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ABSTRACT

This article deals with 3D-face model and 3D-pose extrac-
tion from a small set of couples of 2D-3D corresponding-
points. Major drawbacks of current 3D model extraction
solutions are either the computationally complexity or the
over-simplified modeling. As it happens, applications like
face tracking or augmented reality need a rapid, robust and
descriptive-enough solution. The solution we propose is
based on a two step approach in which an approximation
of a 3D-face model and a 3D pose is computed and then
refined in order to extract more precise parameters. The
contribution of this paper is to describe how to efficiently
(rapidly and robustly) solve the problem of 3D-face model
and 3D pose extraction. The results obtained show rapid
and robust performances which could be exploited in a more
global real-time face tracking application.

1. INTRODUCTION

In the specific case of face tracking, current solutions go
from pixel-based to 3D model-based approaches. We be-
lieve that 3D information necessarily has a role to play dur-
ing the tracking. 3D-pose and 3D-face model give a 3D
information which may help in some ambiguous situations
(occultation, face orientation, luminosity variation). This
paper aims at improving the tracking techniques based on
3D-face model. More precisely, we propose a robust and
rapid 3D-face model extraction and 3D-pose extraction.

The 2D features points stemming from automatic algo-
rithms [1, 2] are often noisy (2D positions are un-precise)
and their number is small. Our solution to extract a 3D-face
model, with the knowledge of 2D features points, takes care
of those difficult constraints and moreover is well-suited for
real-time applications.

The solution is divided in two steps. The first step re-
covers an approximation of the 3D-face model (details are
given in section 3), the second step deals with the improve-
ment of this 3D-face model and the 3D-pose extraction (ex-

planations are given in section 4).

2. GENERAL ENERGETIC FORMULATION

With a classical pinhole camera, the projection T of a 3D
point M ′

i = (X ′

i, Y
′

i , Z ′i)
t (expressed in an object coordi-

nate system) gives a 2D point m′

i = (u′i, v
′

i)
t (expressed

in an image coordinate system) which may be expressed in
homogeneous coordinate by the equation 1 ([3] chap.5). f

is the camera’s focal length; ku and kv are the horizontal
and vertical scale factors (measured in pixels/m); u0 and v0

are principal point coordinates; (tx, ty, tz)
t is the transla-

tion vector and rij:i,j∈[1,3] are rotation matrix coefficients.
Figure 1 illustrate the different coordinate systems and the
projection of a 3D point M ′

i to a 2D point m′

i.

O

X

iY

iZ

Mi

’

’
im

i

iu

v

X

Y

Z

x

z

y

object coordinate system

image coordinate system

camera coordinate system

’ ’

’

’

’

v

u

i

Fig. 1. The different coordinate systems

To extract the 3D-face model and the 3D-pose, we min-
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i , with

{
αu = −ku.f

αv = kv.f
. (1)

imize the distance error E (see equation 2) between the
observed set of 2D image points {(ui, vi)

t} and the pro-
jected set of points {(u′i, v

′

i)
t}. The projected set of points

{(u′i, v
′

i)
t} are obtained by projecting all the corresponding

3D-face model vertex using the T projection (see equation
1).

E =
∑

i

(ui − u′i)
2 + (vi − v′i)

2. (2)

Note that the 3D-face model vertex used in the minimiza-
tion (equation 2) belong to a ”shaped 3D-face model”. By
the term ”shaped 3D-face model”, we mean that morphol-
ogy and current emotions of the treated face are caught by
the 3D-face model. To obtain this ”shaped 3D-face model”
we displace the vertex of a known average 3D-face model
named CANDIDE-3 [4]. Figure 2 shows the CANDIDE-
3 wireframe.

Fig. 2. Ahlberg CANDIDE-3 wireframe model

Thus, projected set of points {(u′i, v
′

i)
t} (see equation 2)

are the result of a shape displacement (Si.σ), an animation
displacement (Ai.α) and a projection (T ) of an CANDIDE-
3 average 3D-face model as expressed in the following equa-
tion: 



s.u′i
s.v′i
s



 = T.[Mi + Siσ + Ai.α
︸ ︷︷ ︸

M ′

i

]. (3)

Si and and Ai are respectively the shape unit and the an-
imation unit matrix, expressing the possible displacement
of a vertex i. The displacement intensity is expressed by
the weighting vectors σ and α. More details are given in
Ahlberg’s report [4]. Equation 2 minimization gives param-
eters T , σ, and α.

The minimization problem of equation 2, if processed
directly, is difficult, not rapid enough for real-time applica-

tions and not always robust. We thus decompose the prob-
lem in two steps: first (section 3), the approximation of the
3D-face model shape (T , σ and α are coarsely computed)
and second (section 4), the extraction of the 3D-pose and
the improvement of the 3D-face model shape (T and 3D-
model’s shape are refined). Figure 3 summarise the compu-
tations order.

and 3D pose
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Fig. 3. General scheme of the 3D-face model and 3D pose
extraction

3. 3D-FACE MODEL SHAPE APPROXIMATION

3.1. Pose approximation

The computation of projection T (given in equation 2) is
not an easy task; a direct solving leads to a homogeneous
linear system. Solutions in the literature such as [5] need a
high number of couples of 2D-3D corresponding-points. In
the case of Human face, there is a small number of salient
points; projection T should then be simplified.

This simplification consists in supposing that all the 3D
vertex are in a same 3D plan. This is a realist hypothesis
when there are small depth differences between 3D points
in comparison to the distance between the camera and the
face. The projection T becomes a 2× 4 matrix such that:

„

ui

vi

«

=

„

(αu.r1i + u0.r3i)/tz αu.tx/tz + u0

(αv.r2i + v0.r3i)/tz αv.ty/tz + v0

«

i∈[1,3]

.

„

Mi

1

«

=

(
a0 b0 c0 d0

a1 b1 c1 d1

)

︸ ︷︷ ︸

T2×4

.

(
Mi

1

)

.

By canceling, from equation 2, each E’s partial deriva-
tive in function of T ’s parameters, we obtain 2 linear sys-
tems (σ and α are set to zero). The first linear system is
given below (the second linear system is obtained by re-
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placing ui by vi and a0 by a1, b0 by b1 and so on):
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(4)

Those two systems are solved by using classical linear
algebra tools. Note that the matrix involved in that system
is very small (matrix size=4 × 4); its computation and its
inversion is very rapid. A more robust T2×4 projection may
be computed by adding a robust function into equation 2.
The robust function may for example take the image gradi-
ent into account.

3.2. Shape approximation

Once T2×4 projection is computed, shape adaptation is pro-
cessed. The minimization problem of equation 2, is solved
by fixing T2×4 projection. Equation 2 is re-written such
that:

E =
∑

i

[Ui −N.Si.σ]t.[Ui −N.Si.σ], (5)

with Ui =

(
u′i
v′i

)

− T.

(
Mi

1

)

,

and N = T2×3.

We obtain a linear system (equation 6) by canceling the par-
tial derivative ∂E

∂σ :

(
∑

i

St
i .N

t.N.Si)

︸ ︷︷ ︸

A

.σ =
∑

i

St
i .N

t.Ui

︸ ︷︷ ︸

B

. (6)

Solution is such that σ = (AtA)−1At.B. First, note that
couples of 2D-3D corresponding-points used for the fill-
ing of matrix A and vector B should be chosen as non
animated points. Second, remark that (AtA) may be non-
invertible because of a too small number of couples of 2D-
3D corresponding-points. The matrix A when non-invertible
owns zero filled lines and columns. The diagonal coeffi-
cient, where a cross zero-line and a zero-column appears,
could be set a non-zero value. Indeed, the corresponding
σ’s coefficient is not influenced by a single of the set of
couples of 2D-3D corresponding-points. This σ’s coeffi-
cient will thus be equal to zero. Third, one should take care
that the solution belongs to the valid domain; each σ’s co-
efficient belongs to the range [−1, 1]. The matrix involved
in the system is small and sparse; its computation and its
inversion are very rapid. The same reasoning may be done
for α computation.

4. 3D-FACE MODEL POSE AND 3D-FACE MODEL
SHAPING

In the previous section, we explained how to rapidly obtain
a first approximation of a 3D-pose (matrix T2×4) and a first
shaping of a 3D-face model. Our objective is now to recover
the depth information (tz) and to extract a more descriptive
pose.

4.1. 3D-pose extraction

To extract extrinsic parameters (rotation and translation), we
still have to solve the equation 2. A well known result is that
intrinsic parameters may roughly be approximated without
important reconstruction error [6, 7]. Intrinsic parameters
are thus coarsely fixed1 and extrinsic parameters are ex-
tracted with the well known POSIT DeMenthon algorithm
[8].

4.2. 3D final shaping

Once extrinsic parameters are computed, we observe that
the mapping between 2D points and 3D corresponding-points
is not totally correct. This un-correct mapping is due to the
approximation made on T (explained in subsection 3.1) and
the shape and animation units displacements which do not
fully capture the specific shape of the treated face. To ob-
tain the exact mapping we displace each 3D point separately
with taking caution to erroneously localize 2D image points
(outlier points). At this stage, z-coordinates Zi of each Mi

points should not move anymore; indeed z-coordinates cor-
respond to the object depth. The unknown Xi and Yi coor-
dinates are then easily obtained by solving the linear equa-
tion 7 for each couple of 2D-3D corresponding-points. A
final check is processed to prevent 3D-mesh turnaround and
strong vertex displacements.

„

((ui − u0).r31 − αu.r11) ((ui − u0).r32 − αu.r12)
((vi − v0).r31 − αv.r21) ((vi − v0).r32 − αv.r22)

«

.

„

Xi

Yi

«

=

„

(αu.r13 − (ui − u0).r33).Zi + αu.tx − (ui − u0).tz

(αv.r23 − (vi − v0).r33).Zi + αv.ty − (vi − v0).tz

«

.

(7)

5. RESULTS

The principal steps of our technique for the extraction of the
3D-face model and its 3D pose are illustrated in Figure 4.
Figure 4(a) shows the first image of the Foreman sequence.
Figure 4(b) is the result of the shape approximation step
(sub-section 3.2); grey points represent some face-features
(their location has been set manually but could have been
obtained automatically using feature detectors), and black

1f is set to 0.05, ku and kv are set to 5000, point (u0, v0)t is set to the
image center
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points represent the corresponding-points obtained by pro-
jecting the vertex of the 3D-face model. Figure 4(c) shows
the mesh of the 3D-face model projected onto the Foreman
image. We can notice that the mapping between 2D points
and 3D corresponding-points is not totally correct. This
un-correct mapping is due to an approximation on T (sub-
section 3.1) and to the shape animation units which are too
much general. This un-correct mapping is corrected by the
3D final shaping explained in sub-section 4.2. Figure 4(d) is
the WRML representation of the final 3D-face model with
its 3D pose.

Those results are interesting for face tracking. First, the
3D-face model is obtained very rapidly without any trian-
gulation. Second, extrinsic parameters (rotation and trans-
lation) are well adapted to model the face trajectory and pre-
dict the face position at time t knowing position at time t−1.
Moreover, in the case of occultation, we could reasonably
guess that the 3D model position do not change much and
we could recover the face more easily when it re-appeared.

(a) Image from Foreman
sequence

(b) 2D points (grey) and
projected 3D points (black)

(step : shape approximation)

(c) Mesh of the
3D-face model

(d) Illustration of the
3D-face model

seen by the camera

Fig. 4. Illustration of some steps of the extraction of the
3D-face model and its 3D pose

6. CONCLUSION

In this paper we deal with the problem of rapid and robust
3D-face model and 3D-pose extraction. To that purpose,
we use an average 3D-face model and few couples of 2D-
3D corresponding-points. A succession of robust and rapid

computations lead to a 3D-face model exactly fitted and a
complete 3D projective camera pinhole model (camera’s pa-
rameters, rotation and translation).
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