Fractal representation of the attractive lamination of an automorphism of the free group - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Journal Articles Annales de l'Institut Fourier Year : 2006

Fractal representation of the attractive lamination of an automorphism of the free group

Pierre Arnoux
  • Function : Author
  • PersonId : 843356
Valerie Berthe

Abstract

In this paper, we extend to automorphisms of free groups some results and constructions that classically hold for morphisms of the free monoid, i.e., so-called substitutions. A geometric representation of the attractive lamination of a class of automorphisms of the free group (irreducible with irreducible powers ({\it iwip}) automorphisms) is given in the case where the dilation coefficient of the automorphism is a unit Pisot number. The shift map associated with the attractive symbolic lamination is, in this case, proved to be measure-theoretically isomorphic to a domain exchange on a self-similar Euclidean compact set. This set is called the central tile of the automorphism, and is inspired by Rauzy fractals associated with Pisot primitive substitutions. The central tile admits some specific symmetries, and is conjectured under the Pisot hypothesis to be a fundamental domain for a toral translation.
Fichier principal
Vignette du fichier
ABHS.pdf (735.59 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

inria-00178799 , version 1 (12-10-2007)

Identifiers

Cite

Pierre Arnoux, Valerie Berthe, Arnaud Hilion, Anne Siegel. Fractal representation of the attractive lamination of an automorphism of the free group. Annales de l'Institut Fourier, 2006, 56 (7), pp.2161-2212. ⟨10.5802/aif.2237⟩. ⟨inria-00178799⟩
400 View
192 Download

Altmetric

Share

More