
HAL Id: lirmm-00269438
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269438

Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Common Connected Components of Interval Graphs
Michel Habib, Christophe Paul, Mathieu Raffinot

To cite this version:
Michel Habib, Christophe Paul, Mathieu Raffinot. Common Connected Components of Interval
Graphs. [Research Report] 03014, LIRMM (UM, CNRS). 2003, pp.13. �lirmm-00269438�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269438
https://hal.archives-ouvertes.fr

Common connected components of interval graphs

Michel Habib∗ Christophe Paul∗ Mathieu Raffinot†

Abstract

The Common Connected Problem (CCP) consists in identifying common connected
components in two or more graphs on the same vertices (or reduced to). More formally,
let G1(V, E1) and G2(V, E2) be two such graphs and let V ′ ⊂ V . If G1[V

′] and G2[V
′]

are both connected, V ′ is said a common connected component. The CCP problem is the
identification of maximal (for the inclusion order) such components, that form a partition
of V . Let n = |V | and m = |E1| + |E2|. We present an O((n + m) log n) worst case
time algorithm solving the CCP problem when G1 and G2 are two interval graphs. The
algorithm combines maximal clique path decompositions of the two input graphs together
with an Hopcroft like partitioning approach.

1 Introduction

Let G = (V,E) be a graph. The degree of a vertex x ∈ V in the graph G is denoted by dG(x).
If X is a subset of vertices of G, then we denote G[X] the subgraph induced by X : the set
of vertices of G[X] is X and its edge set is EX = E ∩ {(u, v) | u ∈ X, v ∈ X}. We denote by
mX = |EX | the number of edges in G[X] and by |G[X]| = |X| + mX the size of the induced
subgraph. A connected component X ⊂ V of G is such that G[X] is connected. A connected
component is maximal if it can not be augmented with other vertices.

In [9], the problem of finding common connected components of two graphs, namely the
CCP problem, was addressed.

Definition 1 A set S ⊆ V of vertices is a common connected component of G1 and G2 if S
is both a connected component in G1 and G2, and maximal for the inclusion order.

As shown by the authors, it can easily be reduced to a pair of graphs G1 and G2 on
the same vertex set V . We define n = |V |, m1 = |E1|, m2 = |E2| (where E1 and E2 are
respectively the edge sets of G1 and G2) and m = m1 + m2. It is easy to see that the set
of common connected components of two graphs form a unique partition of V . The CCP
problem, defined in [9], is that of identifying such a partition.

CCP Problem:
Input: two graphs G1 = (V,E1) and G2 = (V,E2).
Output: the partition of V in common connected components.

∗LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France, {habib,paul}@lirmm.fr
†Laboratoire Génome et Informatique, Tour Evry 2, 523, Place des Terrasses de l’Agora, 91034 Evry, France.

raffinot@genopole.cnrs.fr

1

1 2

3

Figure 1: A simple counterexample showing that the set of common connected component of G1 and
G2 is not the intersection of the connected components of the two interval graphs. The set {1, 2, 3} is
connected in G1. The set {1, 3} is connected in G2 (in dashed edges). But {1, 3} is not connected in
G1[{1, 3}] and G2[{1, 3}].

A natural approach to solve CCP is to first search the maximal connected component
of G1. Then, in each of these components, search the connected component of G2. In each
such new connected component of G2, search the maximal connected components of G1, and
repeat this process until the two sets of components on G1 and G2 are similar. It is not
difficult to build examples where this approach leads to as many repetitions as the number
of vertices. As each step is in O(n + m) time, this approach is O(n(n + m)) worst case time.
The algorithm proposed in [9] runs in O(n log n+m log2 n). Their algorithm mixes dynamical
connectivity maintenance with a partitioning approach. Obtaining faster algorithms for solv-
ing CCP is a real challenge, since the graphs currently considered in computational biology
are huge: studying graphs with more than 250 000 vertices becomes frequent (see for instance
the TERAPROT project [21]). Reducing the complexity of the CCP problem remains an
open problem even for some restricted graph families.

This paper considers the CCP problem on interval graphs. A graph is an interval graph
iff there is a one-to-one mapping between its vertices and a set of interval on the real line such
that two vertices are adjacent iff their corresponding intervals intersect. Considering interval
graph make sense for both practical and theoretical reasons. First the CCP problem arises
from applications in bioinformatics where graph comparisons is required [5]. Moreover many
of the applications of the CCP problem in bioinformatics deal with interval graphs, that are
the basic structure to represent chromosome built on smaller cDNAs. Consider for instance
two interval graphs representing two different possible genomes, built on the same cDNA
database. Comparing the longest “common” contigs, that is, the largest set of sequences
that are linked together in the two genomes, require solving CCP. Interval graphs are also
interesting for theoretical point of view since it is a highly structured graphs family.

In this paper we design an algorithm for CCP problem on interval graphs whose complex-
ity is in O((n + m) log n) worst case time. The algorithm is both faster and simpler that the
algorithm solving CCP on general graphs. It combines an Hopcroft like partitioning frame-
work together with a kind of dynamical maintenance of a spanning separator forest. The
intervals graphs are represented trough a forest of clique paths that roughly captures all the
possible separators of the graphs. This forest is “dynamically” maintained, in the sense that
we are able to fastly compute the new clique representation after extracting a set of vertices.
Sets of vertices are extracted following an Hopcroft like partitioning framework, inspired by
the gene teams identification algorithm [2] that has later been proved to resemble a simplified
Hopcroft partitioning approach [5]. Notice that the gene team identification algorithm with
δ = 1, would solve CCP problem on proper interval graphs [2].

This article is organized as follows. We first explain in Section 2 the whole framework of a
recursive partitioning algorithm to solve the CCP problem. Section 3 presents data-structures
and algorithms that allows us to improve the time complexity for interval graphs. Finally the

2

whole algorithm and its complexity are explained and proved.

2 A recursive partitioning algorithm

Solving the CCP problem on two graphs G1 and G2 on the same vertex set V consists in
computing a partition of V whose parts are the common connected component. A partition P
of a set V is a set of disjoint subsets {X1, . . .Xk}, whose union is exactly V . Our partitioning
algorithm is based on the following simple lemma.

Lemma 1 Let G1 and G2 be graphs on the same vertex set V and let C be a maximal
connected component of G1 distinct from V . Then

CCP(G1, G2) = CCP(G1[C], G2[C]) ∪ CCP(G1[V \C], G2[V \C])

Proof. Let S be a common connected component. By definition S is connected in G1. Since
C is a maximal connected component, S is either included in C or in V \ C. It follows that
any common connected component of G1 and G2 is either a common connected component
of G1[C] and G2[C] or of G1[V \ C] and G2[V \ C]. 2

We can already derive from Lemma 1 a simple paradigm for a recursive algorithm. It takes
as input two graphs G1 and G2 on the same vertex set V and a partition P of V . Initially, P
is set to the trivial partition {V }. It first looks for a maximal connected component distinct
from V of G1 or G2. If such a component C exists, according to Lemma 1 two recursive calls
on the subgraphs induced respectively by C and V \ C are launched.

CCP-Algorithm(G1 = (V, E1), G2 = (V, E2))
1. If G1 and G2 are both connected Then
2. Return P = {V }
3. Else
4. If G1 is not connected Then
5. Let C be a connected component of G1

6. Else
7. Let C be a connected component of G2

8. End of if
9. Let P ′ =CCP-Algorithm(G1[C], G2[C])
10. Let P ′′ =CCP-Algorithm(G1[V \ C], G2[V \ C])
11. Return P = P ′ ∪ P ′′

12. End of if

Figure 2: Recursive algorithm to compute the common connected components partition of the vertex
set V of two graphs G1 and G2

Lemma 2 CCP-Algorithm computes the common connected component partition of two
graphs.

Proof. First the algorithm ends since the recursive calls are done on strict subgraphs and it
stops when both graphs are connected. The correctness of the algorithm directly follows from
Lemma 1. 2

3

Notice that the main difficulties of the CCP-Algorithm is first to compute a maximal
connected component C of one the two input graph if one exists and then to extract the sub-
graphs induced by C and V \C. Without any clever data-structure and advanced subroutine
for these tasks, such a recursive approach yields to a O(n(n + m)) worst case time.

Next section first presents algorithms for interval graphs that permit a O((n + m) log n)
worst case time. Section 3 is devoted to two algorithms that retrieve the maximal con-
nected components of the subgraphs G1[C], G2[C], G1[V \C], G2[V \C]) after having extracted
C. These algorithms strongly relies on interval graph structural properties. Their complex-
ities are both O(|C| + md

C
) where md

C
=

∑
x∈C

d(x)), which is proportional, not exactly to
the size of their induced subgraph, but close to.

Choosing an arbitrary connected component for the recursive call is not enough to obtain
the announced complexity, even the component can be extract in O(|C| + md

C
). It would

still lead to O(n(n + m)) worst case time complexity. To lower the whole complexity, we
combine the extraction scheme to an Hopcroft’s partitioning approach. Only small maximal
connected components have to be extracted. By small, we mean that the size of the connected
component considered has to be less than or equal to the half of the size of the original graph.
Such a component always exist if the graph is not connected. It would ensure that each vertex
an edge is used at most log n time as expected for the announced complexity. This property
is the basis of the Hopcroft’s partitioning approach.

Generalization to an arbitrary number of graphs

One can also consider the k-CCP problem that is CCP problem applied to k graphs on the
same vertex set. The result is a partition of the vertex set into maximal subset of vertices that
induced connected subgraph of any into graph. It turns out that Lemma 1 can be generalized
and the algorithm adpated.

Lemma 3 Let G1, . . . Gk be graphs on the same vertex set V and let C be a maximal connected
component of G1 distinct from V . Then

k-CCP(G1, . . . Gk) = k-CCP(G1[C], . . . Gk[C]) ∪ k-CCP(G1[V \C], . . . Gk[V \C])

Proof. Let S be a common connected component of the k graphs. By definition S is connected
in G1. Since C is a maximal connected component, S is either included in C or in V \ C. It
follows that any common connected component of G1, . . . Gk is either a common connected
component of G1[C], . . . Gk[C] or of G1[V \ C], . . . Gk[V \ C]. 2

It is straightforward to modify the algorithm: the connected component C used has to
be a connected component of an arbitrary graph among G1, . . . Gk. The complexity of the
algorithm just increases by a factor k.

3 Clique path representation of interval graphs

This section present the material for the interval graphs. We first introduce some well-known
properties and the data-structures used in the algorithms. Then two algorithms that updates
the data-structures for induced subgraphs are depicted. These algorithms permit efficient
recursive calls. Finally, the last algorithm looks for a small connected component of a given
interval graph. It will be used at lines 4-8.

4

3.1 Preliminaries and data-structures

Let G = (V,E) be a graph and G[X] the subgraph induced by X. We set md
X

=
∑

x∈X
dG(x).

A clique is a complete induced subgraph (not necessarily maximal for the inclusion).
A graph is an interval graph iff it is the intersection graph of a family of intervals on the

real line: there is a one-to-one mapping between the intervals and the vertices of the graphs,
and two vertices are adjacent iff their corresponding intervals intersect [18]. It follows that
the family of interval graphs is hereditary : any induced subgraph of an interval graph is an
interval graph.

Definition 2 Let G = (V,E) be a connected interval graph. A clique decomposition path of
G is a path P = (C, F) such that:

1. any set C ∈ C is a set of vertices and
⋃

C∈C C = V ;

2. any (u, v) ∈ E is contained in some C ∈ C;

3. the set Cu = {C ∈ C | u ∈ C} induces a subpath Pu of P

4. any C ∈ C is a clique;

A clique decomposition path will be denoted hereafter by CDP. Notice that a CDP gives
an interval intersection model of the interval graph: the underlying path P and the family of
subpaths Pu that contains the vertex u. If the condition 4 is not required, a decomposition
path can be defined for arbitrary graphs and this is the basement of the pathwidth theory
(see [3]).

Dealing with interval graphs, we usually define the Maximal Clique decomposition Path
(shorten by MCP) where any clique C ∈ C has to be a maximal clique.

A separator is a set S of vertices whose removal disconnects the graph in several connected
components. A separator S is minimal if there exists a pair of vertices u, v such that no subset
of S separates u and v in different connected components. Since interval graphs are chordal
(graphs with no induced cycle of length larger than 3), any minimal separator is a clique [8].
The following lemma gives some hints on the structure of the set of minimal separator of an
interval graph.

Lemma 4 (eg. [10])

• Let P be a MCP of an interval graph G. A set of vertices S is a minimal separator iff
it is the intersection S of some consecutive cliques C1 and C2 in P .

• Let P be a MCP of an interval graph G. The intersection of any pair of consecutive
cliques is a separator.

For our needs, we label the edges of a CDP by the intersection of the corresponding
cliques. A non-connected interval graph clearly enjoys a CDP: the edges between two cliques
of different paths are labelled by the empty set since these cliques belong to different connected
components and are disjoint. The number of cliques in a CDP P is denoted |P |. We say that
the set of paths defines a linear forest denoted CPF for Clique Path Forest. When all the
paths are maximal, the forest is denoted MCPF.

5

457

457 578

5783456

123 2345623

572345234123
23 345 45234

23 45 5723

1 2 4

5

6

3 7

8

Figure 3: An interval graph with two CDPs. The second is maximal.

Lemma 5 (eg [10]) Let G be an interval graph with n vertices and m edges. Any MCP is
of size O(n + m).

Many linear time interval graphs recognition algorithms exist. The first one is due to
Booth and Lueker in 1976 [4]. Most recent ones [14, 7] are much simpler than the original.
All these algorithms are able to output in O(n + m) a maximal clique path decomposition.

For algorithmic settings, in case of non-connected interval graphs, the set of paths of a
CPF is stored in a list F . The cliques of a CDP are stored in a doubly linked list and the
CDP are rooted on one of their extremities. A given clique C stores a pointer to its father
f(C) and to its son s(C); its set of vertices is stored in a doubly linked list and its size is
denoted nC . Moreover, each edge is assigned to a record containing: (a) its two extremities;
(b) the label of its minimal separator (see lemma 4) whose vertices are stored in a doubly
linked list; (c) the size nS of this separator. In addition, two lists, namely LS and LC , are
associated to any vertex x. The list LS (resp. LC) contains pointers to the copies of x in
each separator (resp. clique) containing x.

3.2 Dynamic clique decomposition path

Lemma 6 Let P = (C, F) be a CDP of G = (V,E) and X ⊆ V . Then P ′ = (C′, F ′) defined
as follows is a CDP of G[V \X].

• C′ = {f(C) | C ∈ C}, where f(C) = C\X;

• (f(C1), f(C2)) ∈ F ′ iff (C1, C2) ∈ F ;

• (f(C1), f(C2)) is labelled by f(C1) ∩ f(C2) = (C1 ∩ C2)\X.

Proof. Let us consider two vertices u and v belonging to V \X. The proof follows from the
definition. First any f(C) is a clique and

⋃
C∈C f(C) = V \X. If u and v are adjacent, there

exists a clique C ∈ C containing both u and v. Clearly f(C) also contains both u and v. Since
the set Cu ⊂ C of cliques containing u ∈ V \X occurs consecutively in P , the set C′u ⊂ C

′ also
occurs consecutively in P ′. 2

6

Notice that some separator may be empty after the extraction of X, in which case the
resulting CDP is in fact a CPF.

For complexity issue, the above operation is implemented by two different algorithms.
Given a CDP, the first one removes the vertices of a given set from each clique: it is called
REMOVE. The second, in contrast, computes the intersection of any clique with a given set: it
is called EXTRACT.

REMOVE(P, X)
1. Let F be a linear forest containing P
2. For any x ∈ X Do
3. For any clique C st x ∈ C Do
4. Remove x from C
5. Decrease nC by 1
6. End of for
7. For any separator S between cliques C and C′ st x ∈ S Do
8. Remove x from S
9. Decrease nS by 1
10. If nS = 0 Then
11. Let (P, Cr) be the CDP containing the edge (C, C′) labeled by S
12. Remove the edge (C, C′) from P (C is the father of C′)
13. Create in F the new CDP (P ′, C′)
14. Else
15. If nS = nC Then
16. Remove C from P
17. Connect the s(C) and f(C) with the edge labelled by s(C) ∩ f(C)
18. End of if
19. If nS = nC′ Then
20. Remove C′ from P
21. Connect the s(C′) and f(C′) with the edge labelled by s(C′) ∩ f(C′)
22. End of if
23. End of if
24. End of for
25. End of for
26. Return F

Figure 4: Maintaining a MCPF of a graph after removing a set of vertices X from an interval graph
represented by a MCP.

The pseudo-code of algorithm REMOVE(P,X) is given in Fig. 4. The next lemma 7 states its
validity and time complexity.

Lemma 7 Let P be a MCP of the connected interval graph G = (V,E). The algorithm
REMOVE(P,X) (Fig.4) computes in O(|X| + md

X
) time a linear forest of G[V \X] where each

path is a MCP of the corresponding connected component.

Proof. First notice that by lemma 6, when the vertices of X have been removed (lines 4 and
8), F is a CDP of G[V \X] (but no longer a maximal one). Let S be the intersection between
two consecutive cliques C and C ′ of a given path P ∈ F (w.l.o.g. C = f(C ′)).

7

• S = ∅ (S is no longer a separator since it is empty): Since P is a CDP C and C ′ belongs
to different connected components and P can be split into two CDPs. The first one
contains the clique from the root to C while the second one is rooted at C ′ and contains
the clique descending from C ′ (lines 10-13).

• nS = nC (the case nS = nC′ is similar): C is no longer a maximal clique (it is included
in C ′). Therefore we can remove C from P (lines 15-22).

It follows that when F has been cleaned up, any clique is a maximal clique and each new
CDP is therefore a MCP. For complexity issue, since the number of copies of elements of X
is O(|X|+ md

X
) and each copy is touched once, removing X cost O(|X|+ md

X
). The cleaning

can be done within the same complexity since (a) removing a separator or a clique costs O(1);
(b) the number of removing operations is bounded by the number of copies of elements of X.
2

We now consider the maximal clique path decomposition of the induced subgraph G[X].
The pseudo-code of algorithm EXTRACT(P,X) is given in Fig. 5. The next lemma 8 states its
validity and time complexity.

EXTRACT(P, X)
1. Let F be an empty linear forest
2. For any x ∈ X Do
3. For any clique C containing x Do
4. If C has not been already duplicated Then
5. Create a copy C′ = {x} in F in a new singleton CDP
6. nC′ ← 1
7. Else
8. Let C′ the existing copy of C
9. C′ ← C′ ∪ {x}
10. nC′ ← nC′ + 1
11. End of if
12. End of for
13. For any separator S containing x Do
14. Let (C1, C2) be the edge labeled by S in P (wlog C1 = f(C2))
15. If (C1, C2) has not been duplicated Then
16. Create a new edge (C′

1
, C′

2
) labelled by x

17. nS′ ← 1
18. Else
19. Let S′ the label of the edge (C′

1
, C′

2
)

20. S′ ← S′ ∪ {x}
21. nS′ ← nS′ + 1
22. End of if
23. End of for
24. End of for
25. Remove from F any non maximal clique as in lines 15-22 of REMOVE (fig 4)
26. Return F

Figure 5: Maintaining a MCPF of the induced subgraph of G[X] when extracting X from G.

8

Lemma 8 Let F be a MCP of the connected interval graph G = (V,E). The algorithm
EXTRACT(F,X) (Fig. 5) computes in O(|X| + md

X
) time a linear forest of G[X] where any

path is a MCP.

Proof. A similar proof than that of lemma 7 shows that a linear forest of G[X] can be
computed in O(|X| + md

X
). 2

3.3 Smaller Induced Subgraph (SIS) algorithm

The SIS algorithm on two MCPs P1 and P2 allows us to find the smallest of the two induced
subgraphs in time proportional to the size of this smallest subgraph. The difficulty comes
from that the sizes of the two paths are not necessarily representative of the sizes of their
induced subgraphs. It may happen that |P1| < |P2|, but that |G[V1]| > |G[V2]|, where V1

(resp. V2) is the set of vertices contained in the cliques of P1 (resp. P2).
To overcome this obstacle, we use a trick. We perform in parallel a Depth First Search

(DFS) on the two paths. In “parallel” means that we read a new clique (or path node) of
each MCP in alternance. During this search, we compute for each path the sums S1 and S2

of the sizes of the cliques we encountered.
At the end of this parallel DFS, the smallest MCP, say P1, has been totally covered, and

S1 is the size of its induced subgraph. If S1 ≤ S2, the simplest case (a), the subgraph induced
by P1 is smaller than that induced by P2, and SIS returns P1.

Otherwise, if S1 > S2 we continue the DFS of the second path P2, computing the new
sum S′

2
for each new clique encountered. Figure 6 illustrates this search.

S 2

S 1

S’2

P 1

P 2

Figure 6: Continuing the Depth First Search in the longest path P2 if S1 > S′

2
while until either

S′

2
≥ S1 or P2 is completely covered.

The process goes on, until, case (b), either the whole path P2 has been visited, in which
case S′

2
≤ S1, either, case (c), S′

2
becomes greater than S1. Figure 7 illustrates these two last

cases.
It is obvious that SIS returns the path which represents the smallest induced graph. We

prove in the next lemma 9 that its complexity only depends of the size of this smallest induced
subgraph.

Lemma 9 Algorithm SIS applied on two paths P1 and P2 returns which of both represents
the smallest induced subgraph G[X] in O(|X| + mX).

Proof. Let c1 (resp. c2) be the number of cliques visited in P1 (resp c2) at the end of SIS
algorithm. The total number of cliques visited is c1 + c2.

In case (a), P1 represents the smallest subgraph G[X] of size S1 = |X|+mX . The number
c1 + c2 is in this case 2c1. As c1 ≤ S1 (lemma 5), the complexity of SIS is O(|X| + mX).

9

In case (b), S′
2
≤ S1. The path P1 represents the smallest subgraph G[X] of size S′

2
=

|X| + mX . Therefore SIS returns P2. As the first DFS stopped first w.l.o.g on P1, c2 > c1,
and, as c2 ≤ S′

2
(lemma 5), c1 + c2 < 2S′

2
and the complexity of SIS is O(|X|+ mX).

In case (c), the path P1 represents the smallest subgraph G[X] of size S1 = |X|+mX . As
c2 ≤ S1 + 1, c1 + c2 ≤ 2S1 + 1 and the complexity of SIS is O(|X| + mX). 2

S’2

S 1

P 1

P 2

(b) The longest path P2 is totally cov-
ered by continuing the DFS.

S 1

S’2

P 1

P 2

(c) The longest path P2 is not totally
covered by the DFS

Figure 7: Two ending cases when continuing the DFS on the longest path P2. In the first case (a),
the DFS covers all the vertices of P2. Then as S′

2
≤ S1, SIS returns P2. In the second case, at most

S1 vertices of P2 have been visited by the DFS without exploring all the tree. Then SIS returns P1.

4 The whole CCP algorithm for interval graphs

The whole CCP algorithm for interval graphs (CCPI-Algorithm) is shown on figure 8. The
algorithm takes as input two lists L1 and L2 are respectively the clique forest decompositions
of the two graphs G1 and G2. It outputs a partition of the common vertex set. At lines 5
and 7, it looks for a connected component C whose size is at most half of the size of the
corresponding graph. By lemma 9, it can be done in time proportional to the connected
component. Let P be the CDP of C. W.l.o.g. we assume that C is a connected component
of G1 and P is the first CDP of L1. Lines 11 and 12 compute the four subgraphs on which
the recursive calls will be done. Using EXTRACT(L2,P) and REMOVE(L2,P) we compute
the subgraphs of G2 respectively induced by the vertices VP belonging to the cliques of P and
V \ VP . As seen in Lemmas 8 and 7, it can be done in O(|VP |+ md

VP
).

Theorem 1 The CCPI-algorithm applied on MCPF(G1) and MCPF(G2) correctly identifies
the common connected components of G1 and G2.

Proof. The CCPI-Algorithm fully respects the general algorithm framework described in
section 2. Indeed lemmas 8 and 7 ensures that the recursive calls are done on the right
subgraphs. The only difference is that we now choose which maximal component we extract
first. 2

To analyse its complexity, we use an amortized argument that is common to many Hopcroft
like approach, but did not appear in the original paper [17]. To our knowledge, it is due to
[6].

Theorem 2 The CCPI-Algorithm is worst case O((n + m) log n) time .

10

CCPI-Algorithm(L1, L2)
1. If |L1| = 1 and |L2| = 1 Then
2. Return P = {V } /*G1 and G2 are both connected*/
3. Else
4. If |L1| ≥ 2 Then
5. P ← SIS(L1[1], L1[2]) /*G1 is not connected*/
6. Else
7. P ← SIS(L2[1], L2[2]) /*G2 is not connected*/
8. End of if
9. /* we assume below w.l.o.g that P = L1[1] */
10. L′

1
← P ; L′′

1
← L1\P

11. L′

2
← EXTRACT(L2, V [P]); L′′

2
← REMOVE(L2, V [P])

12. Let P ′ =CCP-Algorithm(L′

1
, L′

2
)

13. Let P ′′ =CCP-Algorithm(L′′

1
, L′′

2
)

14. Return P = P ′ ∪ P ′′

15. End of if

Figure 8: Recursive algorithm to compute the partition of the vertex set into common connected
components of two interval graphs G1 and G2 represented respectively by the MCPF L1 and L2.

Proof. We first focus on the number of times a vertex x and a transition (y, z) may participate
to EXTRACT and REMOVE. W.l.o.g., let S1 be the size of the subgraph of G1 at the
beginning of a recursive call of CCCIA. If a maximal connected component of G1 is extracted
trough its MCP P , then the size of the induced subgraph of P is less than or equal to
S1/2. This is straightforward since P has been isolated trough SIS as the smallest of the
two induced subgraphs. By induction, if x and (y, z) participate to many EXTRACT and
REMOVE, they are contained in subgraphs whose sizes is divided at least by two at each
recursive call. Therefore, they may only participate to log(n+m) EXTRACT and REMOVE
calls.

Secondly, we amortized the cost of each EXTRACT and REMOVE of a path P on all
the vertices and edges of the induced subgraph of P . The complexity of EXTRACT and
REMOVE (lemmas 8 and 7)) for extracting a set X out of a graph G is |X| + md

G
(X). We

amortize the cost |X| over each vertex of X, and therefore a vertex x ∈ X participates for a
constant amount of time. The term md

G
(X) is amortized over the edges. As an edge (x, y)

may be visited when considering x and when considering y, an edge can be visited only twice
and consecutively participates for a constant amount of time.

In consequence, each vertex or each edge cost at most log(n+m). This leads to an overall
complexity of O((n + m) log(n + m)). As in the worst case, m = O(n2), the final complexity
is O((n + m) log n) worst case time. 2

The space complexity is O((n + m)), since the two MCPFs are space linear in n + m and
that the recursive call of CCCIA algorithm can be managed with a list of at least O(log(n+m))
pointers on the MCPFs.

11

5 Conclusion

We presented an O((n + m) log n) worst case time and space complexity for solving the CCP
problem on interval graphs. Let us recall that in the general case, the best algorithm runs
in O(n log n + m log2 n) [9]. The algorithm combines an Hopcroft partitioning approach with
a maintenance of a spanning clique forest decomposition of the two graphs. Designing faster
algorithms or proving a lower bound for CCP remains open, on interval and general graphs.
It is worthwhile to notice that even on chordal graph the general upper bound can still not
be improved.

References

[1] D. Beauquier and J. Berstel an P. Chrétienne, editors. Eléments d’algorithmique. Masson,
Paris, 1992.

[2] A. Bergeron, S. Corteel, and M. Raffinot. The algorithmic of gene teams. In Workshop
on Algorithms in Bioinformatics (WABI), number 2452 in Lecture Notes in Computer
Science, pages 464–476. Springer-Verlag, Berlin, 2002.

[3] H. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2), 1993.

[4] K.S. Booth and G.S. Lueker. Testing for the consecutive ones properties, interval graphs
and graph planarity using pq-tree algorithm. J. Comput. Syst. Sci., 13:335–379, 1976.

[5] M.-P. Béal, A. Bergeron, and M. Raffinot. Gene Teams and Hopcroft’s Partionning
Framework. 2003. Submitted.

[6] A. Cardon and M. Crochemore. Partitioning a graph in O(|A| log2 |V |). Theoretical
Computer Science, 19(1):85–98, 1982.

[7] D.G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recognition algo-
rithm? In Proceedings of the ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 175–180, 1998.

[8] G.A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Uni. Hamburg, 25, 1961.

[9] A.-T. Gai, M. Habib, C. Paul, and M. Raffinot. Identifying Common Connected Com-
ponents of Graphs. Technical report LIRMM-03016, 2003. Submitted.

[10] P. Galinier, M. Habib, and C. Paul. Chordal graphs and their clique graph. In M. Nagl
(Ed.), editor, Graph-Theoretic Concepts in Computer Science, WG’95, volume 1017 of
Lecture Notes in Computer Science, pages 358–371, Aachen, Germany, June 1995. 21st
Internationnal Workshop WG’95, Springer.

[11] P. Galinier, M. Habib, and C. Paul. Chordal graphs and their clique graphs. In Workshop
on Graph-Theoretic Concepts in Computer Science, pages 358–371, 1995.

[12] F. Gavril. The intersection graphs of a path in a tree are exactly the chordal graphs.
Journ. Comb. Theory, 16:47–56, 1974.

[13] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, 1980.

12

[14] M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-bfs and partition refinement,
with applications to transitive orientation, interval graph recognition and consecutive
ones testing. Theoretical Computer Science, 234:59–84, 2000.

[15] M. Habib, C. Paul, and L. Viennot. A synthesis on partition refinement: a useful
routine for strings, graphs, boolean matrices and automata. In 15th Symposium on
Theoretical Aspect of Computer Science (STACS), number 1373 in Lecture Notes in
Computer Science, pages 25–38. Springer-Verlag, Berlin, 1998.

[16] M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: an interesting algo-
rithmic tool kit. International Journal of Foundations of Computer Science, 10(2):147–
170, 1999.

[17] J. E. Hopcroft. An n log n algorithm for minimizing the states in a finite automaton. In
Z. Kohavi, editor, The Theory of Machines and Computations, pages 189–196. Academic
Press, 1971.

[18] C.G. Lekkerkerker and J.C. Boland. Representation of a finite graph by a set of intervals
on the real line. Fund. Math., 51:45–64, 1962.

[19] N. Luc, J.-L. Risler, A. Bergeron, and M. Raffinot. Gene Teams: A New Formalization
of Gene Clusters For Comparative Genomics. Computational Biology and Chemistry (ex.
Computer and Chemistry), 2002. To appear.

[20] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing, 16(6):973–989, 1987.

[21] TERAPROT project. http://www.infobiogen.fr/services/teraprot/.

13

