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Improving the Arithmetic of Elliptic Curves in the Jacobi Model

Sylvain Duquesne
I3M, (UMR CNRS 5149) and Lirmm, (UMR CNRS 5506), Université Montpellier II.

CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.

Abstract

The use of elliptic curve cryptosystems on embedded systems has been becoming widespread for some years. Therefore
the resistance of such cryptosystems to side-channel attacks is becoming crucial. Several techniques have recently
been developed. One of these consists of finding a representation of the elliptic curve such that formulae for doubling
and addition are the same. Until now, the best result has been obtained by using the Jacobi model. In this paper, we
improve the arithmetic of elliptic curves in the Jacobi model and we relax some conditions required to work efficiently
on this model. We thus obtained the fastest unified addition formulae for elliptic curve cryptography (assuming that
the curve has a 2-torsion point).
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1. Introduction

Because of their short key length and their long-
term strength, elliptic curve cryptosystems have
become very popular. They have recently been rec-
ommended by NSA. This small key size is especially
attractive for devices with limited capacities, like
smart cards. However, such devices are sensitive to
side-channel attacks. In the following, we focus on
simple attacks since it is always possible to intro-
duce countermeasures against differential attacks
[5]. Such simple attacks are based on the difference
of complexity between doubling and addition oper-
ations on an elliptic curve. They can be achieved
by analysing information like timing [6], power con-
sumption [7], electromagnetic radiation [9] or any
other side-channel information.
Several methods have been developed to obtain an
arithmetic which is resistant to side-channel at-
tacks, and most of them can be found in [4]. Some
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of these methods consist in rewriting the addition
formulae so that it can be used for doubling a point.
In this way, the doubling of a point and the addi-
tion of two distinct points become indistinguishable
and simple side-channel attacks are staved off. Un-
til now, the most efficient unified addition formulae
have been obtained by using the Jacobi form of an
elliptic curve with a 2-torsion point [2]. Based on
curve representation, the authors present formulae
requiring 14 field multiplications if some additional
conditions are satisfied, and 16 unconditionally.
In this paper, we will improve these formulae. The
result of this enhancement is that the unified ad-
dition requires only 12 field multiplications under
conditions and 14 unconditionally. Moreover, we
relax the conditions evoked above. Thus, we obtain
the most efficient unified addition for an elliptic
curve containing a 2-torsion point (which means
that the order of the curve is even).

The paper is organized as follows. In Section 2 we
review the Jacobi form of an elliptic curve and the
unconditional unified addition formulae obtained
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in [2]. In Section 3, we give our improved uncondi-
tional formulae and discuss the differences with the
previous ones. Then, in Section 4, we explain how
these formulae can again be improved under some
conditions and how we are relaxing the conditions
given in [2]. Finally, we conclude in Section 5.

2. Elliptic curves in Jacobi form

In this paper, the base field is a finite prime field
Fp where p is a large prime number. In fact, it is
easy to generalize the results to any finite field of
characteristic greater than or equal to 5, but this is
of no interest for cryptography in real life.

Let E be an elliptic curve defined over such a field.
It is well known that E can be represented by the
set of points (x, y) in F

2
p satisfying an equation of

the form

E : y2 = x3 + a4x+ a6,

together with a point at infinity (denoted O in the
following) [10]. Constants a4 and a6 are elements
of Fp such that 4a3

4 + 27a2
6 6= 0. In [8], Liardet

and Smart explain how the embedding of an elliptic
curve as the intersection of two quadrics in P

3 can
be used to produce unified addition formulae. In [2],
Brier and Joye are generalize and improve this idea
by considering the (extended) Jacobi quartics given
by equations of the form

Y 2 = εX4 − 2δX2Z2 + Z4. (1)

With this equation, a point is represented by a
triplet (X,Y, Z) satisfying equation (1). Let us
note that two triplets (X1, Y1, Z1) and (X2, Y2, Z2)
represent the same point if and only if there is an
element k in F

∗

p such that X1 = kX2, Y1 = k2Y2

and Z1 = kZ2.
It is proved in [2] that any elliptic curve defined over
Fp having a 2-torsion point is birationally equiva-
lent to such a quartic.
Let (θ, 0) be such a 2-torsion point, then constants
ε and δ are defined by

ε = −3θ2 + 4a4

16
,

δ =
3

4
θ,

and the birational transformations are given by

ψ :



















(θ, 0) → (0,−1, 1),

O → (0, 1, 1),

(x, y) →
(

2(x− θ), (2x+ θ)(x − θ)2 − y2, y
)

,

and

ψ−1 :



















(0, 1, 0) → O,

(0,−1, 0) → (θ, 0),

(X,Y, Z) →
(

2(Y +Z
2)

X2 −
θ

2 ,Z
4(Y +Z

2)−3θ
2

X3

)

.

Of course, this means that all the curves cannot
be transformed into an extended Jacobi quartic. In
particular, the cardinality of a curve transformable
into such a form is even. However, this is more
general than the intersection of two quadrics [8] or
the Montgomery form [4] whose cardinality can be
divided by 4.

Let us now give the formulae for the addition

(X1, Y1, Z1) + (X2, Y2, Z2) = (X3, Y3, Z3).

We have































X3 = X1Z1Y2 + Y1X2Z2,

Y3 = (Z2
1Z2

2+εX2
1 X2

2 )(Y1Y2−2δX1X2Z1Z2)

+2εX1X2Z1Z2(X2
1 Z2

2+Z2
1X2

2 ),

Z3 = Z2
1Z

2
2 − εX2

1X
2
2

(2)

The main interest of these formulae is that they re-
main valid if (X1, Y1, Z1) = (X2, Y2, Z2). They are
also valid if one of the points is the neutral element.
According to [2], these formulae require 13 multi-

plications and 3 multiplications by constants,
which has provided the best unified formulae until
now. They also require 14 modular reductions

and 8 temporary variables. Note that we give
both the number of multiplications (which is stan-
dard) and the number of modular reductions be-
cause the latter is the most important operation in
RNS representation, which can be used for perform-
ing a safe arithmetic on elliptic curves, as explained
in [1]. This complexity can be reduced by eliminat-
ing 2 multiplications by constants if ε is small, which
is possible under some conditions. Before explaining
these conditions and relaxing them in comparison
with [2], let us explain how to reduce the number of
multiplications and modular reductions.
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3. Improved addition formulae

Let ϕ be the map

ϕ : F
3
p −→ F

4
p

(X,Y, Z) 7→
(

X2, XZ,Z2, Y
)

Let (X,Y, Z) be a point on the extended Jacobi
quartic. To reduce the number of field multiplica-
tions, we will use ϕ(X,Y, Z) instead of (X,Y, Z).
Of course this increases the memory required com-
pared to [2]. This is a drawback for small devices,
but we will see that in practice only 9 temporary
variables are necessary instead of 8 in [2], so the
memory extra cost is not very high.
We thus use the formulae (2) and give, in Table 1, the
operations necessary to add two points (X1, Y1, Z1)
and (X2, Y2, Z2) represented by ϕ(X1, Y1, Z1) =
(U1, V1,W1, Y1) andϕ(X2, Y2, Z2) = (U2, V2,W2, Y2).
If the sum of these points is (X3, Y3, Z3), the oper-
ations described can either return (X3, Y3, Z3) or
return ϕ(X3, Y3, Z3) = (U3, V3,W3, Y3).

Assuming that the input and output are repre-
sented using ϕ, executing operations of Table 1
requires only 11 multiplications and 3 multipli-

cations by constants. They also require 12 mod-

ular reductions and 9 temporary variables.
Compared to [2], this is a gain of 14% and even 17%
if ε is assumed to be small (as discussed in the next
section). Thus, this provides the best unified addi-
tion for an elliptic curve with a 2-torsion point. Let
us now describe in detail how this new system of
coordinates can be used to perform a scalar multi-
plication which is resistant to side-channel attacks.

Let E be an elliptic curve defined over Fp contain-
ing a 2-torsion point and let P be a point in E (Fp)
and n an integer. The computation of nP is crucial
in elliptic curve cryptography since this operation
is used in almost all cryptosystems and is the most
time-consuming operation. We can proceed as fol-
lows:

(1) Compute constants ε and θ to obtain the equa-
tion of the (extended) Jacobi quartic (of the
form (1)).

(2) Send the point P to the (extended) Jacobi quar-
tic model using the rational transformation ψ.

(3) Compute the new coordinates (U, V,W, Y ) of
ψ(P ) using the map ϕ.

Table 1
Unified addition on a Jacobi quartic using ϕ

Operation Value of the variable

T1 ← U1 X2
1

T2 ← U2 X2
2

T3 ← V1 X1Z1

T4 ← V2 X2Z2

T5 ←W1 Z2
1

T6 ←W2 Z2
2

T7 ← Y1 Y1

T8 ← Y2 Y2

T9 ← T7T8 Y1Y2

T7 ← T7 + T3 X1Z1 + Y1

T8 ← T8 + T4 X2Z2 + Y2

T3 ← T3T4 X1X2Z1Z2

T7 ← T7T8 (X1Z1 + Y1) (X2Z2 + Y2)

T7 ← T7 − T9 X1Z1Y2 + X2Z2Y1 + X1Z1X2Z2

T7 ← T7 − T3 X3

T4 ← T1T2 X2
1X2

2

T8 ← T5T6 Z2
1Z2

2

T1 ← T1 + T5 X2
1 + Z2

1

T2 ← T2 + T6 X2
2 + Z2

2

T5 ← T1T2

(

X2
1 + Z2

1

) (

X2
2 + Z2

2

)

T5 ← T5 − T4 X2
1Z2

2 + X2
2Z2

1 + Z2
1Z2

2

T5 ← T5 − T8 X2
1Z2

2 + X2
2Z2

1

T4 ← εT4 εX2
1X2

2

T1 ← T8 − T4 Z3

T2 ← T8 + T4 Z2
1Z2

2 + εX2
1X2

2

T6 ← 2δT3 2δX1X2Z1Z2

T6 ← T9 − T6 Y1Y2 − 2δX1X2Z1Z2

T6 ← T6T2 (Z
2
1Z

2
2+εX

2
1X

2
2)(Y1Y2−2δX1X2Z1Z2)

T3 ← 2εT3 2εX1X2Z1Z2

T3 ← T5T3 2εX1X2Z1Z2

(

X2
1Z2

2 + X2
2Z2

1

)

T8 ← T6 + T3 Y3

T2 ← T 2
7 U3

(

= X2
3

)

T4 ← T1T7 V3 (= X3Z3)

T6 ← T 2
1 W3

(

= Z2
3

)

(4) Use the full Table 1 and your favorite exponen-
tiation algorithm to compute n(U, V,W, Y ).

(5) Remember to use only the first part of Table 1
for the last operation of the exponentiation, so
that the result of the exponentiation is a point
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on the (extended) Jacobi quartic with standard
coordinates (X,Y, Z).

(6) Send this point back to the original elliptic
curve via the reverse rational transformation
ψ−1.

Of course, steps (1), (2) and (6) are not necessary
if the curve is originally given in (extended) Ja-
cobi quartic form. Moreover, note that, since ad-
dition and doubling are indistinguishable, any of
the many exponentiation algorithms (double-and-
add, w-NAF, addition chains, fixed base point meth-
ods) can be used without jeopardizing the security
against simple side-channel attacks.

4. The case of small coefficients

In formulae (2), there are two multiplications by
ε, so it is very interesting to assume that ε is small.
In [2], the authors explained that this is possible
for most elliptic curves with three points of order
2. More precisely they prove that ε can always be
rescaled to 1 if p ≡ 3 mod 4 and with a probability
7/8 if p ≡ 1 mod 4. In this part, we explain how
to relax the condition on the number of 2-torsion
points. Indeed, it is not necessary to make addition-
nal assumptions to obtain this result and it is even
possible to conclude in more cases.

Thus, we only assume in the following that the el-
liptic curve E has one 2-torsion point (which is a
necessary condition to transform the curve into a
Jacobi quartic). Let (θ, 0) be this 2-torsion point on
E, and recall that

ε = −3θ2 + 4a4

16
.

Let α ∈ Fp. We will consider the change of variables

x =
X

α2
, y =

Y

α3

which makes the elliptic curve E isomorphic to the
elliptic curve

E′ : Y 2 = X3 + a′4X + a′6,

with a′4 = a4α
4 and a′6 = bα6. This curve has, of

course, a 2-torsion point (θ′, 0) with θ′ = θα2, so if
one wants to transforms E ′ into a Jacobi quartic,
the new value of ε is

ε′ = εα4.

We therefore have to find an α such that εα4 is a
small number. For this, let µ denote the smallest

integer (greater than or equal to −1) which is not a
square modulo p. Using the multiplicativity of the
Legendre symbol, one can prove that four cases can
occur (with the same probability):

(i) ε is a fourth power in Fp and we can choose α
such that ε′ = 1.

(ii) ε is not a square in Fp and
√

ε
µ

is a square.

In this case, ε
µ

is a fourth power and we can

choose α such that ε′ = µ.
(iii) ε is a square in Fp but not

√
ε. In this case,

ε
µ2 is a fourth power and we can choose α such

that ε′ = µ2.

(iv) Neither ε nor
√

ε
µ

are squares in Fp. In this

case, ε
µ3 is a fourth power and we can choose

α such that ε′ = µ3.

The simplest case to treat is p ≡ 3 mod 4. In-
deed, we can choose µ = −1 so that we can always
rescale ε to 1 or −1. Note that this is the most
current case in cryptographic applications (pseudo-
Mersenne primes or generalized Mersenne primes).
If p ≡ 1 mod 4, we have to check that µ is suffi-
ciently small. It is easy to prove (again using the
properties of the Legendre symbol) that the pro-
portion of prime fields such that the n first prime
numbers are squares is only 1

2n . Thus, in most cases
it is possible to rescale ε to a small number.
Anyway, if µ is too large to assume that the multi-
plication by ε′ can be neglected (for instance, if we
are in cases (iii) or (iv)), there is another way to
rescale ε to a small value. This method is explained
in [3]. The principle is to find an isogeny of small de-
gree between the elliptic curve E and a new elliptic
curve, say E′′, having the same cardinality. One can
then hope that the method explained above (i.e. via
isomorphisms) will give a better result on E ′′ than
on E (for instance, if we are in cases (i) or (ii)).
Basically, this is the same idea as the previous iso-
morphism between E and E′ (an isomorphism is
an isogeny of degree 1), but the composition of the
isogeny and its dual is not the identity on E, so
the scalar multiplication must be modified to give
a good result. This operation is of negligeable cost
compared to full scalar multiplication, as explained
in detail in [3].
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5. Conclusion

In this paper, we provide better unified addi-
tion formulae for elliptic curves having a 2-torsion
point by introducing a new system of coordinates
on the (extended) Jacobi quartic model. Moreover,
we prove that, in most cases, it is not necessary to
assume that the elliptic curve has three 2-torsion
points to be able to rescale ε to a small value. In
particular, we prove that, if p ≡ 3 mod 4, ε can be
rescaled to 1 or −1 without any additional assump-
tion on the curve.
Finally, we obtain unified addition formulae (on el-
liptic curves with a 2-torsion point) requiring only
12 multiplications on the base field in most cases,
which represents a gain of 17% compared to the best
known formulae until now ([2]). This formulae will
allow more efficient scalar multiplication, which is
resistant to side-channel attacks, on elliptic curves
whose order is even.
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