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Abstract: This paper introduces Eureka (see video), a new 
parallel mechanism providing five motions: three translations 
plus two rotations. This device is able to reach high tilting angles 
(  about a first given axis and a whole revolution about the 
following axis). This is due to actuation redundancy and to the 
specific traveling plate. Kinematic models are derived. Due to its 
particular shape the forward geometrical model is also derived 
easily. A plot of its well conditioned workspace is given. 
Practical designs, free of self-collisions, are shown. 
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1 Introduction 

After Gough and Stewart in the 50’s and 60’s introducing 
the idea of so-called “hexapods”, Clavel and his Delta 
structure [1] in the late 80’s opened a new era of PKM able to 
reach extremely high velocities and accelerations. In 
addition, mechanism stiffness is often very high compared to 
serial arms. Thus many PKM have been dedicated to pick-
and-place and more recently to machining. 

But one of the PKM drawbacks is their limited 
workspace, especially the limitation of the ending part’s 
tilting angle. Five different ways may be possible to 
compensate for this drawback: 
• Sharing the degrees of freedom (dof) between a carrying 

structure and a wrist, as it is done by DS Technologies 
Inc. with Sprint (serial + parallel), or Neos Robotics with 
Tricept [2] (parallel + serial). Note that the wrist could 
even be itself parallel, for example based on Gosselin’s 
Agile Eye concept [3]; 

• Designing machines using the “right-hand / left-hand” 
paradigm, where both the tool and the manufactured part 
are moving with respect to the ground, as it is done in 
classical machines with turning tables; 

• Building redundant machines, that is to say over-actuated 
ones, like the Eclipse [4] machine tool or the Archi [4] 
robot. The Eclipse is designed to achieve five faces 
milling and Archi is a planar 3 degrees-of-freedom robot 
that allows an infinite rotation about one axis; 

• Building motion transformation systems located on the 
traveling plate to increase tilting angles of existing 
machines. The principle of Twice mechanism [6] 
illustrates such an idea. A simpler case is the H4 or the I4 
robot [7] where the traveling plate is composed of two (or 
three) parts, a few simple joints (e.g. two pivot joints), and 
a gear amplification system for one rotational motion. 

This paper is focused on the problem of 5-dof parallel 
mechanisms which has already been addressed in the past but 

by few researchers only. In addition to the 5-dof version of 
Tricept, few hybrid 5-dof machines have been proposed such 
as GeorgV [8] or Dumbo [9]; the architecture proposed by 
Zamanov [10] is radically different from the previous one 
since it is a fully-parallel mechanism based on 5 telescopic 
legs. One interesting approach has been followed by Stocco 
in [11]: the machine can be regarded has made of two sub-
parts holding the traveling plate. 

This paper introduces a novel mechanical architecture 
which combines two of the previous features: Eureka, the 
proposed machine is redundant (6 motors for 5 dof provide 
actuation redundancy) and it is based on a three-part traveling 
plate with two linear joints. The machine offers 3 translations 
and 2 rotations with large tilting capabilities in both 
directions; the first axis of rotation has a constant direction 
with respect to a fixed frame, the second axis is orthogonal to 
the first one. 

A detailed kinematic analysis is carried out and leads to 
geometrical conditions to be verified by the mechanism for 
proper functioning. Then a kinematic modeling illustrates the 
mechanism simplicity and provides a first evaluation of the 
machine workspace. Finally, preliminary information is given 
regarding practical implementation of this new architecture. 

2 General Concept 

Eureka, the proposed machine is a 6-actuator / 5-dof 
parallel mechanism. In Fig. 1, a joint-and-loop graph is 
depicted: P, R, S and U stand for Prismatic, Revolute, 
Spherical and Universal joints. Gray boxes represent actuated 
joints; white boxes passive joints. Underlined letter stands for 
a joint equipped with a position sensor. Circles express a 
kinematic coupling between two joints.  
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Fig. 1 - Joint-and-loop graph 
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As for Delta and H4 architectures, the actuators are fixed 
on the base to reduce moving parts’ masses. As for Delta and 
H4, motors may be rotational or linear, the ball joints may be 
replaced by U-joints (to get rid of internal motions). One 
must notice the machine’s symmetrical architecture: the 
machine’s upper and lower parts are identically made of a 
“spatial-parallelogram” and two single rods. Each single rod 
is connected to “spatial parallelograms”. 

Note that, in general, the “spatial-parallelogram” chains 
(that is: P(SS)2 chains) implement only one constraint on a 
mechanism (3 translations and 2 rotations remain feasible); 
would a “spatial-parallelogram” be made of  PR(RR)2R 
chains (as done on the Orthoglide [12]) it will implement two 
constraints on a mechanism (3 translations and 1 rotation 
remain feasible). 
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Fig. 2 – Kinematics scheme 

The traveling plate is the one introduced in [7] with the I4 
robot: while two sub-parts shift relatively one to the other, a 
mechanical device transforms this motion into a rotation. 
Two types of traveling plates exist (see Fig. 3): Type 1 is 
made of two prismatic joints and two kinematically coupled 
rack-and-pinion systems. Type 2 is made up with one part 
less, but looses Type 1 symmetrical design (good for 
balancing load among the parts). 

To further describe the mechanism, it is necessary to 
resort to a few notation: 
• The ratio  ( 0 ) determines the point where the 

single rod is attached: 
f 1

)k

)

f≤ ≤

 , (1) (f= + −k k
i j j jB B A B

for . { }(i,j,k) (2,1,1),(3,1,2),(5,4,1),(6,4,2)∈

• The mathematical formalism developed in this paper can 
cope with both types of traveling plates. In fact if we note 

( x y z= TM  the vector associated to the operational 
point, and R  the matrix representing the rotation of angle 
θ  about : xe

 
1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

θ θ
θ θ

 
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than: 
 , (3) ( 1 0k Dϕ= + T

1B M R

 , (4) ( 4 0k Dϕ= + − T
4B M R

with: 
- 4k = −  for traveling plate type 1, 
- 4 0k =  for traveling plate type 2. 
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Fig. 3 – Different types of traveling plates 

3 Mechanisms Motions 

In this section the geometrical conditions that must be 
fulfilled in order to guarantee a non-singular design for the 
mechanism are described. A first emphasis is made on the 
“spatial parallelograms” because their design is responsible 
of the traveling plate’s rotations; then the interest of the 
single rods for the “good” posture of parallelograms is 
shown. 

Each traveling plate’s lateral part is connected to a Delta-
like “spatial parallelogram” by ball joints. Let us note j

in  the 
vector joining  to ,   the vector joining A  

to , and u  the vector joining  to  (see Fig. 4).  
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Fig. 4 - P(SS)2 chain 

Velocity of point  can be written as follows:  j
iA
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 iq=j
i

j
iA

V p& , , , (5) { }1,4i ∈ { }1,2j ∈

where j
ip  is a vector tangent to point  trajectory. For 

linear motors this vector is unitary, for rotational motors, its 
norm is equal to the distance of point  to the rotational 
axis. Such an expression is also true for single rods: 

j
iA

j
iA

 , . (6) iq=
iA iV p& {2,3,5,6i ∈ }

j
i

iq&  can be expressed relatively to B  by resorting to the 
rigid body’s velocity property: 

j
i

 , (7) =j j
i i

T j T
iA B

V n V n  
it leads to: 

 
( )iq =

j
i

T j
iB

j T j
i i

V n

p n
&  (8)  

Assuming that MV

j
iB

{1,2

1 is the velocity of point ,  the 
rotation velocity of the end-effector, and that  is the 
linear velocity of  relative to the traveling plate central 
part, , , velocity of point  can be written 
as follows (×  represents the cross product): 

M

iv v
ω

i

{ }1,4i ∈ }j ∈ j
iB

 , , , (9) iv= + × +j
i

j
M iB

V V ω s vi { }1,4i ∈ { }1,2j ∈

where: 
• j

is  is the vector joining M  to , j
iB

•  and  are unitary vectors aligned with the traveling 
plate guide ways (see Fig. 3). 

1v 4v

Deriving (1) leads to velocities of points : iB
 (1 )f f= − +ki k
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V V
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for . { }(i,j,k) (2,1,1),(3,1,2),(5,4,1),(6,4,2)∈
Taking into account (5) and (8) implies that: 
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k
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for (i . { },j,k) (2,1,1),(3,1,2),(5,4,1),(6,4,2)∈
(11) can be rewritten as follows: 

 = ki j

T k T
i B j i B

n V n V , (13) 

with: 
 (1 ) k

j if f= − +k
j ii

kr jnn n

                                                          

. (14) N
By using the rigid body’s velocity property applied to all 

rods, the following set of equations is obtained: 
 , (15) ( )1 2v v = &

TT T
1 M 1M V ω N q

with: 
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and: 
 . (18) ( )1 2 3 4 5 6q q q q q q= Tq& & & & & & &

Assuming that, when the mechanism is assembled 
= =1 2

i in n ni , = =1 2
i ip p pi , by subtracting line 1 with 2, line 

4 with 5, system (15) can be written: 
 ( )1 2v v = &

TT T
2 M 2M V ω N q , (19) 
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3.1 Geometrical conditions regarding rotations 

In this section we derive the conditions to be fulfilled by 
the mechanism for guaranteeing that the traveling plate 
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central part will exhibit a unique rotation about an axis with 
constant direction (with respect to the fixed frame): this is the 
traveling plate “own rotation”. The second operational 
rotation will be provided by transforming the relative 
translation between the lateral parts and the central part into a 
rotation of the tool. 

Noting , where  is composed by the 

two last lines of , (same with ) the following 

equation is obtained: 


= 

 
21

2
22

M
M

M

2M







)



22M

=2N


 

21

22

N
N

 . (22) ( 1 2v v =
TT T

22 MM V ω 0

As all the elements of the three first columns of  are 
equal to zero,  has no influence in equation (22). It’s the 
same for the two columns regarding v  and . This leads to 
an under-determined system (3 unknowns for 2 equations):  

22M

MV

1 2v

 , (23) =unM ω 0
with : 

 . (24) 
( )
( )

 ×
= 

× 

T
1 1

un T
4 4

u n
M

u n

3.1.1  Geometrical condition to get the desired rotation 

We focus here on the traveling plate “own rotation” and 
in the following, it is decided that: 
 xω= xω e , (25)  

where ω . ( )x y zω ω ω=
T

Thus: 
 0y zω ω= = , (26) 

A condition for system (23) to be true for every 
acceptable xω  is: 
 . (27) = =1 4u u ex



3.1.2 Geometrical condition to get rid of inappropriate 
rotations 

A necessary condition for statement (26) is: 

  (28) 
(1,2) (1,3)

det 0
(2, 2) (2,3)

 
≠

 
un un

un un

M M
M M

Noticing the determinant of this matrix is equal to the 
surface of the polygon made up with the row vectors of , 
this condition can be rewritten as follows: 

unM

 ( ) ( )× × × ≠x 1 x 4e n e n 0

}

6

. (29) 
The practical design must then guarantee that  and n , 

 never become parallel in the whole workspace (the 
same condition holds for  with ). 

xe i

{ }1,4i ∈

1n 4n

3.2 Geometrical conditions to obtain good placement of 
parallelograms 

By observing , it appears that the practical design must 
guarantee that p  and ,  never get 
perpendicular in the whole workspace. 

2N

i in {1,...,6i ∈

4 Kinematic modeling 

In this section, relationships between actuators’ and 
traveling plate’s coordinates (represented by vector 

 and ( )1q q= Tq K ( )M M Mx y z θ ϕ= Tx

q&

) are 
derived. The relationship between actuators’ and traveling 
plate’s velocities, respectively represented by  and , is 
also presented. 

x&

4.1 Relationship between x  and q  

1) Inverse Position Relationship 
As it is usual for most parallel robots, the inverse position 

relationship is easy to compute. It is derived from the 
following equality: 
 2 2

il− =i iB A , i { , (30) 1, , 6}∈ K

where  is the length of the rod. This can be derived for 
linear motors as well as for rotational motors (see for 
example in [14]). 

il
thi

2) Forward Position Relationship 
A nice feature of this machine is that an analytic forward 

position relationship can be derived. In fact knowing the 
positions of the 3 upper-part actuators (respectively lower-
part), point  can be determined easily (respectively ). 
This can be done, for example, by computing the intersection 
of three spheres. 
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Fig. 5 – Simplified scheme of the upper part. 

Then, with geometrical considerations, points  and B  
are derived: 

1B 4

 
1

f
f

−
=

−
23 1

1
B A

B , 
1

f
f

−
=

−
56 4

4
B A

B . (31) 

Let us note  the vector going from  to B  
(

14s 1B 4

= −14 4 1s B B ), then point ’s coordinates can be written as 
follows: 

M
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k
k k

 −
= +  −

T
T T T

1 14 x 14 y 14 zM B s e s e s e . (32) 




Note that the amplification ratio 1k  is chosen equal to 
 in order to have same rotations capabilities for D θ  and ϕ . 

It leads that the operational vector x  can be expressed as 
follows: 

 1

4 1

tan
k k

−
  
 =    − 

T
T T

T 14 z 14 x
T

14 y

s e s e
x M

s e




. (33) 

Note that for a parallel mechanism with actuation 
redundancy, computing the operational coordinates when the 
actuators position are known, can be done in several ways 
because the joint position vector is of greater dimension than 
the operational position vector.  

4.2 Relationship between x  and q  & &

This relationship can be written in the following form, 
resorting to matrices  and : xJ qJ

 . (34) =x qJ x J q&&

It is worth noting that θ= &
xeω , and then to introduce the 

following matrix: 

 , (35) 

1 4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 k k




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

 −

T

L










)

L

2

)
)0

)

which satisfies the following equality: 
 . (36) ( 1 2v v = &

TT T
MV ω L x

Thus, considering (19) and (36) leads to: 
 , (37) =x 2J M
 . (38) =qJ N

4.3 Workspace analysis 

In this paper the focus is put on one particular design, 
where six linear motors are all directed by : this guarantees 
a large workspace in this particular direction. The 
representative vectors of the linear motor guide ways origins 

, i { , are: 

ze

iO 1, , 6}∈ K

 , , (39) ( )0 0J= T
1O ( 0H I= − T

2O

 , , (40) ( )0H I= T
3O (0 J= − T

4O

 , O , (41) ( )0H I= − − T
5O ( 0H I= − T

6

where H , I , J  are geometrical parameters selected as 
follows: 
 ,  and . (42) 0.45 mH = 0.08 mI = 0.4 mJ =

The traveling plate is of type 1 ( ). Geometrical 
parameters’ values are: 

4k = − 1k

 ,  and k . (43) 0.05 mD = 0.06 mE = 1 0.05 m/rad= −

Length of rods and ratio  are: f
 0.9 mil = , i {1, ,6}∈ K  and . (44) 1/ 8f =

Actuators limits are: 
 0 1.26iq m≤ ≤ . (45) 

The workspace is drawn taking into account: 
• the actuators limits, 
• the conditioning number of the normalized Jacobean 

matrix. 

In fact, because  is not homogenous (“mixing meter 
and radian”) we decided to use the matrix normalization 
technique proposed in [13], which resorts to matrix  

( ) to obtain an operational vector  only dealing 
with meters: 

xJ

xW

= xx W x%& & x%&

 ( )11 1 1 D k=xW diag . (46) 

D  and 1k  represent the characteristic lengths of the 
mechanism relative to θ  and ϕ . They fix the ratio between 
maximum linear and angular velocities. 

(34) implies that: 
 . (47) = -1 -1

q x xq J J W x%& &

Fig. 6 presents the domain where the condition number of 
the normalized Jacobean matrix is smaller than 8 (note that 
along  direction, the workspace is only limited by the 
actuators’ range). 
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Fig. 6 - Workspace for cond( ) < 8 -1 -1

q x x
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5 Practical design considerations 

In principle, it could be interesting for simplicity to 
directly connect the “single rods” to the traveling plate; 
however, such a practical design faces too many self-
collisions.  

A more realistic design is obtained when the following 
condition is fulfilled: 
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 2 if D> l , i . (48) { }1,4∈
The machine depicted in Fig. 7 shows such a practical 

design. Another architecture avoiding self-collisions in 
shown in Fig. 8. In this case , but single rods have a 
curved shape. 

0f =

 
Fig. 7 – Self-collision-free design #1 

 
Fig. 8 - Self-collision-free design #2 

6 Prototype design 

A prototype is about to be built. The practical design is 
extremely simple thanks to Linear motors (Fig. 9).  

 
Fig. 9 – CAD View of the Eureka prototype 

Dimensions are the ones introduced for computing the 
workspace. Rods and traveling plate are made of aluminum. 
Spherical joints are new passive joints made by Ephaist 
Company (Japan). Instead of using rack-and-pinion systems, 

the mobile platform has been equipped with cable-pulley 
devices. 

7 Conclusion 

In this paper, Eureka a novel architecture has been 
introduced combining actuation redundancy and a three-part 
traveling plate. It has been shown that, if some geometrical 
constraints are satisfied, this architecture offers (i) a huge 
range of motion in rotation and translation, (ii) compact and 
simple kinematic modeling for control purposes, (iii) several 
realistic practical designs. 
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