do users need to explicitly reconstruct the signing key. More in

detail, the threshold t < n establishes that t + 1 users can collaboratively sign,
whereas any coalition of t or less participants can not; in fact, an adversary
corrupting up to t users gets no information whatsoever about sk. In practice,
this makes threshold signatures (and more generally threshold cryptography) a
very useful tool to significantly reduce the losses caused by security break ins.

Threshold signatures have been extensively studied over the last thirty years
(e.g. [Des88,GJKR96b,Sho00,Boy86,CH89,MR04]) but recently significant at-
tention has been devoted to the specific case of threshold EC-DSA signatures.
There are several reasons for this. First EC-DSA is the signature scheme used in
Bitcoin and other cryptocurrencies. In many of these, knowing the secret signing
key corresponding to an identity equates to owning the associated coins. Hence
secure threshold variants of EC-DSA are an effective means of preventing Bit-
coin thefts: rather than storing sk in a single location, one distributes it over
several servers so that t + 1 of them must be compromised in order leak any
useful information.

Clearly, in order for secure solutions to be relevant in these settings, they
need to be efficient, both in terms of overall computation and in terms of com-
munication costs induced by the protocols, and indeed practical efficiency was
the main missing ingredient of state of the art solutions (e.g. [GJKR96a,MR01])
when the cryptocurrency era began.

Over the last five years, many improved solutions have been presented both
for the two party [Lin17,DKLs18,CCL+19] and for the more general t-out-of-n
case [GGN16,GG18,LN18,DKLs19,CCL+20,CGG+20]). Among the latter solu-
tions, a very recent proposal by Canetti et al. [CGG+20] departs from previous
realizations in that it offers several additional features. It handles adaptive ad-
versaries, achieves accountability (by identifying corrupted parties in case of
problems when generating the signature) and uses an interesting online/offline
optimization where one can perform the heaviest part of the computation be-
fore the message to be signed is known. Their resulting protocols are UC secure
and allow for non interactive online signing (assuming the offline preprocessing).
Still they are considerably heavier than previous solutions (e.g. [CCL+20]) espe-
cially in terms of overall communication cost. This is particularly annoying as,
in practice, bandwidth consumption tends to be one of the main concerns.

Our contribution. In this paper we present new, practical, threshold variants
of the EC-DSA signature scheme that are provably secure (but not UC secure);
realize both accountability and online/offline efficiency (in the sense discussed
above). As detailed at the end of the article, our solutions reduce the bandwidth
consumption of [CGG+20] by up to a factor 10.

Our most basic construction works for any t < n and is proved secure against
static adversaries. Next, following Canetti et al. [CGG+20] we show how to
generalize it to the setting of adaptive adversaries for the special case when
t = n−1.5 The protocol can also easily be modified to achieve proactive security.

5 Note that the whole work of Canetti et al. focuses on the n-out-of-n case and does not
explicitly consider more general (t, n)-thresholds. They informally suggest directions

2

Details of our contribution. At a very high level, our constructions build
upon the bandwidth efficient threshold EC-DSA scheme recently proposed by
Castagnos et al. in [CCL+20] which, in turn, revisits the threshold EC-DSA
protocol by Gennaro and Goldfeder [GG18]. Recall that in EC-DSA signatures
the public key is an elliptic curve point Q and the signing key is a scalar x, such
that Q = xP , where P is a generator of the group of points of the elliptic curve of
prime order q. To sign a message m one first hashes it using some hash function
H, and then computes (for a random k ∈ Z/qZ) the point R = k−1P . Next,
letting r = rx mod q - where R = (rx, ry) - one sets s = kH(m) + krx mod q.
The signature is the pair (r, s).

The notoriously hard part, when trying to come up with a threshold variant,
comes from the fact that one has to (distributively) compute both R = k−1P
and a multiplication of the shared secrets k, x. Gennaro and Goldfeder [GG18]
(and Castagnos et al. [CCL+20]) address this multiplication step as follows.
Given two secrets a = a1 + . . .+ an, b = b1 + . . .+ bn additively shared among
the players (i.e. player Pi holds ai, bi), players compute the product ab by com-
puting additive shares of each monomial aibj . In particular, this is done via a
simple protocol by Gilboa[Gil99] that uses a linearly homomorphic encryption
as underlying building block. Castagnos et al. [CCL+20] manage to make this
step particularly efficient, in terms of bandwidth consumption, by relying on the
Castagnos-Laguillaumie linearly homomorphic cryptosystem [CL15] (CL from
now on). In a nutshell, the gain in efficiency arises from the fact that CL relies
on class groups of imaginary quadratic fields and, in particular, this allows to
use Z/qZ as underlying message space, where q is the same large prime used in
EC-DSA signatures. When used appropriately, this allows to avoid range proofs
and other inefficiencies induced by the use of Paillier’s cryptosystem in [GG18].

To allow online/offline efficiency in the protocol sketched above we basically
adapt an idea originally proposed by Gennaro and Goldfeder [GG20]6 to the
Castagnos et al. protocol. Informally, the players compute shares of k−1 and
kx in the offline phase. Then, once the message m becomes available, players
(non-interactively) compute the remaining part of the signature by broadcasting
the share si = kiH(m) + r(kx)i. Notice that each player can locally perform
this computation using publicly known information only. We remark that in
order for this mechanism to be secure we need to assume that EC-DSA remains
secure even when the adversary is allowed to see R before choosing the message
m. While this is a seemingly stronger (but still reasonable) assumption than
standard EC-DSA, it is clearly necessary in online/offline setting,

Introducing accountability on the other hand requires more work. Clearly an
obvious way to identify players that behave maliciously would be to force them to
prove in zero knowledge that they followed the protocol correctly. The problem
with this solution is that it typically induces significant communication over-

to extend their work to the latter setting. We suspect that these methodologies apply
to our protocols as well but we leave these extensions to future work.

6 This result currently appears as part of the [CGG+20] paper, but it was originally
made public as a separate result.

3

head, thus making the resulting protocol impractical. Gennaro and Goldfeder,
in [GG20], follow a different approach specifically tailored to their online/offline
solution. Informally, they argue that, in their protocol, malicious players can be
identified easily both in the online and in the offline phase. In the online phase
one identifies misbehaviors by simply checking against public information the
shares of the component s that each player provides.

For the offline phase, their key observation is that, since no signature has
been produced yet, players can simply reveal the random choices they used dur-
ing the whole protocol, thus making their behavior verifiable. Notice that this
means players also need to reveal the randomness used to create the ciphertexts
they produced. When trying to translate this latter strategy to the setting of
Castagnos et al.’s protocol [CCL+20] a technical problem prevents the resulting
proof to go through. Informally this has to do with the fact that the security
of their protocol crucially relies on some properties of hash proof systems.7 The
technical complication in the proof arises when the simulator needs to switch
from valid ciphertexts to invalid ones that perfectly hide the underlying plain-
text. This step is crucial for the proof in [CCL+20] to go through but becomes
problematic here as the simulator cannot provide the randomness used to create
the ciphertexts, as no valid ciphertexts exist anymore!

We circumvent this difficult by designing new zero-knowledge proofs that
manage to let the simulator complete the proof without compromising the overall
efficiency of the protocol.

As a final contribution, we propose a variant of our protocol that achieves
adaptive security for the n-out-of-n case. This solution admits a simple extension
which also encompasses proactive security. The most interesting feature of this
latter protocol is that, for numbers of players one would expect in real life appli-
cations, it is very efficient, much more efficient than the corresponding protocol
from [CGG+20]. This is due to the fact both solutions rely on a key refresh/setup
protocol that, among other things, explicitly requires players to generate new
encryption key pairs. In our case it is enough to generate a couple of the form
(hi = gsk) where g is a public, fixed parameter whereas in [CGG+20] each player
is required to generate a new Paillier (RSA) modulus N together with a proof
that it has been constructed correctly. Concretely, for n = 5 and a 112-bit level
of security, the total data sent and received between players in our key refresh
protocol is 15 times less than theirs (28 KBytes as opposed to 420 KBytes).

Efficiency comparisons. We compare the communication cost of our signa-
ture protocol to those of Canetti et al. for the standard NIST curve P-256 cor-
responding to a 128 bit security level. Regarding encryption, we start with a
112 bit security, as in their implementations, but also study the case where its
level of security matches that of the elliptic curve. In both cases, our comparison
shows that our signing protocol is an order of magnitude more efficient.

7 The connection with hash proof systems comes from the fact that the underlying
linearly homomorphic encryption in [CCL+20] scheme is the one resulting from hash
proof systems when using CL as underlying building block

4

2 Preliminaries

Notations. For a distribution D, we write d ←↩ D to refer to d being sam-

pled from D and b
$←− B if b is sampled uniformly in the set B. In an in-

teractive protocol IP, between parties P1, . . . , Pn for some integer n > 1, we
denote by IP⟨x1; . . . ;xn⟩ → ⟨y1; . . . ; yn⟩ the joint execution of parties {Pi}i∈[n]

in the protocol, with respective inputs xi, and where Pi’s private output at the
end of the execution is yi. If all parties receive the same output y we write
IP⟨x1; . . . ;xn⟩ → ⟨y⟩. In the figures representing our protocols, double arrows
(⇒) depict a broadcast; a single arrow Pi → Pj refers to Pi sending a private
message to Pj . A (P)PT algo stands for an algorithm running in (probabilistic)
polynomial time w.r.t. the length of its inputs.

2.1 Tools

Zero-knowledge proofs. A zero-knowledge proof of knowledge (ZKPoK) system
for a binary relation R is an interactive protocol (P, V) between two probabilistic
algorithms: a prover P and a PT verifier V . Informally P , detaining a witness
w for a given statement x s.t. (x,w) ∈ R, must convince V that it is true with-
out revealing anything other to V . In a zero-knowledge argument of knowledge
(ZKAoK), the proof provided by P is computationally sound (P is also a PT
algorithm). We use the notation introduced by Camenisch-Stadler [CS97], which
conveniently expresses the goals of a ZKP (resp. ZKA) scheme:

ZKPoKx{(w) : (x,w) ∈ R} and ZKAoKx{(w) : (x,w) ∈ R}.

Threshold secret sharing. A (t, n) threshold secret sharing scheme allows to
divide a secret s into shares s1, . . . , sn, amongst a group of n participants, in
such a way that knowledge of any t + 1 or more shares allows to compute s;
whereas knowledge of any t or less shares reveals no information about s.

Feldman verifiable secret sharing. A verifiable secret sharing (VSS) protocol
allows to share a secret between n parties P1, . . . , Pn in a verifiable way. Specifi-
cally, it can be used by a party to share a secret with the other ones. Feldman’s
VSS [Fel87] relies on Shamir’s secret sharing scheme [Sha79], but the former
gives additional information allowing to check the sharing is done correctly.

Let G be a group of order q, g a generator of G, and suppose that one of the
players, that we call P , wants to share a secret σ ∈ Z/qZ with the other ones.
To share the secret, P does the following steps:

1. generate a random degree t polynomial p ∈ Z/qZ[x] with free term σ; i.e.:

p(x) = atx
t + at−1x

t−1 + . . .+ a2x
2 + a1x+ σ mod q.

The shares of σ are σi = p(i) mod q.
2. send σi to Pi, for all i.

5

3. publish auxiliary information allowing other players to check the shares are
consistent and define a unique secret: {vi = gai ∈ G}i∈[t] and v0 = gσ ∈ G.

All parties check their share is consistent by verifying that the following holds:

gσi =

t∏
j=0

vi
j

j ∈ G.

If one of the checks fails, then the protocol terminates. Furthermore, the only
information that the Feldman’s VSS leaks about the secret σ is v0 = gσ.

Commitments. Our protocol uses non interactive equivocal commitments. An
equivocable commitment scheme allows a sender S to commit to a message m
s.t. S’s message is perfectly hidden; in the opening phase – where S reveals m
and an opening value d(m) to R – S is computationally bound to the committed
message. Consequently the scheme allows for a trapdoor which allows to open a
commitment to arbitrary messages (this is called equivocating the commitment).
The trapdoor should be hard to compute efficiently.

Formally a (non-interactive) equivocable commitment scheme consists of four
PPT algorithms: (1) Setup(1λ) → (pp, tk) which outputs public parameters pp
and associated secret trapdoor key tk; (2) Com(m, r) → [c(m), d(m)] which on
input a message m and random coins r, outputs the commitment c(m) and
an opening value d(m) (if S refuses to open a commitment d(m) = ⊥); (3)
Open(c, d) → m or ⊥ which on input a commitment c and an opening value d,

outputs either a message m or an error symbol ⊥; (4) Equiv(tk,m, r,m′) → d̂
which – if tk is a trapdoor key for pp – allows to open commitments c(m) to arbi-
trary values m′. Precisely, for any messages m and m′, any Setup(1λ)→ (pp, tk),

let Com(m, r)→ [c(m), d(m)] and Equiv(tk,m, r,m′)→ d̂ then Open(c(m), d̂)→
m′; and s.t. opening fake and real commitments is indistinguishable. We will use
equivocable commitments with the following properties:
Correctness: for all message m and randomness r, if [c(m), d(m)]← Com(m, r),
one has m← Open(c(m), d(m)).
Perfect hiding: for every message pair m,m′ the distributions of the resulting
commitments are statistically close.
Computational binding: for any PPT algorithm A, the probability that A out-
puts (c, d0, d1) s.t. Open(c, d0) → m0; Open(c, d1) → m1; m0 ̸= ⊥; m1 ̸= ⊥ and
m0 ̸= m1 is negligible in the security parameter.
Concurrent non-malleability: a commitment scheme is non-malleable [DDN00]
if no PPT adversary A can “maul” a commitment to a value m into a commit-
ment to a related valuem. The notion of a concurrent non-malleable commitment
[DDN00,PR05] further requires non-malleability to hold even if A receives many
commitments and can itself produce many commitments.

2.2 The elliptic curve digital signature algorithm

Elliptic curve digital signature algorithm. EC-DSA is the elliptic curve analogue
of the Digital Signature Algoritm (DSA). It was put forth by Vanstone [Van92]

6

and accepted as ISO, ANSI, IEEE and FIPS standards. It works in a group
(G,+) of prime order q (of say µ bits) of points of an elliptic curve over a finite
field, generated by P and consists of the following algorithms.

KeyGen(G, q, P)→ (x,Q) where x
$←− Z/qZ is the secret signing key and Q :=

xP is the public verification key.
Sign(x,m)→ (r, s) where r and s are computed as follows:

1. Compute m′: the µ leftmost bits of SHA256(m) where m is to be signed.

2. Sample k
$←− (Z/qZ)∗ and compute R := k−1P ; denote R = (rx, ry) and

let r := rx mod q. If r = 0 choose another k.
3. Compute s := k · (m′ + r · x) mod q.

Verif(Q,m, (r, s))→ {0, 1} indicating whether or not the signature is accepted.

As in [CGG+20] we assume a somewhat enhanced variant of existential un-
forgeability under chosen message attacks (e-eu-cma) for EC-DSA. In this no-
tion, for each signature query performed by the adversary A, it gets to see the
randomness R used to sign before choosing the message to be signed.

Definition 1 (Enhanced existential unforgeability [CGG+20]). Consider
a PPT algorithm A, which is given as input a verification key Q output by
KeyGen(G, q, P)→ (x,Q) and access to oracles:

– OR to obtain a uniformly random point R = (rx, ry) in G;
– OSign(x,m;R) which on input m ∈ Z/qZ chosen by A, returns a valid signature

(r, s) on m where r := rx mod q for some fresh R = (rx, ry) which was
output by OR but has not been previously used by OSign; else it returns ⊥.

Let M be the set of queried messages. EC-DSA is enhanced existentially unforge-
able under chosen message attack (e-eu-cma) if for any such A, the probability
Adve-eu-cma

EC−DSA,A that A produces a valid signature on a message m /∈ M is a
negligible function of λ.

Note that A chooses the messages queried to OSign, and knows (but does not
choose) the randomness. Canetti et al. [CGG+20] show that in the generic group
model EC-DSA is e-eu-cma; and that in some cases, enhanced unforgeability of
EC-DSA follows from standard unforgeability of EC-DSA in the random oracle
model.

(t, n)-threshold EC-DSA. For a threshold t and a number of parties n > t,
threshold EC-DSA consists of the following interactive protocols:

IKeyGen⟨(G, q, P); . . . ; (G, q, P)⟩ → ⟨(x1, Q); . . . ; (xn, Q)⟩ s.t. KeyGen(G, q, P)→
(x,Q) where the values x1, . . . , xn constitute a (t, n) threshold secret sharing
of the signing key x.

ISign⟨(x1,m); . . . ; (xn,m)⟩ → ⟨(r, s)⟩ or ⟨⊥⟩ where ⊥ is the error output, signi-
fying the parties may abort the protocol, and Sign(x,m)→ (r, s).

7

The verification algorithm is non interactive and identical to that of EC-DSA.
We present a game-based definition of security analogous to e-eu-cma: en-

hanced threshold unforgeability under chosen message attacks (e-tu-cma).

Definition 2 (Enhanced threshold unforgeability). Consider a (t, n)-thre-
shold EC-DSA protocol IS = (IKeyGen, ISign,Verif), and a PPT algorithm A,
having corrupted at most t players, and which is given the view of the protocols
IKeyGen and ISign on input messages of its choice as well as signatures on those
messages. As in Definition 1, A can chose these messages adaptively, and after
seeing the randomness used in ISign.

Let M be the set of aforementioned messages. The protocol IS is enhanced
unforgeable if for any such A, the probability Adve-tu-cma

IS,A that A can produce a
valid signature on a message m /∈M is a negligible function of λ.

Adversary model. We consider active (also called malicious/Byzantine) ad-
versaries which are computationally bounded. We also consider two adversarial
settings: static adversaries choose the set of corrupted parties in advance, before
the interaction begins; whereas adaptive adversaries choose (adaptively) who to
corrupt during the course of the protocol.

Identifiable aborts. Our protocols are proven secure even when a majority
of players are corrupted, by relying on aborts; i.e. the protocol terminates pre-
maturely if a player is detected as misbehaving. Such protocols are susceptible
to “denial of service” attacks, allowing even a single malicious party to force
the protocol to abort. To prevent such attacks, we provide sub-protocols (called
identification protocols) allowing to identify the misbehaving party upon abort,
and accordingly hold her accountable. This stronger model is referred to as se-
cure multi-party computation with identifiable aborts (ID-MPC) [IOZ14,CL14],
and ensures that if the computation fails due to an abort, all honest parties learn
the identity culprit, i.e. a corrupted party Pi.

On composability. Our results are proven secure in the Random Oracle Model.
We implicitly use the Fiat-Shamir transform to convert our honest-verifier sigma
protocols into extractable non-interactive proofs. Extractability in the Fiat-
Shamir paradigm relies on rewinding, which in the UC setting results in the
running time of the simulator blowing up exponentially. One way to avoid the
blow-up while allowing for extractability is to run proofs interactively, in which
case they must be secure against malicious verifiers. Such an approach would
lead to a large increase in the number of rounds of our protocol. Hence, moti-
vated by efficiency, the definitions we adopt are game-based and do not guarantee
composability.

2.3 Building blocks from Class Groups

An instantiation of the CL framework. Castagnos and Laguillaumie introduced
the framework of a group with an easy discrete logarithm (Dlog) subgroup

8

in [CL15], which was later enhanced in [CLT18,CCL+19] and gave a concrete
instantiation from class groups of quadratic fields. Some background on class
groups of quadratic fields in cryptography can be found in [BH01] and in [CL15,
Appx. B].

We briefly sketch the instantiation given in [CCL+20, Sec. 2.3] and the re-
sulting group generator Gen that we will use in this paper. The interested reader
should refer to [CL15,CCL+19] for concrete details.

Given a prime q consider another random prime q̃, the fundamental dis-
criminant ∆K = −qq̃ and the associated class group C(∆K). By choosing q̃ s.t.
qq̃ ≡ −1 (mod 4) and (q/q̃) = −1, we have that the 2−Sylow subgroup of C(∆K)
has order 2. The size of q̃ is chosen s.t. computing the class number h(∆K) takes
time 2λ. We then consider the suborder of discriminant ∆q = −q2∆K . Then,

we denote (Ĝ, ·) the finite abelian subgroup of squares of C(∆q), which corre-

sponds to the odd part. It is possible to check efficiently if an element is in Ĝ
(cf. [Lag80]). One can exhibit a subgroup F generated by f ∈ Ĝ where f is
represented by an ideal of norm q2. This subgroup has order q and there exists a
deterministic PT algorithm for the discrete logarithm (Dlog) problem in F (cf.

[CL15, Proposition C – 1]). Then we build deterministically a q−th power of Ĝ
by lifting the class of an ideal of discriminant ∆K above the smallest splitting
prime. In the following, we will denote ĝq this deterministic generator. We then
consider an element gq constructed as a random power of ĝq. One can compute
an upper bound s̃ for the order of ĝq, using an upper bound of h(∆K) which can
be obtained from the analytic class number formula.

For our application q will have at least 256 bits, hence q is prime to h(∆K)
except with negligible probability, and so q is prime to the order of ĝq.

Remark 1. Dobson et al. [DGS20] recently suggested a new formula to estimate
security in a setting where a large set of users (say a billion) share common pa-
rameters. In such a setting, public parameters may be targeted by an adversary.
They suggest that in this context, an attack with 2λ running time and a 2−λ

success probability equates to λ bits of security. This leads to estimates on sizes
of the discriminant which are much larger than traditionally used. However, this
formula is not relevant for our application where there won’t be billions of users.
Here the standard definition (2λ running time for a probability of success 1/2 or
close to 1) seems more appropriate. As a side note, these estimates in the ’large
set of users’ context also apply to applications based on an RSA modulus N , as
there exists an algorithm which efficiently factors N given the class number of
discriminant −N or −4N .

Notation. We denote Gen the algorithm that on input a security parameter λ
and a prime q, outputs (s̃, f, ĝq, Ĝ, F) defined as above. We also denote Solve
the deterministic PT algorithm that solves the Dlog problem in F . This pair
of algorithms is an instance of the framework of a group with an easy Dlog
subgroup (cf. [CCL+19, Definition 4]). For a random power gq of ĝq we will
denote Gq the subgroup generated by gq, g = gqf and G the subgroup generated

by g. We further denote Ĝq the subgroup consisting of all q-th powers in Ĝ,

9

and it’s order ŝ. It holds that Ĝ is the direct product of Ĝq and F . We denote
ϖ := ŝd the group exponent of Ĝq, i.e. the least common multiple of the orders of
its elements. Clearly, the order of any element in Gq divides ϖ. In the following
the distribution D from which exponents are sampled is chosen to be close to
uniform mod q · s̃, where s̃ is an upper bound for ŝ. This means that exponents
sampled from D follow a distribution close to uniform mod q, and mod any
divisor of ŝ. In particular mod ϖ.

Hard subgroup membership assumption. We recall the definition of the HSM
problem for an output (s̃, f, ĝq, Ĝ, F) of Gen. For a random power gq of ĝq the
HSM assumption states it is hard to distinguish the elements of Gq in G.

Definition 3 (HSM assumption [CCL+20]). For (s̃, f, ĝq, Ĝ, F) an output
of Gen, gq a random power of ĝq and g := gqf , we denote D (resp. Dq) a
distribution over the integers s.t. the distribution {gx, x ←↩ D} (resp. {ĝxq , x ←↩
Dq}) is at distance less than 2−λ from the uniform distribution in ⟨g⟩ (resp. in
⟨ĝq⟩). Let A be an adversary for the HSM problem, its advantage is defined as:

AdvHSMA (λ) :=

∣∣∣∣2 · Pr[b = b⋆ : (s̃, f, ĝq, Ĝ, F)← Gen(1λ, q), t←↩ Dq, gq = ĝtq,

x←↩ D, x′ ←↩ Dq, b
$←− {0, 1}, Z0 ← gx, Z1 ← gx

′

q ,

b⋆ ←A(q, s̃, f, ĝq, gq, Ĝ, F, Zb,Solve(.))
]
− 1

∣∣∣∣
The HSM problem is said to be hard in G if for all probabilistic polynomial time
algorithm A, AdvHSMA (λ) is negligible.

A linearly homomorphic encryption scheme. We recall the linearly homomorphic
encryption scheme of [CLT18] whose ind-cpa-security was proven to hold under
the HSM assumption. This scheme is the basis of the threshold EC-DSA protocol
of Sec. 3. We use the output of Gen(1λ, q) and as in Def. 3, we set gq = ĝtq for

t ←↩ Dq. The public parameters of the scheme are ppCL := (s̃, f, ĝq, gq, Ĝ, F, q).

To instantiate Dq, we set Ã ≥ s̃ · q · 240 s.t. {grq , r ←↩ [Ã]} is at distance less than
2−40 from the uniform distribution in Gq. As in [CCL+20], we sample secret keys
from a distribution D s.t. {(gqf)r, r ←↩ D} is at distance less than 2−λ of the
uniform distribution in G = F ×Gq. The plaintext space is Z/qZ. The scheme
– hereafter refered to as the CL encryption scheme – is depicted in Fig. 1. The

Algo. KeyGen(ppCL)

1. Pick sk←↩ D and pk := gskq
2. Return (pk, sk)

Algo. Enc(pk,m)

1. Pick r ←↩ [Ã]
2. Return (grq , f

mpkr)

Algo. Dec(sk, (c1, c2))

1. Compute M = c2/c
sk
1

2. Return Solve(M)

Fig. 1: Description of the CL encryption scheme

10

following lemma from [CCL+19] ensures that, in the CL encryption scheme, the
distribution followed by the secret keys remains statistically close to uniform
mod q even if their value is fixed mod ϖ. The proof can be found in [CCL+19].

Lemma 1. Let D be a distribution which is δ-close to U(Z/ŝqZ). For any x ∈
G\Gq, π ← fγ ∈ F where γ

$←− Z/qZ and k ←↩ D, the distributions D1 :=
{x, (k mod ϖ), π · xk} and D2 := {x, (k mod ϖ), xk} are 2δ-close.

We will refer to the above property as the smoothness of the CL scheme, as
defined in the following definition.

Definition 4 (Smoothness). The CL encryption scheme is said δs-smooth if
the distribution D from which secret keys are sampled is δs

2 -close to U(Z/ŝqZ).

2.4 Algorithmic assumptions

We here provide further definitions for the algorithmic assumptions on which
the security of our protocol relies. As in [CCL+20], we need the HSM assump-
tion (guaranteeing the ind-cpa-security of the linearly homomorphic encryption
scheme); the low order assumption (stating that it is hard to find low order el-

ements in the group Ĝ), and a strong root assumption for class groups (stating

that it is hard to find roots in Ĝ of random elements of the subgroup ⟨ĝq⟩).
Using similar techniques to [CCL+20], the latter two assumptions allow to

significantly improve the efficiency of the ZKAoK needed in our protocol, since
whatever the challenge space, if one cannot extract the witness, then one can
break at least one of these two assumptions. Consequently they allow to sig-
nificantly increase the challenge space of our proofs, and reduce the number of
rounds in the protocol to achieve a satisfying soundness.

Definition 5 (Low order assumption). Consider a security parameter λ ∈
N, and γ ∈ N. The γ-low order problem (LOPγ) is (t(λ), ϵLO(λ))-secure for Gen
if, given the output of Gen, no algorithm A running in time ≤ t(λ) can output

a γ-low order element in Ĝ with probability greater than ϵLO(λ). More precisely,

ϵLO(λ) := Pr[µd = 1, 1 ̸= µ ∈ Ĝ, 1 < d < γ :

(s̃, f, ĝq, Ĝ, F)
$←− Gen(1λ, q); (µ, d)

$←−A(s̃, f, ĝq, Ĝ, F)].

The γ-low order assumption holds if t = poly(λ), and ϵLO is negligible in λ.

Remark 2. Belabas et al. in [BKSW20] show that if the discriminant belongs to
some class of weak primes, then computing small order elements is easy. They
also demonstrate that one can easily construct discriminants together with a low
order element in their class group without computing the class number. However
the likelihood that such a discriminant is chosen at random is negligible. On the
other hand, given a discriminant, it seems hard to prove that it is not of such
a weak form. Though in our case the discriminant is not prime (∆K = −qq̃),

11

their ideas can be extended to this setting. Hence when relying on the low order
assumption, particular attention must be paid in ensuring that discriminants are
generated randomly (in our case q̃ must be so), and in particular that special
primes are not chosen to meet specific optimization requirements.

We now recall the strong root assumption for class groups.

Definition 6 (Strong root assumption for Class Groups). Consider a
security parameter λ ∈ N, and let A be a probabilistic algorithm. We run Gen
on input (1λ, q) to get (s̃, f, ĝq, Ĝ, F) and we give this output and a random
Y ∈ ⟨ĝq⟩ as an input to A. We say that A solves the strong root problem for

class groups (SRP) if A outputs a positive integer e ̸= 2k for all k and X ∈ Ĝ, s.t.
Y = Xe. In particular, the SRP is (t(λ), ϵSR(λ))-secure for Gen if any adversary
A, running in time ≤ t(λ), solves the SRP with probability at most ϵSR(λ).

3 Threshold EC-DSA protocol

We here present our (t, n)-threshold EC-DSA protocol, divided into five sub-
protocols for ease of readability. The first sets up public parameters for the
CL encryption scheme, and a common random elliptic curve point H ∈ G. We
then present the key generation sub-protocol for IKeyGen and a key refresh sub-
protocol. Next we provide our protocol for ISign, this is divided into two sub-
protocols: an offline protocol Pre-Sign allowing to pre-compute a number of
pre-signatures before knowing the message to be signed; and an online protocol
Sign which takes as input shares of a pre-signature and a message, and outputs
a signature. The procedure for identifying misbehaving players is given in Sec. 4.

Interactive Set Up Sub-Protocol. Our protocol requires a set up, as did
that of [CCL+20], to ensure that the generator gq used by all parties in the
CL encryption scheme is a random generator (this is essential to reduce the
smoothness of the ZKAoK we use to the hardness of the strong root assumption
in Ĝ). Our ISetup protocol is that of [CCL+20], with the slight difference that
parties also set up a random elliptic curve point H which will be used in the
pre-signing protocol. We denote ppG := (G, P, q) the description of the elliptic
curve used in EC-DSA. For n parties to collaboratively run ISetup, they proceed
as depicted in Fig 2.

Key Generation Sub-Protocol. After running the ISetup protocol of Fig. 2,
all parties possess (gq, H, ppG). All parties use this as input for the interactive
key generation protocol IKeyGen. Note that in practice ISetup and IKeyGen would
be ran in parallel, and are only here presented separately for ease of readability.
As it is exactly the IKeyGen protocol of [CCL+20], we do not detail the steps of
the sub-protocol, but include its’ desciption in Fig. 3 for completeness.

12

Pi ISetup(k, ppG) All players {Pj}j ̸=i

ri
$←− {0, 1}k

[ci, di]← Com(ri)
ci=====⇒
di=====⇒ ri ← Open(ci, di)

q̃ := next-prime(
⊕n

j=1 rj)

Compute ĝq from q, q̃

ti
$←− [240s̃] and gi ← ĝtiq

hi
$←− Z/qZ and Hi ← hi · P

(c̃i, d̃i)← Com((gi, Hi))
c̃i=====⇒
d̃i=====⇒ (gi, Hi)← Open(c̃i, d̃i)

πi := ZKPoKgi{(ti, hi) : gi = ĝtiq ∧Hi = hi · P}
πi=====⇒ if a proof fails abort

gq ←
∏n

j=1 ĝ
tj
q =

∏n
j=1 gj

Erase all data other than (gq, H, ppG)

Fig. 2: Threshold CL setup used in IKeyGen

Pi IKeyGen(gq, H, ppG) All players {Pj}j ̸=i

ui
$←− Z/qZ and Qi := uiP

[kgci, kgdi]← Com(Qi)

(ski, pki)← CL.KeyGen(1λ)
pki and kgci========⇒

kgdi===⇒ Qi ← Open(kgci, kgdi)

Perform (t, n)-VSS share of ui: Q :=
∑n

i=1 Qi

pi(X) = ui +
∑t

k=1 ai,kX
k mod q

Let {σi,j := pi(j)}j∈[n] and {Vi,k := ai,kP}k∈[t]

Send σi,j to Pj−−−−−−−−−−→
{Vi,k}k∈[t]
=======⇒

{σk,i}k are additive shares of xi :=
∑

k∈[n] pk(i)

where {xi}i∈[n] are (t, n) Shamir shares of x.

πkg
i := ZKPoKXi{(xi) : Xi = xiP}

πkg,i
===⇒

Store (Q, ui, xi)

Fig. 3: Threshold Key Generation

13

Key Refresh Sub-Protocol. This protocol allows players to generate new
shares of the EC-DSA secret signing key x and public verification key Q. Each
party Pi for i ∈ [n] runs on input it’s previous EC-DSA key shares (ui, Qi)
satisfying Qi = uiP ; the public parameters ppG = (G, P, q); the verification key
Q; and the public parameters ppCL for the CL encryption scheme.

Note that upon key refresh all pre-signatures computed in the previous epoch
are erased. This is crucial to ensure that – in our security proof – an adversary
can not obtain signatures on two different messages for the same randomness R.

Furthermore, after each execution of Key Refresh, note that the shares unew
i

are (n − 1, n)-additive shares of x. These can be converted into (t, n)-shares xi

of x via. a VSS as in IKeyGen.

Pi(ui, Qi, Q, ppG, ppCL) Key Refresh All players

(ski, pki)← CL.KeyGen(1λ)
pki==⇒

vi,1, . . . , vi,n
$←− Z/qZ s.t

∑
j vi,j = 0

For j ∈ [n] let Qi,j := vi,j · P
Yi = {Qi,j}j∈[n]

Sample ρj
$←− [Ã]

Ci,j := Enc(pkj , vi,j ; ρj)
{Ci,j}j∈[n],Yi
==========⇒ if

∑
j∈[n] Qi,j ̸= 0G

πkr
i,j := ZKAoKCi,j ,Qi,j ,P {(vi,j , ρj) : then abort

Ci,j = Enc(pkj , vi,j ; ρj) ∧Qi,j = vi,j · P}
{πkr

i,j}j∈[n]
=======⇒ if a proof fails abort

Overwrite old shares with:
unew
i := ui +

∑
j∈[n] Dec(ski, Cj,i) mod q

Qnew
i := Qi +

∑
j∈[n] Qj,i

Erase previously computed pre-signatures
and all Key Refresh data except unew

i , Q, {pkj}j∈[n], ski

Fig. 4: Key Refresh

Offline Pre-Signature Sub-Protocol. We now present the Pre-Signing sub-
protocol which pre-processes signatures before the messages are known. For i ∈
[n], let xi denote Pi’s (t, n)-share of x output by the IKeyGen sub-protocol of
Fig. 3 (or the output of the latest key refresh, cf. Fig. 4); and let Xi := xiP .
For each execution a set S of players (satisfying |S| > t) is chosen and the secret
values {wi}i∈S constitute a (t, t)-aditive secret sharing of the secret signing key
x. Each wi is computed from xi using Lagrangian coefficients. Furthermore the
associated elliptic curve point Wi := wiP is known to all parties (as Wi can be
computed from Xi). The offline Pre-Signing sub-protocol is depicted in Fig. 5.

As in [CCL+20], Phase 2 of the Pre-Signing protocol is a peer-to-peer sub-
protocol between each pair of players Pi and Pj , for i, j ∈ S, j ̸= i. For private
shares γi, wi ∈ Z/qZ owned by Pi and kj ∈ Z/qZ owned by Pj , it allows to con-

14

vert multiplicative shares kjγi and kjwi into additive shares αj,i, βj,i, µj,i, νj,i ∈
Z/qZ satisfying αj,i + βj,i = kjγi mod q and µj,i + νj,i = kjwi mod q. Since a
check on values µj,i, νj,i ensures they are consistent with Pi’s secret key share
wi, the sub-protocol computing µj,i, νj,i is referred to as MtAwc (Multiplicative
to Additive with check), whereas that computing αj,i, βj,i is referred to as MtA.

Online Signature Sub-Protocol. Our sub-protocol computing signature-
shares once the message is known is depicted in Fig. 6. This sub-protocol is
executed between the same set S of players that interacted in the Pre-Signing
sub-protocol of Fig. 5, all running on input a message m to be signed and a
precomputed pre-signature.

4 Identifying Aborts

In this section we show how to identifiy at least one misbehaving player if an
abort occurs during an execution of the protocol. We follow a similar idea to that
in [CGG+20] and in [CCL+20], adapting their techniques to take into account
the fact we use a class group based encryption scheme. Indeed in some specific
cases, to identify aborts, we require that parties prove that a ciphertext decrypts
to a given value using their decryption key. To ensure this, a player must prove
that the ciphertext it first sent decrypts to some message or to nothing (this
happens if the ciphertext is not well-formed). To this end, we provide an efficient
zero-knowledge argument of knowledge of some information related to the secret
key used to decrypt a CL ciphertext. The proof we provide is specific to our
considered encryption scheme, precisely, it is for the following relation:

RDec := {(pk, (c1, c2),M); (σ0, σ1); | c1, c2,M ∈ Ĝ; σ0 ∈ N,

σ1 ∈ [−ÃC(240 +1) · 2σ0 , ÃC(240 +1) · 2σ0]; c2 ·M−1 = c2
−σ0σ1

1 ∧ pk = g2
−σ0σ1

q }.

To understand why such a proof is necessary, let us compare Paillier and
CL decryptions. With Paillier’s cryptosystem, one can extract the encryption
randomness from a ciphertext given the decryption key. So if an abort occurs
in the protocol, players can publish both the plaintext and encryption random-
ness underlying ciphertexts which were encrypted using their public key. They
can thereby convince other players that the ciphertext is an encryption of the
announced plaintext by re-encryption. However, due of the unknown order of
Gq, in CL it is not possible to efficiently compute the encryption randomness,
even knowing the decryption key. Consequently parties must prove ciphertexts
decrypt to a given value (this may be ⊥ if decryption fails) in another way.

Arguing knowledge of a decrypted message. We show here how a proof
for RDec works. Consider a party P with encryption key pair (pk, sk) and suppose

P has received a ciphertext c⃗ = (c1, c2) ∈ Ĝ2, encrypted under pk. The following

15

Pi(wi, Q, ppG, ppCL, ski, {pkj}j∈S) Phase 1 All players {Pj}j ̸=i

ri
$←− [Ã]

ki, γi
$←− Z/qZ

cki ← Enc(pki, ki; ri)
[ci, di]← Com(γiP)

πi := ZKAoKpki,cki
{(ki, ri) :

ci,cki
,πi

======⇒ if a proof fails, abort

((pki, cki); (ki, ri)) ∈ REnc}
Pi Phase 2 Pj

βj,i, νj,i
$←− Z/qZ

Bj,i := νj,i · P
cβj,i ← Enc(pkj ,−βj,i)
cνj,i ← Enc(pkj ,−νj,i)

ckjγi ← EvalAdd(EvalScal(ckj , γi), cβj,i)

ckjwi ← EvalAdd(EvalScal(ckj , wi), cνj,i)
ckjγi

,ckjwi
,Bj,i

−−−−−−−−−−−→ αj,i ← Dec(skj , ckjγi)
µj,i ← Dec(skj , ckjwi)

If µj,i · P +Bj,i ̸= kj ·Wi then abort

δi := kiγi +
∑

j ̸=i(αi,j + βj,i)

σi := kiwi +
∑

j ̸=i(µi,j + νj,i)

Pi Phase 3 All players {Pj}j ̸=i

δi=====⇒ δ =
∑

i∈S δi = kγ

ℓi
$←− Z/qZ

Ti = σi · P + ℓi ·H
π̃i := ZKPoKTi{(σi, ℓi) : Ti = σi · P + ℓi ·H ∈ G} Ti,π̃i=======⇒ if a proof fails, abort

Pi Phase 4 All players {Pj}j ̸=i

πγ
i = ZKPoKΓi{γi : Γi = γi · P}

di,π
γ
i=======⇒ Γi := Open(ci, di)

if a proof fails, abort
R := δ−1(

∑
i∈S Γi)

Let R = (rx, ry) and r := rx mod q

Pi Phase 5 All players {Pj}j ̸=i

R̄i = ki ·R
π′
i = ZKAoKpki,cki

,R̄i,R

{
(ki, ri) :

cki = Enc(pki, ki; ri) ∧ R̄i = ki ·R
} R̄i,π

′
i=======⇒ if a proof fails, abort

if P ̸=
∑

i∈S R̄i abort
Erase all data except for (ℓi, ki, σi) and (Q, ui, xi)

Pi Phase 6 All players {Pj}j ̸=i

Si = σi ·R

π′′
i = ZKPoKSi,Ti,R{(σi, ℓi) : Ti = σi · P + ℓi ·H ∧ Si = σi ·R}

Si,π
′′
i========⇒ if a proof fails, abort

if Q ̸=
∑

i∈S Si abort
Erase all data except for:

(Q, ui, xi) and pre-signature share (R, ki, σi)

Fig. 5: Pre-Sign: Offline Threshold Pre-Signature Protocol

16

Pi Phase 7 All players {Pj}j ̸=i

si := mki + rσi
si=====⇒ s :=

∑
i∈S si,

Erase (R, ki, σi) if (r, s) is not a valid signature, abort,
else return (r, s).

Fig. 6: Sign: Online Threshold Signature Protocol

proof allows P to convince a verifier that decrypting c⃗ with some information of
the secret key (sk if P is honest) yields m, which may either be ⊥ if c⃗ fails to
decrypt, or some value in Z/qZ.

Note that c may or may not be valid (i.e. c1 ∈ Gq); this is irrelevant, indeed
P himself may not know if it is the case, so there is no way P can prove it is so.

Let M := c2 · c−sk
1 . Note that if M = fa for some a ∈ Z/qZ, the decryption

algorithm returns a, otherwise it returns ⊥. Observe that when P is proving
that c⃗ decrypts to a given value, P can reveal M to all players, so everyone can
compute c2 ·M−1. We present a ZKAoK for the following relation:

RDec := {(pk, (c1, c2),M); (σ0, σ1); | c1, c2,M ∈ Ĝ; σ0 ∈ N,

σ1 ∈ [−ÃC(240 +1) · 2σ0 , ÃC(240 +1) · 2σ0]; c2 ·M−1 = c2
−σ0σ1

1 ∧ pk = g2
−σ0σ1

q }.

This proof does not allow the extraction of an integer value of the secret key,
however it is enough to prove that pk ∈ ⟨gq⟩ and that the exponent of c1 w.r.t.
to c2 ·M−1 and of pk in base gq is the same when the decryption is m ̸=⊥.
Furthermore an honest prover knows and uses its secret key in the protocol.
The interactive protocol is given in Fig. 7. We denote C the challenge set, and
C := |C|. The only constraint on C is that the C-low order assumption holds in

Ĝ. The protocol is complete, honest verifier zero-knowledge, and sound under the
assumption the strong root problem for class groups with input (Ĝ, Ĝq, gq), and

the C-low order problem in Ĝ are hard. The proof is essentially that of [CCL+20,
Theorem 2] for their ZKAoK for relation REnc with very minor variations. More
formally, the following theorem is valid for RDec.

Theorem 1. If the strong root assumption is (t′(λ), ϵSR(λ))-secure for Gen,
and the C-low order assumption is (t′(λ), ϵLO(λ))-secure for Gen, denoting ϵ :=
max(ϵSR(λ), ϵLO(λ)), then the interactive protocol of Fig. 7 is a computation-
ally convincing proof of knowledge for RDec with knowledge error κ(λ), time
bound t(λ) and failure probability ν(λ), where ν(λ) = 8ϵ, t(λ) < t′(λ)/448 and
κ(λ) = max(4/C, 448t(λ)/t′(λ)). If r ∈ [s̃ · 240] (it is so when the prover is
honest), the protocol is honest verifier statistical zero-knowledge.

Other zero-knowledge for relations in CL. Our proof for RDec is similar
to the ZKAoK for REnc relation presented in [CCL+20]. We also use a proof for
REnc in this work, which is πi in Fig. 5, Phase 1. For completeness, we recall

17

Setup:

1. (s̃, f, ĝq, Ĝ, F)← Gen(1λ, q).

2. Let Ã := s̃ · 240, sample t
$←− [Ã] and let gq := ĝtq.

Prover (pk, (c1, c2),M ; sk) Verifier (pk, (c1, c2),M)

r
$←− [240ÃC]

t1 := cr1 and t2 := grq
t1,t2−−−−−−−−−−−−−−→

k
$←− C

k←−−−−−−−−−−−−
u := r + k · sk ∈ Z

u−−−−−−−−−−−−→ Check u ∈ [ÃC(240 + 1)]

and cu1 = t1 · (c2 ·M−1)k

and guq = t2 · pkk

Fig. 7: Zero-knowledge argument of knowledge for RDec.

below the REnc relation. Consider a prover P having computed an encryption of

a ∈ Z/qZ with randomness r
$←− [Ã], i.e. c := (c1, c2) with c1 := grq , c2 := pkrfa,

the REnc relation is defined as:

REnc := {(pk, c); (a, (ρ0, ρ1)) | pk ∈ Ĝ; a ∈ Z/qZ; ρ0 ∈ N,

ρ1 ∈ [−ÃC(240 +1) · 2ρ0 , ÃC(240 +1) · 2ρ0]; c1 = g2
−ρ0 ·ρ1

q ∧ c2 = pk2
−ρ0 ·ρ1fa}.

Furthermore, we also use a ZKAoK for the relation RCL−DL defined as follows.
Consider a prover having computed an encryption of a ∈ Z/qZ with randomness

r
$←− [Ã], i.e. c := (c1, c2) with c1 := grq , c2 := pkrfa and point Q of the curve

from a random public point P as Q = aP , the RCL−DL is defined as:

RCL−DL := {(pk, (c1, c2), Q); (a, r) | c1 = grq ∧ c2 = pkrfa ∧Q = aP}.

A ZKPoK for RCL−DL was presented in [CCL+19] and improved in [CCL+20].
Furthermore, in [CCL+20], the authors presented a very efficient zero-knowledge
argument of knowledge for a slightly different relation R̃CL−DL, which is the proof
we use in this work. Relation R̃CL−DL is defined as:

R̃CL−DL := {(pk, (c1, c2), Q); (a, (ρ0, ρ1)) | c1 = g2
−ρ0 ·ρ1

q ∧ c2 =

fapk2
−ρ0 ·ρ1 ∧Q = aP}.

Proofs for R̃CL−DL in our protocol are π′
i in Fig. 5, Phase 5 and πkr

i,j in Fig. 4.

As the authors do in [CGG+20], we suppose that all the messages are signed
from the sender and as a result all the players know the identity of the sender

18

when a message is published. We also consider a local timeout in case of delays
in sending. After this timeout a player which has not sent the requested message
for a specific phase is considered corrupted. We can list all the possible situations
in which the protocol ends with an abort, giving the corresponding solution to
identify a misbehaving player. Of course, there can be more than one cheater
player, however the aim of identifiable aborts is to detect at least one of them.

Setup. In the set up phase, an abort occurs if a player refuses to decommit, if a
proof fails or if a signature on a published value fails. In each case all the players
know who the faulty player is, since commitments and proofs are signed.

Key Generation. Aborts in key generation may occur due to a player refusing
to decommit, or a proof πkg

i failing to verify. For such types of abort, the cul-
prit is immediately identified. Aborts may also occur if a player complains that
the share it received from a Feldman-VSS is inconsistent (i.e. does not verify
correctly). In this case the player raising the complaint can publish the received
private share and all players can check consistency. If the check passes and the
sender’s signature is valid, the misbehaving player is the receiver, otherwise it is
the sender. After the misbehaving player is identified, the key generation proto-
col is re-ran with fresh randomness to establish a secure key.

Key Refresh. In a key refresh, an aborts occurs if the sum of the points received
from a player is not equal to 0G or a proof πkr

i,j fails to verify. In both cases, the
sender is detected as the misbehaving player because the proofs or the points
are signed.

Pre-Signing and Signing. These protocols may abort for various reasons. When a
proof fails or some player refuses to decommit, others can immediately detect the
cheater. However, in some cases it is not clear who led the protocol to an end. In
these specific cases players have to publish private data used in the computation.
We will see that these published values do not reveal information about secret
signature key shares. We hereafter list the problematic reasons these protocols
may abort.

Problematic types of abort in Pre-Sign and Sign:
1. Phase 2. If a player cannot decrypt the message received (α or µ).
2. Phase 2. If the check on µ fails.
3. Phase 5. If P ̸=

∑
R̄i.

4. Phase 6. If Q ̸=
∑

Si.
5. Phase 7. If the signature (r, s) is not valid for the message m.

For an abort of type 5, if the protocol reached this point, then P =
∑

R̄i

and Q =
∑

Si. Furthermore, all the players know the shares si = mki + rσi

mod q of the signature. To detect the cheater, it suffices to verify for which
index si · R ̸= m · R̄i + r · Si. For the remaining four types of abort a more
involved discussion is required.

19

For aborts occurring in the Pre-Sign protocol, parties may be required to
publish their private shares ki, γi and other values depending on the considered
case. We emphasize that this does not compromise the secret signing key. Indeed,
these aborts occur before revealing the shares si of the signature, and as a result
publishing ki or γi does not give information on s or si, since they are not
revealed yet. With this observation, we can present the strategy used to detect
cheaters in these remaining cases.
Abort of type 1: Assume Pj is complaining that a ciphertext it received from Pi

does not decrypt. Then Pj publishes the faulty ciphertext c⃗ := (c1, c2) along

with Pi’s signature. Party Pj also reveals M := c2 · c
−skj
1 , and proves that

(pkj , (c1, c2),M) ∈ RDec, using the proof of Subsection 4. If this proof fails,
or if M ∈ F , then Pj is lying. Otherwise all parties are convinced that Pi is the
cheater.

Abort of type 2: Assume Pj is complaining that µj,i · P +Bj,i ̸= kjWi. Then Pj

publishes:

1. kj and proves that (pkj , ckj = (ckj ,1, ckj ,2), f
kj) ∈ RDec, so that all the parties

can check that kj is the right decryption of ckj
.

2. µj,i, the ciphertext c⃗kjwi
:= (c1, c2) and the elliptic curve point Bj,i along

with Pi’s signatures on the latter two elements. Party Pj also proves that
(pkj , (c1, c2), f

µj,i) ∈ RDec, using the proof of Subsection 4. If this proof fails
then Pj is lying. Otherwise all parties are convinced that ciphertext c⃗kjwi

received by Pj decrypts to µj,i using Pj ’s decryption key.

All parties now check that µj,i · P + Bj,i ̸= kjWi; if so Pi is identified as the
cheater, else it is Pj .

Abort of type 3 and 4: Since one can not identify the cheater directly from
P ̸=

∑
R̄i or from Q ̸=

∑
Si, in these cases identifying a misbehaving player

requires a more convoluted list of actions. To detect who misbehaved, let us
consider the protocol steps leading up to an abort of type 3. Note that aborts
of type 3 and 4 occur after proofs {πkg,i}i∈[n] and {πi, π̃i, π

γ
i , π

′
i}i∈S have been

accepted.
The identification protocol uses new techniques, and requires the use of a

zero-knowledge proof for RDec to prove ciphertexts decrypt to a given value (e.g.
the proof of Subsection 4). In order to prove that the players indeed ran the
protocol correctly, it is necessary and sufficient to prove that for i ∈ S all the
following consistency items hold:

(i) The value ki input to the MtA protocol is consistent with that input to the
MtAwc protocol. This holds unconditionally since only a single encryption
of ki is broadcast in Phase 1.

(ii) The value wi input to the MtAwc protocol is consistent with the public value
Wi = wi · P that is associated with player Pi. Under the soundness of the
Schnorr ZKPoK used for πkg

i in IKeyGen, this item holds.

20

(iii) The value γ̃i input to the MtA protocol is consistent with Γi = γi · P that
is decommitted to in Phase 4, i.e. γi = γ̃i.

(iv) The value δi published in Phase 3 is consistent with the shares received
during the MtA protocol. In particular, the following should hold:

δi = kiγi +
∑
j ̸=i

αij +
∑
j ̸=i

βji.

(v) The value Si published in Phase 6 is consistent with the shares received
during the MtAwc protocol. In particular, it must hold that

Si = σi ·R and σi = kiwi +
∑
j ̸=i

µij +
∑
j ̸=i

νji.

We now distinguish aborts of type 3 and 4.

Identification - Abort of type 3 in Phase 5. For this to occur, either consistency
item (iii) or (iv) does not hold (since Si has not been computed yet, item (v)
is not relevant here). We hereafter explain how, for both of these inconsistency
types, parties can identify a cheating player.

(iii) Each party Pj publishes (in order):
(a) For i ̸= j, βi,j and γj . All players then check that Γj revealed in Phase

4 satisfies Γj = γj · P . If the check fails, Pj is identified as a cheater.
(b) After all βℓ,i and γi, for i ̸= j and for ℓ ̸= i have been published, Pj

reveals kj and performs a ZK proof that (pkj , ckj
, fkj) ∈ RDec. If the

proof is accepted, all parties are convinced ckj
decrypts to kj using Pj ’s

decryption key; else Pj is identified as a cheater.
(c) For i ̸= j, reveal αj,i and ckjγi

. Then perform a ZK proof that (pkj , ckjγi
,

fαj,i) ∈ RDec. If the proof is accepted, all parties are convinced ckjγi de-
crypts to αj,i using Pj ’s decryption key; else Pj is identified as a cheater.

Then for i ̸= j, all players can compute:
β̃i,j := kiγj −αi,j and check if βi,j = β̃i,j . If it is not true for some index
i, then Pj is the cheater (for using γ̃j ̸= γj in the MtA protocol).
We now argue that if all such checks pass, item (iii) holds, i.e., all players
are convinced that γ̃j ̸= γj .
Observe that if Pj used a different value γ̃j in the MtA than the γj pub-

lished in step (a) satisfying Γj = γj ·P , then to have βi,j = β̃i,j , party Pj

must have predicted the value kiγj−αi,j without knowing αi,j or ki. Un-
der the smoothness of the encryption scheme, the distribution followed
by ki is uniformly random in Z/qZ from Pj ’s view in step (a), hence Pj

(who only knows βi,j = kiγ̃j − αi,j) cannot predict β̃i,j = kiγj − αi,j

with probability significantly greater than 1/q.

(iv) Now if consistency of (iii) holds, all parties can check that δj = kjγj +∑
i̸=j αj,i +

∑
i ̸=j βi,j ; if not Pj is identified as the cheater. If equality holds

then consistency of (iv) holds (i.e. consistency of δj).

21

Identification - Abort of type 4 in Phase 6. Since this failure occurs in Phase 6,
we know that consistency of (i), (ii), (iii) and (iv) hold. The abort must hence
be due to (v) not holding. To detect a cheater, each Pj does the following:

1. Publish kj and perform a ZK proof that (pkj , ckj
, fkj) ∈ RDec. If the proof is

accepted, all parties are convinced ckj
decrypts to kj using Pj ’s decryption

key; else Pj is identified as a cheater.
2. For all i ̸= j, publish µj,i and ckjwi . Perform a ZK proof that (pkj , ckjwi , f

µj,i) ∈
RDec. If the proof is accepted, all parties are convinced ckjwi

decrypts to µj,i

using Pj ’s decryption key; else Pj is identified as a cheater.
3. For all i ̸= j, publish the elliptic curve point Bj,i received from Pi (and the

signature). Notice that since checks of Phase 2 passed, for all i, j it holds
that µj,i · P +Bj,i = kj ·Wi and so Bj,i = νj,i · P .

If the above checks passed, all parties can compute:

Σj = σj · P := kiWi +
∑
i ̸=j

µj,i · P +
∑
i ̸=j

Bi,j .

Finally, Pj performs a ZK proof that the discrete log in base P of Σj is equal to
the discrete log in base R of Sj . Precisely, let for public parameters (G, P, q), let
Rlog := {(R,S, T) ∈ G3;σ | R = σ · S ∧ T = σ · P}. Then Pj performs a ZKPoK

πlog
j that (R,Sj , Σj) ∈ Rlog; this can be done as described in [CP93]. If this proof

fails, Pj is identified as a cheater.

Note that if none of these proofs fail, under the soundness of the aforemen-
tioned ZK proofs it holds that, for i ∈ S, consistency of (v) holds, and no aborts
occur. This concludes the description of the identification procedure.

5 Security

To prove that our protocol is secure, we demonstrate that if there exists a PPT
algorithm A which breaks enhanced unforgeability of the threshold EC-DSA
protocol of Fig. 3, 4, 5 and 6, then one can devise an algorithm S using A

to break the enhanced unforgeability of centralised EC-DSA. To this end S

simulates the environment of A, so that A’s view of its interactions with S are
indistinguishable from A’s view in a real execution of the protocol.

In Subsections 5.1 and 5.2, we first prove our (t, n)-threshold protocol, for any
t < n, secure against static corruptions. Next, in Subsection 5.3 we show that if
all players participate in the signing algorithm (t = n− 1) one can easily adapt
the proof for static corruptions to the adaptive case. We note that [CGG+20] also
only prove their protocol secure for t = n− 1. They state that using techniques
of Gennaro et al. [GG18] one can immediately derive a full threshold protocol.
We emphasize that in order to build our (t, n)-protocol, for any t < n, we do use
the techniques of [GG18], hence it may be the case that it is also secure against
active adversaries. However, as detailed in Subsection 5.3, it remains unclear to
us how one can claim security against adaptive adversaries in this setting.

22

In both adversarial settings, S gets as input an EC-DSA public key Q, where
Q = x · P , and can query oracles OR and OSign(x,·;·) of Def 1. After this query
phase, S must output a forgery, i.e. a signature s for a message m of its choice,
which it did not receive from the oracle.

5.1 Security of the Full Threshold Protocol with Identifiable Aborts
against Static Adversaries

As all players play symmetric roles in the protocol, it suffices to demonstrate
that if A corrupts {Pj}j>1, one can construct S simulating P1 s.t. the output
distribution of S is indistinguishable from A’s view in an interaction with an
honest party P1.

Simulating the Key Generation Protocol. On input Q = x · P , the forger
S must set up in its simulation with A this same verification key Q (without
knowing x). This will allow S to subsequently simulate interactively signing
messages with A, using the output of its’ (enhanced) EC-DSA signing oracle.

The main differences with the proof of [GG20], arises from the fact S knows
it’s own decryption key sk1, but does not extract that of other players. As in
[CCL+20], the linearly homomorphic encryption scheme we use results from
projective hash functions, whose security is statistical, thus the fact S uses its’
secret key does not compromise security, and we can still reduce the security of
the protocol to the smoothness of the CL scheme. However as we do not prove
knowledge of secret keys associated to public keys in the key generation protocol,
S can not extract the decryption keys of corrupted players.

Our proof strategy is similar to that of [CCL+20], with the difference that
we here take into account the simulation of identifiable aborts; this changes the
way one defines semi correct executions. The simulation is described below.

Simulating Key Generation - Description of S:

1. S receives a public key Q from it’s EC-DSA challenger.

2. S samples a CL encryption key pair (pk1, sk1)
$←− KeyGen(1λ), and a random

value u1 ∈ Z/qZ. It computes [kgc1, kgd1]← Com(u1P) and broadcasts pk1
and kgc1. In return, S receives the public keys {pkj}j∈[n],j ̸=1 and commit-
ments {kgcj}j∈[n],j ̸=1.

3. S broadcasts kgd1 and receives {kgdj}j∈[n],j ̸=1. For i ∈ [n], letQi ← Open(kgci,
kgdi) be the revealed commitment value of each party. Each player performs
a (t, n) Feldman-VSS of the value Qi, with Qi as the free term in the expo-
nent.

4. S rewinds A to the decommitment step and

– equivocates P1’s commitment to k̂gd so that the committed value re-
vealed is now Q̂1 := Q−

∑n
j=2 Qj .

– simulates the Feldman-VSS with free term Q̂1.

23

5. A will broadcast the decommitments {k̂gdj}j∈[n],j ̸=1. Let {Q̂j}j=2...n be the
committed value revealed by A at this point (this could be ⊥ if A refuses
to decommit).

6. All players compute the public signing key Q̂ :=
∑n

i=1 Q̂i. If any Q̂i = ⊥,
then Q̂ := ⊥.

7. Each player Pi adds the private shares it received during the n Feldman VSS
protocols to obtain xi (such that the xi are a (t, n) Shamir’s secret sharing
of the secret key x =

∑
i ui). Note that due to the free term in the exponent,

the values Xi := xi · P are public.
8. S simulates πkg,1 (the ZKPoK that it knows x1 corresponding to X1). Then,

for j ∈ [n], j ̸= 1, S receives from A a ZKPoK of xj satisfying Xj := xj ·P ;
from which S can extract xj .

Simulating the Key Refresh Protocol. For all honest players Pi, S runs
the prescribed steps of the Key Refresh protocol.

Simulating Protocols Pre-Sign and Sign. After the key generation is over,
the simulator must handle the signature queries issued by A. Recall that A can
issue two types of queries:

– oracle OR to obtain a uniformly random point R = (rx, ry) in G :
– oracle OSign(sk,m;R) which on input a message m chosen by A, returns a valid

signature (r, s) for m where r := rx mod q if R = (rx, ry) was queried to OR;
else it returns ⊥.

The simulator simulates P1 in the threshold signature protocol on input R for the
offline phase (Phases 1-6), and a correct signature (r, s) for m under the public
key Q for the online phase (Phase 7). We stress that though the simulator knows
the decryption key sk1, and P1’s EC-DSA “public key share” W1 = w1 · P ; it
does not know the secret value w1 associated with P1. However it does know the
shares wj , j > 1 of all other players (extracted from the Schnorr proofs in the
Key Generation phase).

The simulation of the Pre-Signing and Signing protocols is based on [GG20]
and [CCL+20]. In the following simulation S aborts whenever the protocol is
supposed to abort, i.e., whenever A refuses to decommit a committed value, a
ZK proof fails, a check does not pass or if the signature (r, s) does not verify.

Simulating Pre-signing and Signing - Description of S:

Phase 1: As in a real execution, S samples k1, γ1
$←− Z/qZ, r1

$←− [Ã] uniformly at
random. It computes ck1 ← Enc(pk1, k1; r1), the associated ZKAoK π1, and
[c1, d1]← Com(γ1P). It broadcasts c1, ck1 , π1 before receiving {cj , ckj , πj}j∈S,j ̸=1

from A. S checks the proofs are valid and extracts the encrypted values
{kj}j∈S,j ̸=1 from which it computes k :=

∑
i∈S ki.

Phase 2: Recall that during the regular run of the protocol, P1 will engage in two MtA
protocols and two MtAwc protocols with each other player Pj , j ∈ S, j ̸= 1.
S runs the protocol for P1 as follows:

24

(a) Initiator for MtA with k1 and γj : Since S knows k1, it runs the protocol
as would an honest P1; it also decrypts ck1γj

received from Pj thereby
obtaining α1,j mod q.

(b) Respondent for MtA with kj and γ1: Since S knows γ1, it runs the proto-
col as would an honest P1. Recall that S extracted kj from πj in Phase
1, it also knows βj,1 (as S chose it), hence S can compute Pj ’s share
αj,1 := kjγ1 − βj,1 mod q.

(c) Initiator for MtAwc with k1 and wj (note that the first message sent in
this sub-protocol is common to all players in both MtA (item (a)) and
MtAwc (item (c))): Since S knows k1, it runs the protocol as would an
honest P1; decrypting ck1wj

to obtain µ1,j ; and checking that µ1,jP +
B1,j = k1Wj . Furthermore, recall that S extracted xj from πkg,j in
KeyGen, hence it knows wj , so S can compute ν1,j = k1wj−µ1,j mod q.

(d) Respondent for MtAwc with kj and w1: Here, S only knows W1 = w1 ·P
(but not w1). So it samples a random µj,1

$←− Z/qZ and sets ckjw1
←

Enc(pkj , µj,1), and Bj,1 := kj ·W1 − µj,1 ·P . Finally S sends the cipher-
texts and the point.

Note that at this point S knows:
• ki for each i ∈ S, wj for each j ∈ S, j ̸= 1
• α1,j , j ∈ S, j ̸= 1 as initiator for MtA, αj,1, βj,1, j ∈ S, j ̸= 1 as respon-
dent for MtA. Indeed, α1,j is a value decrypted by S; βj,1 is chosen by
S; and αj,1 = kjγ1−βj,1, where S knows all the values on the right, and
so can compute αj,1.

• µ1,j , ν1,j , j ∈ S, j ̸= 1 as initiator for MtAwc, µj,1, νj,1 · P = Bj,1, j ∈
S, j ̸= 1 as respondent for MtAwc. Indeed, µ1,j is a value decrypted by
S; µj,1 is chosen by S in (d); ν1,j = k1wj − µ1,j , where S knows all the
values on the right.

After all these sub-protocols, S computes δ1 := k1γ1 +
∑

j∈S,j ̸=1 α1,j +∑
j∈S,j ̸=1 βj,1. Note that S does not know the internal values from the MtA

and MtAwc protocols executed by two players that are both controlled by
the adversary. Hence S is not able to compute the values σj and δj for
j ∈ S, j ̸= 1. Furthermore S cannot compute σ1 since it doesn’t know the
value w1, but it can compute

σC :=
∑
i>1

σi =
∑
i>1

(kiwi +
∑
j ̸=i

µi,j +
∑
j ̸=i

νj,i) =
∑
i>1

∑
j ̸=i

(µi,j + νj,i) +
∑
i>1

kiwi

=
∑
i>1

(µi,1 + ν1,i) +
∑

i>1;j>1

kiwj

since it knows all the values {kj}j∈S , {wj}j∈S,j ̸=1, it chooses the random
values µi,1 and it can compute all of the shares ν1,j = k1wj − µ1,j mod q.
Furthermore, as S knows W1, it can compute Σ1 := σ1 · P = k1W1 +∑

j ̸=1(µ1,j + νj,1)P .

25

Phase 3: S broadcasts δ1 and receives all the {δj}j∈S,j ̸=1 from A. Let δ̃ :=
∑

i∈S δi.

Next S samples a random ℓ1
$←− Z/qZ and broadcasts T1 := Σ1 + ℓ1 · H.

Note that S does not know σ1, so it simulates the ZK proof π̃1. Then, from
the proofs π̃j received from A, S extracts the values (σ̂j , ℓj) for j ∈ S, j ̸= 1.
We hereafter denote σ̂C :=

∑
j∈S,j ̸=1 σ̂j .

Phase 4: S broadcasts d1 which decommits to Γ1, and A reveals {dj}j∈S,j ̸=1 which
decommit to {Γj}j∈S,j ̸=1. From the proofs πγ

j on Γj , S can extract γj for
each j ∈ S, j ̸= 1; these are consistent with the values used in Phase 1 thanks
to the binding property of the commitment scheme. Now S can compute

δ = (
∑
i∈S

ki) · (
∑
i∈S

γi) = kγ,

where γ =
∑

i∈S γi. Note that A may have used different values γ̃i in the
MtA protocol than the γi committed to in Phase 1, hence we denote them
with a tilde.
At this point S can detect if the values published so far by A are consistent;
note that S will behave differently in Phases 5, 6 and 7 depending on this
detection.
To detect inconsistencies, S first computes R̃ := δ̃−1(

∑
i Γi).

Then using the values ki extracted in Phase 1, S checks that
∑

i ki · R̃ = P .
Notice that if∑

i

ki · R̃ = k · R̃ = kδ̃−1
∑
i∈S

γi · P = kδ̃−1γ · P = P ⇒ δ̃ = kγ = δ

The simulator can also detect if the values σj computed in Phase 2 are
consistent with those used to compute points Tj in Phase 3; in particular
S checks that σ̂C = σC . We thus distinguish two types of executions: an
execution is said to be semi-correct if∑

i

kiR̃ = P and σ̂C = σC

which, as explained above, implies that δ = δ̃ and σ̂C = σC . If either of the
above equalities do not hold, the execution is said to be non semi-correct.
Now S adapts its behaviour depending on the type of execution:
• Semi-correct execution:

1. S invokes oracle OR to obtain R = (rx, ry).

2. S sets Γ̂1 := δ̃ ·R−
∑

i∈S,i ̸=1 Γi, so that R = δ̃−1
(
Γ̂1 +

∑
i∈S,i ̸=1 Γi

)
.

Then S rewindsA to the decommitment step in Phase 4, equivocates
P1’s commitment so that it decommits to Γ̂1 instead of Γ1.

• Non semi-correct execution: S simply moves on to Phase 5.
Phase 5: • Semi-correct execution: S publishes R̄1 := P −

∑
i∈S,i ̸=1 ki · R to-

gether with π′
1: a simulated ZKP of consistency with ck1

= Enc1(k1)
(note that in this case R̄1 ̸= k1 ·R due to the rewinding).

26

• Non semi-correct execution: S publishes R̄1 := k1 ·R together with
π′
1: a real ZKP of consistency with ck1

= Enc1(k1) (this proof needn’t be
simulated).

Phase 6: • Semi-correct execution: S publishes S1 := Q−
∑

j∈S,j ̸=1 σjR together
with π′′

1 : a simulated ZKP of consistency with T1 (again in this case the
simulated S1 ̸= σ1 ·R due to the rewinding).

• Non semi-correct execution: S has P1 publish S1 := σ1R together
with π′′

1 : a real ZKP of consistency with T1 (this proof needn’t be simu-
lated).

In a non semi-correct execution, at least one of the the adversary’s proofs
π′
j or π′′

j for some j > 1 will fail, and the protocol will abort.

Phase 7: S invokes the second oracle OSign(sk,m;R) with input m. In return, S receives
the valid signature (r, s) on m, where r = rx mod q, for some R = (rx, ry)
computed in a previous offline phase (in particular in one that was semi-
correct, since it concluded successfully).
Now S knows sC =

∑
j∈S,j ̸=1 sj because sC = m

∑
j∈S,j ̸=1 kj + σCr where

σC is as defined in the simulation of Phase 2 (Note: if A cheats in Phase 7 –
denoting {s̃i}i>1 the values S receives from A in Phase 7, and s̃C :=

∑
i>1 s̃i

– it is possible that sC ̸= s̃C). So S computes the share s1 consistent with
(r, s) and sC as s1 := s− sC . Finally, S broadcasts this value s1.

Simulating Identification.

Simulating Identification of aborts in Key Generation. If an abort occurs in
the Key Generation protocol, S runs the identification protocol as would P1 in
a real execution. Furthermore, if some player P raises a compliant against P1

(simulated by S), then P is detected as a cheater since the simulation of Feldman
VSS is done in such a way that corrupted players receive values which pass the
verification check.

Simulating Identification of aborts in Pre-Sign and Sign. For any of the trivial
types of abort allowing to immediately detect the faulty player, S has nothing
to simulate. Consider the problematic types of abort listed on page 19:

– Abort of type 1: if S cannot decrypt another player’s ciphertext, since S

knows sk1, it can run the proof for relation RDec as would P1.
– Abort of type 2: if S announces that the check on µ1,j fails (for some j > 1),

it runs the identification protocol as would P1. Conversely, if some player
Pj for j > 1 complains about the µj,1 it received, observe that: if µj,1 is
the real decryption of ckjw1

(which it must be if the proof for RDec provided
by Pj is valid), then since the point Bj,1 sent by S to Pj was computed as
Bj,1 := kj ·W1−µj,1, necessarily the equality test will pass. Observe that the
value νj,1 is not revealed; hence no other (corrupted) party can check that
S knows νj,1 such that Bj,1 = νj,1 · P . Hence the simulation ends correctly.

– Abort of type 3: S follows the real identification procedure (cf. page 21).

27

– Abort of type 4: S follows the real identification procedure, up until it needs
to prove knowledge of σ1 satisfying S1 = σ1 · R. Since S does not know σ1,
it simulates the proof πlog

1 .

– Abort of type 5: here an abort occurs if the computed signature (r, s) is not
valid, as no extra values need to be published to identify the cheater, S has
nothing to simulate.

Let us denote {si}i>1 the values computed during the pre-sign protocol
(which are correct since no abort occurred), and let us denote {s̃i}i>1 the
values that A broadcasts in Phase 7. Let us further denote sC :=

∑
i>1 si

and s̃C :=
∑

i>1 s̃i. Now observe that – as long as sC = s̃C – from the way
S computes s1 (i.e. s1 := s − sC), since the signature it receives from its
oracle is valid for verification key Q, the computed signature is necessarily
valid. Conversely, if sC ̸= s̃C , S sets s1 := s − sC and aborts. To identify
the cheater, everyone checks si · R = m · R̄i + r · Si for all i. From the way
S computed s1R, it will not be identified as the cheater.

5.2 Indistinguishability of Real and Simulated Environments

We here argue that a static adversary A can not distinguish a real execution of
the protocol – interacting with P1 – from a simulated execution. We distinguish
semi-correct and non semi-correct executions.

Semi-Correct Executions. Lemma 2 states the assumptions under which
indistinguishability holds. Regarding the key generation, pre-signing and signing
sub-protocols, the proof resembles that of [CCL+20, Lem. 4]. Furthermore the
simulator runs the key refresh sub-protocol as in a real execution, hence the
simulation there is perfect.

Lemma 2. Assuming the strong root assumption and the C-low order assump-
tion hold for Gen; the CL encryption scheme is δs-smooth; the HSM problem is
δHSM-hard; and the commitment scheme is non-malleable and equivocable; then
on input m the simulation either outputs a valid signature (r, s) or aborts, and
is computationally indistinguishable from a semi-correct real execution.

The proof is very similar to that in [CCL+20], the main difference being that
S now also simulates the identification procedure when the protocol aborts.

Before proving Lemma 2, let us define the notion of invalid ciphertexts.

Definition 7. A ciphertext is said to be invalid if it is of the form (u, e) :=
(u, uskfm) where u ∈ G\Gq. Note that one can compute such a ciphertext us-
ing the secret key sk, but not the public key pk; that the decryption algorithm
applied to (u, e) with secret key sk recovers m; and that an invalid ciphertext is
indistinguishable of a valid one under the hardness of HSM.

28

Indistinguishability of pre-signing and signing protocols. The differences between
A’s real and simulated view are the following:

1. S does not know w1. So for each j ∈ S, j ̸= 1 it cannot compute ckjw1
as in

a real execution of the protocol. However under the strong root and C-low
order assumption in Ĝ, S can extract kj from proof πj in Phase 1 for each j ∈
S, j ̸= 1. S needs to simulate P1 as a respondent in MtAwc protocols, then it
chooses a random µj,1 and encrypt it as we have seen in Phase 2 simulation.
The resulting view of A is identical to an honestly generated one since
both in real and simulated executions µj,1 is uniformly distributed in Z/qZ.
Moreover ckj

was proven to be a valid ciphertext, so ciphertexts computed
using homomorphic operations over ckj

and fresh ciphertexts computed with
pkj follow identical distributions from A’s view.

2. S computes Γ̂1 := δ̃ · R −
∑

i∈S,i ̸=1 Γi, and equivocates its commitment c1

s.t. d1 decommits to Γ̂1. Let us denote γ̂1 ∈ Z/qZ the value s.t. Γ̂1 = γ̂1P ,
where γ̂1 is unknown to S, but the forger can simulate the ZKPoK of γ̂1.
Let us further denote k̂ ∈ Z/qZ the randomness (unknown to S) used by its’

signing oracle to produce R. It holds that δ̃ = k̂(γ̂1 +
∑

j∈S,j ̸=1 γj), where
Γi = γi ·P , to distinguish them from the γ̃is which are used in MtA protocols.
Finally, let us denote k̂1 := k̂ −

∑
j∈S,j ̸=1 kj . S is implicitly using k̂1 ̸= k1,

even though A received an encryption of k1 in Phase 1. However, from the
smoothness of the CL scheme, and the hardness of the HSM problem, this
change is unnoticeable to A.

Claim. If the CL encryption scheme is δs-smooth and the HSM problem is
δHSM-hard, then no probabilistic polynomial time adversary A – interacting
with S – can notice the value of k1 in the computation of R being replaced
by the (implicit) value k̂ with probability greater than 2δHSM + 3/q + 4δs.

Proof. To see this consider the following sequence of games. We denote Ei

the probability A outputs 1 in Gamei.
Game0 to Game1. S uses the secret key sk1 instead of the public key pk1
and r1 to compute ck1

← (u1, u
sk1
1 fk1) where u1 = gr1q . The simulation

of honest players uses the public key as usual. Both games are perfectly
indistinguishable from A’s view:

|Pr[E1]− Pr[E0]| = 0.

Game1 to Game2. In Game2 one replaces the first element of ck1
(in Game1

this is u1 ∈ Gq) with ũ1 ∈ G\Gq. There exists a unique r1 ∈ Z/sZ and
b1 ∈ Z/qZ such that ũ1 = gr1q f b1 . And ck1

= (ũ1, ũ
sk1
1 fk1). Under the δHSM-

hardness of HSM both games are indistinguishable:

|Pr[E2]− Pr[E1]| ⩽ δHSM.

Game2 to Game3. In Game3 the points Q = x · P and R = k̂−1 · P come
from the EC-DSA oracle, while in Game2 they are computed as in the real

29

protocol. As a result, the value k1 encrypted in ck1
is unrelated to k̂. Let us

denote k̂1 := k̂ −
∑

j∈S,j ̸=1 kj , this is the value that – if used by S instead

of k1 – would lead to the joint computation of R = k̂−1P .
To demonstrate that Game2 and Game3 are indistinguishable from A’s view,
we start by considering a fixed ŝk1 ∈ Z satisfying the following equations:{

ŝk1 ≡ sk1 mod ϖ,

ŝk1 ≡ sk1 + b1
−1(k1 − k̂1) mod q,

where ϖ is the group exponent of Ĝ, such that the order s of gq divides ϖ.
Note that the smoothness of the CL encryption scheme ensures that such a
ŝk1 exists (it is not necessarily unique). We can now see that in Game3, ck1

is an invalid encryption of both k̂1 and of k1, for respective secret keys ŝk1
and sk1, but for the same public key pk1, indeed:

ck1
= (ũ1, ũ

sk1
1 fk1) = (gr1q f b1 , (gr1q f b1)sk1 · fk1)

= (gr1q f b1 , pkr11 f ŝk1·b1+k̂1) = (ũ1, ũ
ŝk1
1 f k̂1).

Adversary A receives the point Q, the encryption key pk1 = gsk1q , and ck1

from S (at this point A view is identical to that in Game2).
Now A corrupting Pj computes ck1γj which we denote cα = (uα, eα), and
ck1wj which we denote cµ = (uµ, eµ). A then sends cα and cµ to S. The
difference between Game2 and Game3 appears now in how S attempts to
decrypt cα and cµ. In Game2 it would have used ŝk1, whereas in Game3 it
uses sk1.

Notation. We denote α (resp. µ) the random variable obtained by decrypting
cα (resp. cµ) (received in Game3) with decryption key sk1; we denote α

′ (resp.
µ′) the random variable obtained by decrypting cα (resp. cµ) (received in

Game3) with decryption key ŝk1; we introduce a hypothetical Game3
′, which

is exactly as Game3, only one decrypts cα (resp. cµ) (received in Game3) with

decryption key ŝk1, thus obtaining α′ (resp. µ′). Moreover in Game 3′ the

check performed on the curve is ‘If µ′ · P +B1,j ̸= k̂1 ·Wj then abort’.

Observation. The view of A in Game2 and in Game3
′ is identical. By demon-

strating that the probability A’s view differs when S uses α, µ in Game3
from when it uses α′, µ′ in Game3

′ is negligible, we can conclude that A

cannot distinguish Game2 and Game3 except with negligible probability.
The smoothness of the CL encryption scheme tells us that given pk1, which
fixes (sk1 mod s), the value of (sk1 mod q) remains δ-close to the uniform
distribution modulo q. In particular this ensures that A’s view of α and α′

are δ-close. Indeed,A receives an invalid encryption of k1, which information
theoretically masks k1. At this point A’s view of k1 is that of a random
variable δ-close to the uniform distribution modulo q. A then computes cα

30

which it sends to S. Finally A receives either (a one way function of) k1,
or (a one way function of) some random value which is unrelated to k1,
and must decide which it received. For µ and µ′, the indistinguishability of
A’s view of both random variables is a little more delicate, since A gets
additional information from the check on the curve performed by S, namely
in Game3 if µ ·P +B1,j ̸= k1 ·Wj the simulator aborts. We call the output of

this check test. And in Game3
′, if µ′ ·P +B1,j ̸= k̂1 ·Wj the simulator aborts.

We call the output of this check test′. Notice that if test = test′, both games
are δs-close from A’s view (the only change is in the ciphertext ck1

). Let us
bound the probability p that test ̸= test′. This will allow us to conclude that

|Pr[E3]− Pr[E2]| ≤ p+ δs.

Let us consider the ciphertext cµ = (uµ, eµ) ∈ Ĝ× Ĝ sent by A. There exist

unique zµ ∈ Ĝq, yµ ∈ F such that uµ = zµyµ. Moreover there exists a unique
bµ ∈ Z/qZ such that yµ = f bµ .

Since sk1 = ŝk1 mod ϖ, µ =⊥ if and only if µ′ =⊥, and this occurs when

eµ · z−sk1
µ = eµ · z−ŝk1

µ /∈ F . In this case Game3 is identical to Game3
′ from

A’s view (S aborts in both cases). We hereafter assume decryption does not

fail, which allows us to adopt the following notation eµ = zsk1µ fhµ = z ŝk1µ fhµ

with hµ ∈ Z/qZ. We thus have:

µ := logf

(
eµ

usk1
µ

)
,

= hµ − bµsk1 mod q

and µ′ := logf

(
eµ

uŝk1
µ

)
,

= hµ − bµŝk1 mod q

Thus

we have
µ− µ′ ≡ bµ(ŝk1 − sk1) ≡ bµb1

−1(k1 − k̂1) mod q.

We consider three cases:
(a) µ = µ′ mod q. This may happen for two reasons:

i. If k1 ≡ k̂1 mod q, then Game2 and Game3 are identical.
ii. Else bµ = 0 mod q, i.e. cµ is a valid ciphertext. Since we ruled

out k1 ≡ k̂1 mod q in the previous case, if test=true, necessarily
test’=false, and vis versa. Both cases being symmetric, we consider
the case test=true. From A’s view, before outputting cµ the only
fixed information relative to k1 is that contained ck1

= (gr1q f b1 ,

(gr1q f b1)sk1fk1). This fixes π0 := b1 · sk1 + k1 mod q. However from
A’s view, given pk1, the random variable sk1 follows a distribution
δs-close to U(Z/qZ). Thus k1 also follows a distribution δs-close to

U(Z/qZ). Now suppose A returns cµ = (zµ, z
sk1
µ fµ) where zµ ∈ Ĝq.

If test = true, then µ ·P +B1,j = k1Wj , and A has fixed the correct
value of k1, this occurs with probability ⩽ 1/q + δs.

(b) µ ̸≡ µ′ mod q but µ − µ′ = wj(k1 − k̂1) mod q, i.e. bµ = wjb1 mod q.
This results in S aborting on µ′ in Game2 if and only if S aborts on µ in
Game3. This occurs if the adversary performs homomorphic operations

31

on ck1
, and the difference between the random variables is that expected

by S. Indeed:

µ = k1wj − ν1,j ⇔ µ′ + wj(k1 − k̂1) = k1wj − ν1,j ⇔ µ′ = k̂1wj − ν1,j .

(c) (µ ̸≡ µ′ mod q) and (µ−µ′ ̸≡ wj(k1− k̂1) mod q). We here consider three
sub-cases:
i. Either test = test′ = false; this results in identical views for A.
ii. Either test′ = true; this means that:

µ′ = k̂1wj − ν1,j mod q.

Now since µ− µ′ ̸= wj(k1 − k̂1) mod q necessarily test = false. Con-
sequently if this event occurs, A’s view differs.
Let us prove that information theoretically, this can not happen with
probability greater than 1/q + δs.
To this end we consider the distribution followed by the point P :=
(sk1, ŝk1, k1, k̂1) ∈ (Z/qZ)4, conditioned on A’s view. For clarity, we
first recall the expression of ck1

received by A:

ck1
= (gr1q f b1 , pkr11 f ŝk1b1+k̂1)

where b1 ̸= 0 mod q. We also recall the expression of cµ, sent by A

to S. Since cµ decrypts to µ′ with decryption key ŝk1, we can write:

cµ = (zµf
bµ , z ŝk1µ fµ′+bµ ŝk1).

Let us denote π0 := ŝk1b1 + k̂1 mod q and π1 := µ′ + bµŝk1. For this

case to occur, it must hold that µ′ = k̂1wj − ν1,j mod q, so

π1 = k̂1wj − ν1,j + bµŝk1 mod q.

Substituting ŝk1 for (π0 − k̂1)b
−1
1 yields:

π1 = k̂1wj − ν1,j + bµb
−1
1 (π0 − k̂1) mod q

⇔ π1 + ν1,j − bµb
−1
1 π0 = k̂1(wj − bµb

−1
1) mod q

As we dealt with bµ = wjb1 mod q in case (b), here wj − bµb
−1
1 is

invertible mod q so we can write:

k̂1 = (π1 + ν1,j − bµb
−1
1 π0)(wj − bµb

−1
1)−1 mod q (1)

where π0, b1 are fixed by ck1 ; π1, bµ are fixed by cµ; wj is fixed by
Wj ; and ν1,j is fixed by B1,j . So given A’s view and A’s output
(B1,j and cµ), all the terms on the right hand side of Eq. 1 are fixed.
However, given pk1, ck1

and Wj (which is all the relevant information
A gets prior to outputting cµ), the δs-smoothness of the CL scheme

32

ensures that k̂1 follows a distribution δs-close to U(Z/qZ). If the
current case occurs, Eq. 1 must hold, thus from being given a view
where k̂1 follows a distribution δs-close to U(Z/qZ), A succeeds in
fixing this random variable to be the exact value used by S. This
occurs with probability ⩽ 1/q + δs.

iii. Else test = true; this means that µ = k1wj − ν1,j mod q. Since (µ−
µ′ ̸= wj(k1 − k̂1) mod q) necessarily test′ fails, and A’s view differs.
Reasoning as in the previous case, but setting π0 := sk1b1+k1 mod q
and π1 := µ + bµsk1, one demonstrates that this case occurs with
probability ⩽ 1/q + δs.

Combining the above, we get that test′ ̸= test if and only if we are in case
(a) ii. (c) ii. or (c) iii., which occurs with probability ⩽ 3(1/q + δs). Thus:

|Pr[E3]− Pr[E2]| ⩽ 3/q + 4δs.

Game3 to Game4. In Game4, the first element u1 of ck1
is once again sampled

in Gq. Both games are indistinguishable under the hardness of HSM and:

|Pr[E4]− Pr[E3]| ≤ δHSM.

Game4 to Game5. In Game5 S uses the public key pk1 to encrypt k1. The
change here is exactly that between Game0 and Game1, both games are per-
fectly indistinguishable, and:

|Pr[E5]− Pr[E4]| = 0.

Real/Ideal executions. Putting together the above probabilities, we get that:

|Pr[E5]− Pr[E0]| ≤ 2δHSM + 3/q + 4δ,

which concludes the proof of the claim.

3. As a consequence of the different values k and k̂, there is also a difference in
the values k1 ·R and k̂1 ·R = P −

∑
i∈S,i ̸=1 ki ·R after rewinding in phase 4.

However, they follow the same distribution, and they can be distinguished
if k1 and k̂1 are distinguishable in MtAwc protocols. As we have seen in
point 2. this happens with negligible probability. Furthermore, since we are
in a semi-correct execution, in the real protocol P1 runs normally the zero-
knowledge proof for the consistency between k1 ·R and ck1

. In the simulated

protocol, the simulator just simulates the proof for cki1 and k̂1 · R. In each
case the two worlds are indistinguishable.

4. The same reasoning in previous item can be applied to S1 = σ1 and S1 =
Q−

∑
i∈S,i ̸=1 Si

5. S does not know σ1, and thus cannot compute s1 as in a real execution.
Instead it computes s1 = s−

∑
j∈S,j ̸=1 sj = s−

∑
j∈S,j ̸=1(kjm+σjr) where

(implicitly) s = k̂(m + rx). So s1 = k̂m + r(k̂x −
∑

j∈S,j ̸=1 σj), and S is

implicitly setting σ̂1 := k̂x−
∑

j∈S,j ̸=1 σj s.t. k̂x = σ̂1 +
∑

j∈S,j ̸=1 σj .

33

We note that, since the real execution is semi correct, the correct shares of
k for the adversary are the ki that the simulator knows and R = k̂−1P =
(k̂1+

∑
j∈S,j ̸=1 kj)

−1 ·P . Therefore the value s1 computed by S is consistent
with a correct share for P1 for a valid signature (r, s), which makes Phase 7
indistinguishable from the real execution to the adversary.

Indistinguishability of identification procedure. We just proved that except with
negligible probability, a simulated execution results in an abort if and only if
a real execution would (this must be true for real and simulated views of the
adversary to be indistinguishable). Of course if no abort occurs, the simulation
of the identification procedure is not an issue. Now assuming there is an abort,
consider the problematic types of abort listed on page 19. For an abort of type 5,
identifying the culprit is trivial, and there is no impact on the view A has of
real and simulated executions. If an abort of type 1 or 2 occurs, in all of our
considered game steps S can honestly perform the proof for relation RDec as
would P1, hence A’s view of these identification procedures is identical in all
game steps, and therefore in real and simulated executions.

Finally, as we are here considering the simulation of semi-correct executions
aborts of type 3 and 4 do not occur (indeed, the occurrence of such aborts means
we are in a non-semi-correct executions). Hence any abort which may occur in
a semi-correct execution is perfectly simulated.

Non Semi-Correct Executions.

Lemma 3. If the strong root and C-low order assumptions hold for Gen then
the simulation is computationally indistinguishable from a non-semi-correct real
execution.

Proof. In this case both real and simulated executions of the protocol abort
before Phase 7; so in all situations where semi-correct and non semi-correct sim-
ulations differ, in a non semi-correct execution S follows the protocol as would
P1; hence the non semi-correct simulation of the pre-signing sub-protocol is in-
distinguishable from a non semi-correct real execution.
Identification procedures. Here aborts are either of type 3 or 4. For type 3, S fol-
lows the real identification procedure, hence the simulation is perfect. For type 4
the only difference is that S simulates πlog

j , so A’s view is indistinguishable.

Concluding the proof. The forger S simulating A’s environment can detect
whether we are in a semi-correct execution or not. Consequently S always knows
how to simulate A’s view and all simulations are indistinguishable from real
executions of the protocol. Moreover if A, having corrupted up to t parties in
the threshold EC-DSA protocol, outputs a forgery, since S set up with A the
same public key Q it received from its’ EC-DSA challenger, and randomness R it
received from OR, S can use this signature as its own forgery, thus breaking the
enhanced existential unforgeability of centralised EC-DSA. Hence the following
theorem, which captures the protocol’s security, follows from Lemmas 2 and 3.

34

Theorem 2. Assuming EC-DSA is enhanced existentially unforgeable under
chosen message attacks; the strong root and C-low order assumptions hold for
Gen; the CL encryption scheme is δs-smooth; the HSM problem is δHSM-hard, and
the commitment scheme is non-malleable and equivocable, it holds that the (t, n)-
threshold EC-DSA protocol of Fig. 3-4-5-6 is enhanced existentially unforgeable
against static adversaries.

5.3 Security Against Adaptive Adversaries

Our protocol can further be proved secure against adaptive corruptions in the
specific case t = n− 1, i.e. all parties must participate in the signing phases (we
leave the study of adaptive security for any t ≤ n− 1 for future work).

Theorem 3. Assuming EC-DSA is e-eu-cma; the DL assumption holds in G; the
strong root and C-low order assumptions hold for Gen; the CL encryption scheme
is δs-smooth; the HSM problem is δHSM-hard, and the commitment scheme is
non-malleable and equivocable, then the (n− 1, n)-threshold EC-DSA protocol of
Fig. 8-4-5-6 is e-tu-cma against adaptive corruptions.

As explained hereafter, in the specific case t = n − 1, the security proof very
much resembles that against static adversaries, we present details below.

Proof strategy. In the context of adaptive corruptions the adversary A can
choose to corrupt players throughout the execution of the protocol. When such
a corruption occurs, A is given the corrupted party’s internal state: A learns the
party’s secret values, randomness, and any other information the party may have
stored from previous interactions. Hence to ensure A is unable to distinguish
between real and simulated executions, one must ensure that A can not detect
any inconsistencies when it chooses to corrupt a new party P . If A corrupts a
player which does reveal inconsistencies, the simulator S rewinds the protocol.
One should thus minimise the number of players possessing inconsistent values,
so as to reduce the number of rewinds. In particular, if a player P is simulated
as an honest player following the real protocol, then it can only give consistent
values to A if it is corrupted. A crucial point of using the CL encryption scheme
is that S knows the decryption keys of honest players; so if an honest player is
corrupted, S can give this secret key to A, which is consistent with the encryp-
tion key. This is not immediate in a situation where the secret key is not known
by S. In our proof, S simulates the behaviour of each honest player, revealing the
relevant internal states upon corruption; it also chooses a single special player
among all the honest ones. For all honest players which are not special, S runs
the protocol normally. On the other hand, the role of the special player is to fix
values as did P1 in the case of static corruptions (Subsection 5.1). This explains
why the security proof against adaptive corruptions very much resembles that
for the static case, with some adaptations to deal with the dynamic corruption
of players. As hinted previously, if the special player is corrupted, S rewinds
the protocol; this rewind goes back to the beginning of the previous key refresh,

35

where S chooses a new special player. Since there is only one special player, S
rewinds at most n− 1 times. If such a switching of special players (SSP) occurs,
we assume that, for the duration of the Key Refresh, both the previous special
player, and at least one of the remaining n − 1 players remain uncorrupted.
Indeed while handing over the inconsistent values from the old special player
to the new one, both players possess values that are inconsistent with publicly
available information. However by the end of the Key Refresh in which the SSP
occurs, only the new special player is inconsistent; and we can thereafter again
handle n− 1 corruptions.

We stress that since all precomputed pre-signatures are erased at every Key
Refresh,8 the aforementioned rewind does not introduce the risk that A may
request the signature of two different messages with the same randomness.

Key Generation for t = n − 1. As suggested in [CGG+20], for t = n − 1, key
generation can be simplified by using an additive sharing instead of a Feldman-
VSS. This improves the protocols’ communication cost, speed, and simplifies the
security proof. This simplified Key Generation sub-protocol is depicted in Fig. 8.

Pi IKeyGen(G, P, q) All players {Pj}j ̸=i

wi
$←− Z/qZ; Wi ← wiP

[kgci, kgdi]← Com(Wi)

(ski, pki)← CL.KeyGen(1λ)
pki and kgci========⇒

kgdi===⇒ Q =
∑n

i=1 Wi

πkg,i := ZKPoKWi{(wi) : Wi = wiP}
πkg,i←−→

Fig. 8: Key Generation protocol when t = n− 1

On the adaptive security of Feldman-VSS. We here give an idea why attaining
security against adaptive adversaries for our full threshold protocol (any t < n)
is considerably more challenging. As mentioned above, to guarantee adaptive
security, S must be capable of providing a consistent internal state whenever A
corrupts an honest player. We point out that using Feldman-VSS causes issues in
the simulation, since the simulator – simulating the special player P∗ – computes
a polynomial p∗(X), for which it can give at most t consistent shares which pass
the verification check. Indeed, t+ 1 shares define in a unique way p∗(X), which
has an unknown degree zero coefficient. As a result, S will send t consistent
shares and n− t inconsistent shares with overwhelming probability.

8 In fact all randomness and data used in the previous refreshment phase is erased,
except for the information that the protocol specifies should be used afterwards.

36

In the case of static corruptions this is not a problem since the consistent
shares are given to the adversary, while the inconsistent ones are given to the
honest players, that will not be corrupted. In contrast, if the adversary is adap-
tive, S does not know which players A will corrupt, so it sends the t consistent
values to t random players. If the t players A chooses to corrupt do not coincide
with the t players having received consistent values, then A has corrupted a
player with an inconsistent internal state and hence distinguishes real and sim-
ulated executions. As explained in the proof strategy paragraph, each time an
honest player is corrupted revealing inconsistent values, S rewinds the proto-
col. Therefore S’s running time (which must be polynomial for security to hold)
grows exponentially with n − t. For t = n − 1 (the setting we consider), there
is only one inconsistent share, that of the special player, hence the number of
potential rewinds remains reasonable.

Proof of Theorem 3

Notation. Before proving the theorem, let us introduce some notations. The
sets of the indices of all players and all corrupted players are denoted P and C
respectively. At the beginning of the experiment, the simulator randomly chooses
an honest player P∗ that is henceforth referred to as the special player. The setH
contains indices of all honest players except P∗, while NC contains indices of all
non corrupted players including P∗. Hence H = P\(C∪{P∗}) and NC = P\C.
The sets H,C,NC are dynamically updated with new corruptions throughout
the protocol. In particular, C grows in size with the condition that |C| ⩽ n− 1,
taking elements from NC. Note that if P∗ is corrupted, the simulator will rewind
the protocol and choose a different special player. Clearly if some P is corrupted
and NC ← NC \ {P} then H ← H \ {P}. Finally, all values belonging to the
special player P∗ are indexed with the symbol ∗.

Simulating Key Generation.

1. S receives a public key Q from it’s EC-DSA challenger.

2. For i ∈ NC, S samples wi
$←− Z/qZ and computes [kgci, kgdi]← Com(wiP).

3. For i ∈ NC, S samples CL encryption key pairs (pki, ski)
$←− KeyGen(1λ).

4. S broadcasts {kgci}i∈NC and {pki}i∈NC, before receiving {kgcj}j∈C and
the public keys {pkj}j∈C from A.

5. S broadcasts {kgdi}i∈NC and receives {kgdj}j∈C. For i ∈ P, let Wi ←
Open(kgci, kgdi) be the revealed commitment value of each party.

6. S chooses a special player P∗ and rewinds A to the decommitment step,

so as to equivocate P∗’s commitment to k̂gd∗ which decommits to Ŵ∗ :=
Q−

∑
j ̸=∗ Wj .

7. S simulates πkg
∗ (the ZKPoK that it knows w∗ corresponding to Ŵ∗) and

honestly performs the proofs πkg
i for i ∈ H. Then, for j ∈ C, S receives from

A a ZKPoK of wj satisfying Wj := wj · P ; from which S can extract wj .

37

Simulating Key Refresh. In the event of a normal Key Refresh (i.e. which is
not due to S rewinding to switch special players), S simply runs the real Key
Refresh sub-protocol for all players in NC.
Switching Special Players in Key Refresh.

As explained in the paragraph entitled Proof Strategy of Subsection 5.3, if
at any point during the simulation A corrupts the special player P∗, then S

rewinds the adversary and chooses a new special player P new
∗ among the honest

parties Pi for i ∈ H. We will hereafter refer to this particular simulation of the
Key Refresh protocol as Key Refresh with special player switch (KRSS). At the
end of the KRSS, the previous special player P∗ has consistent values, so that
P new
∗ is the unique inconsistent (i.e. special) player. Note that throughout KRSS,

we assume P∗ is not corrupted, and A can corrupt at most n−2 of the remaining
n− 1 players.

Without loss of generality we set P1 := P∗ and P2 := P new
∗ . For i ∈ P we

denote ui ∈ Z/qZ the secret share of the EC-DSA signing key x owned by Pi

from the previous Key Refresh; and Qi := uiP . Recall that S does not know u1.
If a KRSS occurs, S simulates P1 and P2 in the following way (the simulation
remains the same for other players):

– Sample v1,1, . . . , v1,n and v2,1, . . . , v2,n as per the protocol.

– Sample a random α
$←− Z/qZ and let β := v1,1 + v1,2 − α.

Then set Q1,1 := −Q1 + αP , Q1,2 := Q1 + β · P and for each j ∈ P, j > 2
set Q1,j := v1j · P .

– Compute Q2,j := v2,j · P for all j ∈ P, j ̸= 2 as in the real protocol.
– For j ∈ P compute ciphertexts C1,j ← Enc(pkj , v1,j) and C2,j ← Enc(pkj , v2,j)

as per the protocol. Simulate proofs πkr
1,1 and πkr

1,2, but run all other proofs

{πkr
1,j}j∈P,j>2 and {πkr

2,j}j∈P as in the real protocol.
– After having received all the {Qi,j}i∈P,i>2,j∈P, S computes Qnew

i = Qi +∑
j∈P Qj,i for each i ̸= 2. It then rewinds the sub-protocol and changes Q2,2

to

Q2,2 := Q−
∑
j ̸=2

Qnew
1 −Q2 −

∑
i̸=2

Qnew
i,2

With this choice of Qnew
2,2 , Q

new
2 = Q2+

∑
i Q

new
i,2 is such that Q =

∑
i∈P Qnew

i .
– Erase all values vi,j and Qi,j

Notice that with this choice of Qnew
1 , there are no inconsistencies for P1 and it

knows the discrete log of its’ point. Furthermore, thanks to the values α and β
the elliptic curve points computed in an unusual way are distributed as in a real
execution of the protocol.

Simulating protocols Pre-Sign and Sign. After the key generation is over,
the simulator must handle the signature queries issued by A. Recall that A can
issue two types of queries:

– oracle OR to obtain a uniformly random point R = (rx, ry) in G :

38

– oracle OSign(sk,m;R) which on input a message m chosen by A, returns a valid
signature (r, s) for m where r := rx mod q if R = (rx, ry) was queried to OR;
else it returns ⊥.

The simulator simulates Pi for each i ∈ NC in the threshold signature protocol
on input R for the offline phase (Phases 1-6), and a correct signature (r, s) for
m under the public key Q for the online phase 7. We stress that though the
simulator knows the decryption key sk∗, and P∗’s EC-DSA public key share
W∗ = w∗ ·P ; it does not know w∗. However the simulator knows the shares wi of
all other players (i ∈ P \ {∗}) from the Schnorr proofs in Key Generation phase
(for i ∈ C) or because it computed them (for i ∈ H).

The simulation of the Pre-Signing and Signing protocols is based on [CGG+20]
and [CCL+20], with adaptations considering previously defined dynamic sets of
players (NC,H,C). For each execution all parties in P participate. This implies
that {wi}i∈[n] are long term secrets. In the following simulation S aborts when-
ever the protocol is supposed to abort, i.e., whenever A refuses to decommit a
committed value, a ZK proof fails, a check does not pass or if the signature (r, s)
does not verify.

Simulating Pre-signing and Signing - Description of S: For all i ∈ H, i.e. honest
– but not special – players Pi, S just runs the protocol as would Pi in a real
execution. Hence in the following phases we only describe how S simulates P∗.

Phase 1: S samples k∗, γ∗
$←− Z/qZ, r∗

$←− [Ã] uniformly at random. It computes
ck∗ ← Enc(pk∗, k∗; r∗), the associated ZKAoK π∗, and [c∗, d∗]← Com(γ∗P).
It broadcasts c∗, ck∗ , π∗ before receiving {cj , ckj

, πj}j∈C from A. S checks
the proofs are valid and extracts the encrypted values {kj}j∈C from which
it computes k :=

∑
i∈P ki.

Phase 2: Recall that during the regular run of the protocol, P∗ will engage in two MtA
protocols and two MtAwc protocols with each other player Pj , j ∈ P \ {∗}
(the corrupted players and other honest players in P). S runs the protocol
for P∗ as follows:
(a) Initiator for MtA with ki, i ∈ NC and γj , j ∈ P \ {i}: S runs the real

sub-protocol, as it knows ki. For j ∈ P \ {∗}, S decrypts the ciphertext
received from Pj obtaining α∗,j mod q (for j ∈ NC ⊂ P it already
knows the values, however Pj may be corrupted in this phase, so S runs
the real protocol, even between non corrupted parties).

(b) Respondent for MtA with kj , j ∈ P \ {∗} and γ∗: S runs the real sub-
protocol, as it knows γ∗.
Recall that S knows kj from extraction in Phase 1, it also knows its
own shares βj,i for i ∈ NC, hence S can compute Pj ’s shares αj,i =
kjγi − βj,i mod q.

(c) Initiator for MtAwc with k∗ and wj , j ∈ P \ {∗}: S runs the real sub-
protocol, as it knows ki for i ∈ NC. Notice that S chose wi for i ∈ H
as in the real protocol, while for j ∈ C, S extracted wj from πkg

j in
KeyGen. The only unknown share of x is the special player’s w∗. For
j ∈ P\{∗}, S runs the real sub-protocol; decrypting ck∗wj to obtain

39

µ∗,j ; and checking that µ∗,jP + B∗,j = k∗Wj . If so, since S also knows
k∗ and wj , it computes ν∗,j = k∗wj − µ∗,j mod q.

(d) Respondent for MtAwc with kj , j ∈ P\{∗} and w∗: S knows W∗ = w∗ ·P
but not w∗, so it samples a random µj,∗

$←− Z/qZ and sets ckjw∗ ←
Enc(pkj , µj,∗), and Bj,∗ := kj ·W∗−µj,∗ ·P . Finally S sends the cipertexts
and the point.

Note that at this point S knows:
– ki for each i ∈ P, wj for each j ∈ P \ {∗}
– αi,j , i ∈ NC, j ∈ P\{i} as initiator for MtA, αj,i, βj,i, i ∈ NC, j ∈ P\{i}

as respondent for MtA
– µi,j , νi,j , i ∈ NC, j ∈ P\{i} as initiator for MtAwc, µj,i, νj,i, i ∈ NC, j ∈

P \ {i} as respondent for MtAwc

S computes δ∗ for the special player and δi for i ∈ H as per protocol.
Note that S does not know the internal values from the MtA and MtAwc
protocols executed by two players that are both controlled by the adversary.
Thus S is not able to compute the individual values σj and δj for j ∈ C;
nor can S compute σ∗ since it doesn’t know the value w∗. However S can
compute:

σC =
∑
i∈C

σi =
∑
i∈C

(kiwi +
∑

j∈P\{i}

µi,j +
∑

j∈P\{i}

νj,i)

=
∑
i∈C

∑
j∈P\{i}

(µi,j + νj,i) +
∑
i∈C

kiwi

=
∑
i∈C

∑
j∈C,j ̸=i

(µi,j + νj,i) +
∑
i∈C

∑
j∈NC

(µi,j + νj,i) +
∑
i∈C

kiwi

=
∑
i∈C

∑
j∈C,j ̸=i

(µi,j + νi,j) +
∑
i∈C

∑
j∈NC

(µi,j + νj,i) +
∑
i∈C

kiwi

=
∑
i∈C

∑
j∈C,j ̸=i

kiwj +
∑
i∈C

∑
j∈NC

(µi,j + νj,i) +
∑
i∈C

kiwi

=
∑
i∈C

∑
j∈NC

(µi,j + νj,i) +
∑
i∈C

∑
j∈C

kiwj

since it knows all the values {kj}j∈P, {wj}j∈P,j ̸=∗, µi,j and νj,i in MtAwc
with the honest players and µi,∗, ν∗,i from special player.
Furthermore, up until the moment σC is used to check whether the execution
is semi-correct or not, every time a player Pi for some i ∈ NC is corrupted,
S updates σC ← σC + σi. If the special player is corrupted, the simulator
rewinds, and σC is recomputed.

Phase 3: S broadcasts δ∗ and receives {δj}j∈C from A. Let δ̃ :=
∑

i∈P δi. S broad-
casts T∗ = σ∗ ·P +ℓ∗ ·H (S can compute T∗ since it knows σ∗ ·P). As S does

40

not know σ∗, it simulates the ZK proof π̃∗. Next, S extracts values σ̂j , ℓ̂j for
j ∈ C from the proofs π̃j received from A. Let σ̂C :=

∑
j∈C σ̂j . Here again

σ̂C is updated to include σ̂i if a player Pi is adaptively corrupted for i ∈ H.
Phase 4: S broadcasts d∗ which decommits to Γ∗, and for all j ∈ C, A reveals dj

which decommits to Γj . S honestly performs the ZK proof πγ
∗ ; and receives

πγ
j , from which S can extract γj . These are consistent with the values used

in Phase 1 thanks to the binding property of the commitment scheme. Now
S can compute

δ = (
∑
i∈P

ki) · (
∑
i∈P

γi) = kγ, where γ =
∑
i∈P

γi · P.

Note that A may have used different values γ̃j in the MtA protocol than the
γj extracted here, hence we denote them with a tilde. At this point S can
detect if the values published so far by A are consistent (the sum of the γj ,
not each individual γj); note that S will behave differently in Phases 5, 6 and
7 depending on this detection. To detect inconsistencies, S first computes

R̃ = δ̃−1 ·
∑
i∈P

Γi.

Then using the values {kj}j∈C extracted in Phase 1, and its own values

{ki}i∈NC, S checks if
∑

i∈P ki · R̃ = P . If equality holds then R̃ = k−1 · P
and δ̃ = kγ = δ.
The simulator can also detect if the values σj computed in Phase 2 are
consistent with those used to compute points Tj in Phase 3; in particular
S checks that σ̂C = σC. We thus distinguish two types of executions: an
execution is said to be semi-correct if∑

i∈P

kiR̃ = P and σ̂C = σC.

Conversely, if either of the above equalities do not hold, the execution is said
to be non semi-correct.
Note that using EC points to check the consistency of δ and δ̃ avoids the
need for proofs of affine transformation which were necessary in [CGG+20]
to attain security against malicious adversaries.
Now S adapts its behaviour depending on the type of execution:
– Semi-correct execution:
(a) S invokes oracle OR to obtain R = (rx, ry).

(b) S sets Γ̂∗ := δ̃·R−
∑

i∈P,i̸=∗ Γi, so that R = δ̃−1
(
Γ̂∗ +

∑
i∈P,i̸=∗ Γi

)
.

Then S rewinds A to the decommitment step in Phase 4, and equiv-
ocates P∗’s commitment so that it decommits to Γ̂∗ instead of Γ∗.

– Non semi-correct execution: S simply moves on to Phase 5.
Phase 5: – Semi-correct execution: S publishes R̄∗ = P−

∑
i∈P\{∗} ki·R together

with π′
∗: a simulated ZKP of consistency with ck∗ = Enc(pk∗, k∗; r∗) (note

that in this case R̄∗ ̸= k∗ ·R due to the rewinding).

41

– Non semi-correct execution: S publishes R̄∗ := k∗ ·R together with
π′
∗: a real ZKP of consistency with ck∗ (this needn’t be simulated).

Phase 6: – Semi-correct execution: S publishes S∗ := Q −
∑

j∈P\{∗} σjR to-

gether with π′′
∗ : a simulated ZKP of consistency with T∗ (again in this

case the simulated S∗ ̸= σ∗ ·R due to the rewinding).
– Non semi-correct execution: S publishes S∗ := σ∗R together with

π′′
∗ : a real ZKP of consistency with T∗ (this needn’t be simulated).

In a non semi-correct execution, at least one of the the adversary’s proofs
π′
j or π′′

j for some j ̸= ∗ will fail, and the protocol will abort.

Phase 7: S invokes the second oracle OSign(sk,m;R) with input m and R, where R was
computed in one of the previous offline phases (in particular in one that was
semi-correct, since it concluded successfully). In return, S receives the valid
signature (r, s) on m, where r = rx mod q.
At this point S knows sC =

∑
j∈C sj (i.e., the summed value of all the sj

held by the corrupted players) because sC = kCm + σCr where σC is as
defined in the simulation of Phase 2 and kC =

∑
j∈C kj . As in the static

case, if A cheats in Phase 7 – denoting {s̃i}i∈C the values that S receives
from A in Phase 7, and s̃C :=

∑
i∈C s̃i – it is possible that sC ̸= s̃C. S

also knows sH =
∑

i∈H si since it honestly ran the protocol for i ∈ H. So S

computes the share s∗ consistent with (r, s) and sH∪C as s∗ := s − sH∪C.
Finally, S broadcasts this value s∗.

Note on the dynamic sets. Since the set of honest and corrupted players
may change throughout the protocol, if S has computed σi as an honest Pi,
and Pi is subsequently corrupted, one can simply consider i ∈ C, instead of
i ∈ H and nothing changes. This is because once Pi is corrupted, it will be
considered as malicious, with the difference that its σi was computed by S

as opposed to being extracted. The proofs and checks of Phases 4, 5, and 6
ensure that σi does not change before Phase 7.

Simulating Identification

Simulating Identification of aborts in Key Generation – Description of S. If an
abort occurs in the Key Generation protocol, S runs the identification protocol as
would an honest Pi for each i ∈ NC (i.e. as described on page 15. Furthermore,
if some player P raises a compliant against P∗ (simulated by S), then P is
detected as a cheater since the simulation key generation is done in such a way
that corrupted players receive values which pass the verification check.

Simulating Identification of aborts in Pre-Sign and Sign – Description of S. For
all i ∈ H, i.e. honest – but not special – players Pi, S just runs the identification
procedure as would Pi in a real execution. Hence in the following phases we only
describe how S simulates P∗. Consider the problematic types of abort listed on

42

page 19. For an abort of type 1, 3 or 5 occurs, S runs the real identification
procedure.

If an abort of type 2 occurs due to S announcing that the check on µ∗,j fails
(for some j ∈ C), it runs the real identification procedure. Conversely, if some
player Pj for j ∈ C complains about the µj,∗ it received, observe that: if µj,∗
is the real decryption of ckjw∗ (which it must be if the proof for RDec provided
by Pj is valid), then since the point Bj,∗ sent by S to Pj was computed as
Bj,∗ := kj ·W∗ − µj,∗, necessarily the equality test will pass. Observe that the
value νj,∗ remain secret in this identification protocol; hence no other (corrupted)
party can check that S knows νj,∗ such that Bj,∗ = νj,∗ · P , and the simulation
remains undetected.

If an abort of type 4 occurs, S follows the real procedure for aborts up until
it needs to prove knowledge of σ∗ such that S∗ = σ∗ ·R. Since S does not know
σ∗, it simulates the proof π∗

log.

Indistinguishability of real and simulated executions against adaptive
adversaries

The simulation of a semi-correct execution

Lemma 4. Assuming the strong root and C-low order assumptions hold for Gen;
the CL encryption scheme is δs-smooth; the HSM problem is δHSM-hard; and
the commitment scheme is non-malleable and equivocable; then on input m the
simulation either outputs a valid signature (r, s) or aborts, and is computationally
indistinguishable from a real semi-correct execution.

The proof of Lemma 4 very much resembles that of Lemma 2. Hence many
details are here omitted.

Proof. Since, in all considered protocols, S simulates parties Pi for i ∈ H by
running the real protocol exactly as would Pi one only needs to prove that S’s
simulation of P∗ is indistinguishable from a real execution.

Indistinguishability of identification procedure in semi-correct executions. This
follows immediately from the static case; it suffices to replace P1 with P∗ in the
relevant paragraph in proof of Lemma 2.

Indistinguishability of Key Generation and Key refresh. For Key Generation,
indistinguishability follows immediately from the static case (replacing 1 with
*). Regarding Key Refresh, as long as there is no switching of special player, the
simulator runs the real protocol, and the simulation is perfect. Conversely, in a
KRSS, all players which are not the old or new special player are consistent; as
long as neither of these is corrupted during KRSS, the simulation is perfect. If
the newly chosen special player is corrupted, S rewinds again. And it is assumed
that during a KRSS, the old special player is not corrupted.

43

Indistinguishability of signature protocol in semi-correct executions. The differ-
ences between A’s real and simulated views are the following:

1. S does not know w∗ so it cannot compute {ckjw∗}j∈P\{∗} as in a real execu-
tion of the protocol. However as in the static case (replacing ’1’ with ’*’), S
can extract kj from πj for each j ∈ C and it knows kj for each j ∈ H. It then
computes the problematic ciphertexts as in the static case (cf. Lemma 2),
and – as argued there – A’s real and simulated view of these ciphertexts
follow identical distributions.

2. S computes Γ̂∗ := δ̃ · R −
∑

i ̸=∗ Γi, and equivocates its commitment c∗ s.t.

d∗ decommits to Γ̂∗. Once again, the proof that this change is not noticeable
to A is identical to the static case (replacing ’1’ with ’*’, and the set S with
all players P). And using the same reasoning as in proof of Lemma 2, one
can demonstrate that the following claim holds:

Claim. If the CL encryption scheme is δs-smooth and the HSM problem is
δHSM-hard, then no probabilistic polynomial time adversary A – interacting
with S – can notice the value of k∗ in the computation of R being replaced
by the (implicit) value k̂ with probability greater than 2δHSM + 3/q + 4δs.

Hence from the smoothness of the CL scheme, and the hardness of the HSM
problem, this change is unnoticeable to A.

3. Let us denote k̂ ∈ Z/qZ the randomness (unknown to S) used by oracle OR

to produce R. With overwhelming probability, k ̸= k̂. Hence there is also a
difference in the values k∗ ·R and k̂∗ ·R = P −

∑
i ̸=∗ ki ·R after the rewind

in phase 4. For the same reasons as discussed in proof of Lemma 2, item 3.
(i.e. smoothness of encryption scheme and simulatability of the ZKP π∗),
this change is indistinguishable to A.

4. The same reasoning as in the previous item can be applied to S∗ = σ∗ · R
and S∗ = Q−

∑
i ̸=∗ Si.

5. S does not know σ∗, and thus cannot compute s∗ as in a real execution.
However, as in the static case, since we are in a semi-correct execution the
value s∗ computed by S is consistent with a correct share for P∗ for a valid
signature (r, s), which makes the simulation of Phase 7 indistinguishable
from a real execution from A’s view.

Non semi-correct executions

Once again, the proof of Lemma 5 is essentially identical to that in the static
case, substituting P1 for P∗.

Lemma 5. Assuming the strong root and C-low order assumptions hold for Gen;
it holds that the view of the simulation, from an adaptive adversary’s view, is
computationally indistinguishable from a non-semi-correct real execution.

Combining Lemmas 4 and 5, it holds that if the strong root an C-low order
assumptions hold for Gen; the CL encryption scheme is ind-cpa-secure and the
commitment scheme is non malleable and equivocable, then the (n − 1, n) EC-
DSA protocol described in Figures 8,4, 5 and 6 is enhanced threshold existentially
unforgeable against adaptive adversaries.

44

6 Efficiency comparisons

We here compare the theoretical complexity of our protocol to that of [CGG+20]
for the standard NIST curve P-256 corresponding to 128 security level. For the
encryption scheme, we start with a 112 bit security as in [CGG+20], but also
study the case where its level of security matches that of the elliptic curve.

The figures we provide count the number of group and ring elements which
are both sent and received from a given party, including broadcasts; whereas
the figures provided in [CGG+20, Fig 1] only include the data sent from one
player to another. We focus on pre-signing and signing sub-protocols; these are
the most critical as they will be most frequently executed.

We compute the communication costs for both protocols presented in [CGG+20];
one which benefits of only having three rounds, and their six round protocol
which benefits of a more efficient identification procedure if an abort occurs.

Regarding our work, computations are based on the sub-protocols described
in Section 3. The resulting figures are provided in Fig. 9. For our choice on the
size of the discriminant ∆K defining the class group and the resulting number of
bits required to represent elements, we refer the reader to [CCL+20]. We further
reduce the representation of class group elements by a factor 3/4 by relying
on the simple yet elegant compression technique presented by Dobson et al in
[DGS20]. Fig. 9 clearly demonstrates the impressive efficiency gains we attain,
reducing by a factor 10 the bandwidth consumption compared to [CGG+20].

Protocol Curve size λ (bits) ∆K (bits) N (bits) Total Signing (KBytes)

Canetti et al.’s 6 rounds 256 112 - 2048 31.3t+ 1.0

Canetti et al.’s 3 rounds 256 112 - 2048 31.6t+ 1.3

Ours 256 112 1348 - 3.4t+ 2.0

Canetti et al.’s 6 rounds 256 128 - 3072 45.1t+ 1.5

Canetti et al.’s 3 rounds 256 128 - 3072 45.3t+ 1.8

Ours 256 128 1827 - 4.1t+ 2.3

Fig. 9: Comparative sizes (in bits) & comm. cost (in Bytes)

Comparing Key Refresh. One of the main benefits of our protocol compared
to that of Canetti et al. is the huge improvement provided by our Key Refresh
protocol for reasonable numbers of users. Precisely, in [CGG+20] each player is
required to generate a new Paillier’s (RSA) modulus N together with a proof
that this was constructed correctly. For a 112 bits level of security, in their n out
of n Key Refresh protocol requires essentially 5n2 + n elements of size |q| and
n2 + 163n ring elements (of size 2|N | to be sent between all players. Whereas
our Key Refresh requires 3(n2+n) elements of size |q|; 4n2+5n group elements
from the class group and n2 + n challenges, of size |∆K |/2+ 80+ λ. Concretely,

45

for n = 5, λ = 112 this results in 420KBytes of data being transmitted in their
protocol, as opposed to 28KBytes in ours; i.e. a reduction by a factor 15.

Acknowledgements. The work of the first and third authors was supported
by the French ANR SANGRIA project (ANR-21-CE39-0006). The work of the
second author was in part support by the Programma ricerca di ateneo UNICT
2020-22 linea 2. The work of the third author was supported by the French
PEPR Cybersecurité SecureCompute project (ANR-22-PECY-0003). The work
of fifth author was supported by ERC (ERC-2020-COG).

References

BH01. J. Buchmann and S. Hamdy. A survey on IQ cryptography. In Public Key
Cryptography and Computational Number Theory, pages 1–15. De Gruyter
Proceedings in Mathematics, 2001.

BKSW20. K. Belabas, T. Kleinjung, A. Sanso, and B. Wesolowski. A note on the low
order assumption in class group of an imaginary quadratic number fields.
Cryptology ePrint Archive, Report 2020/1310, 2020. https://eprint.iacr.
org/2020/1310.

Boy86. C. Boyd. Digital multisignature. Cryptography and Coding, pages 241–246,
1986.

CCL+19. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
Two-party ECDSA from hash proof systems and efficient instantiations.
In CRYPTO 2019, Part III, LNCS 11694, pages 191–221. Springer, Hei-
delberg, August 2019.

CCL+20. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
Bandwidth-efficient threshold EC-DSA. In PKC 2020, Part II, LNCS
12111, pages 266–296. Springer, Heidelberg, May 2020.

CGG+20. R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In
ACM CCS 2020, pages 1769–1787. ACM Press, November 2020.

CH89. R. A. Croft and S. P. Harris. Public-key cryptography and reusable shared
secret. Cryptography and Coding, pages 189–201, 1989.

CL14. R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in
secure multiparty computation. In ASIACRYPT 2014, Part II, LNCS 8874,
pages 466–485. Springer, Heidelberg, December 2014.

CL15. G. Castagnos and F. Laguillaumie. Linearly homomorphic encryption from
DDH. In CT-RSA 2015, LNCS 9048, pages 487–505. Springer, Heidelberg,
April 2015.

CLT18. G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure
unrestricted inner product functional encryption modulo p. In ASI-
ACRYPT 2018, Part II, LNCS 11273, pages 733–764. Springer, Heidelberg,
December 2018.

CP93. D. Chaum and T. P. Pedersen. Wallet databases with observers. In
CRYPTO’92, LNCS 740, pages 89–105. Springer, Heidelberg, August 1993.

CS97. J. Camenisch and M. Stadler. Efficient group signature schemes for large
groups (extended abstract). In CRYPTO’97, LNCS 1294, pages 410–424.
Springer, Heidelberg, August 1997.

46

https://eprint.iacr.org/2020/1310
https://eprint.iacr.org/2020/1310

DDN00. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

Des88. Y. Desmedt. Society and group oriented cryptography: A new concept.
In CRYPTO’87, LNCS 293, pages 120–127. Springer, Heidelberg, August
1988.

DGS20. S. Dobson, S. D. Galbraith, and B. Smith. Trustless groups of unknown or-
der with hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196,
2020. https://eprint.iacr.org/2020/196.

DKLs18. J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold
ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security
and Privacy, pages 980–997. IEEE Computer Society Press, May 2018.

DKLs19. J. Doerner, Y. Kondi, E. Lee, and a. shelat. Threshold ECDSA from
ECDSA assumptions: The multiparty case. In 2019 IEEE Symposium on
Security and Privacy, pages 1051–1066. IEEE Computer Society Press,
May 2019.

Fel87. P. Feldman. A practical scheme for non-interactive verifiable secret sharing.
In Proc. of FOCS 87, pages 427–437. IEEE Computer Society, 1987.

GG18. R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast
trustless setup. In ACM CCS 2018, pages 1179–1194. ACM Press, October
2018.

GG20. R. Gennaro and S. Goldfeder. One round threshold ECDSA with identi-
fiable abort. Cryptology ePrint Archive, Report 2020/540, 2020. https:
//eprint.iacr.org/2020/540.

GGN16. R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet security. In
ACNS 16, LNCS 9696, pages 156–174. Springer, Heidelberg, June 2016.

Gil99. N. Gilboa. Two party RSA key generation. In CRYPTO’99, LNCS 1666,
pages 116–129. Springer, Heidelberg, August 1999.

GJKR96a. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient
sharing of RSA functions. In CRYPTO’96, LNCS 1109, pages 157–172.
Springer, Heidelberg, August 1996.

GJKR96b. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS
signatures. In EUROCRYPT’96, LNCS 1070, pages 354–371. Springer,
Heidelberg, May 1996.

IOZ14. Y. Ishai, R. Ostrovsky, and V. Zikas. Secure multi-party computation with
identifiable abort. In CRYPTO 2014, Part II, LNCS 8617, pages 369–386.
Springer, Heidelberg, August 2014.

Lag80. J. Lagarias. Worst-case complexity bounds for algorithms in the theory of
integral quadratic forms. Journal of Algorithms, 1(2):142 – 186, 1980.

Lin17. Y. Lindell. Fast secure two-party ECDSA signing. In CRYPTO 2017,
Part II, LNCS 10402, pages 613–644. Springer, Heidelberg, August 2017.

LN18. Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. In
ACM CCS 2018, pages 1837–1854. ACM Press, October 2018.

MR01. P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signa-
tures. In CRYPTO 2001, LNCS 2139, pages 137–154. Springer, Heidelberg,
August 2001.

MR04. P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signa-
tures. Int. J. Inf. Sec., 2(3-4):218–239, 2004.

PR05. R. Pass and A. Rosen. Concurrent non-malleable commitments. In 46th
FOCS, pages 563–572. IEEE Computer Society Press, October 2005.

47

https://eprint.iacr.org/2020/196
https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/540

Sha79. A. Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

Sho00. V. Shoup. Practical threshold signatures. In EUROCRYPT 2000, LNCS
1807, pages 207–220. Springer, Heidelberg, May 2000.

Van92. S. Vanstone. Responses to nist’s proposal. Communications of the ACM,
35:50–52, July 1992. (communicated by John Anderson).

48

