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Abstract— This paper presents the design and the optimiza-
tion of a parallel machine-tool composed of (i) an 3-dof actuated
parallel mechanism (a linear Delta) and (ii) a 6-dof measuring
parallel mechanism (a Gough platform). The interest to use a
measuring device independent of the actuation device is shown
and the modeling of both devices used for the optimization
is explained. Then, the optimization of both mechanisms is
presented. The optimization of the actuated mechanism is
performed to have an homogeneous behavior in velocity while
the goal of the measuring device optimization is to obtain the
best resolution for the measuring system evaluated at the tool
level.

I. INTRODUCTION

Machine-tool (MT) builders are always looking for better
performances in terms of accuracy, speed, productivity and
stiffness. Naturally, MT designers took their inspirationfrom
recent advances in robot kinematic architectures, in partic-
ular Parallel Kinematics Machines (PKMs) [1]. PKMs have
nowadays shown their efficiency in some robotic domains
and commercial robots are widely available today1.
Among the transfers from well known robotic PKMs to the
machine tool industry, one can cite:

• The hexapods, where six variable length struts link a
moving traveling plate to a base. One of the first built
PKMs belonging to this family was proposed by Gough
[2], and the first MT inspired by this architecture was
the Variax [3]. Until today, a lot of industrial machines
are built such as Octahedral Hexapod by Ingersoll,
the P1000/P2000/P3000 Hexapods by PRSCO, and the
SEYANKA hexapod milling machine by Tekniker.

• The Delta kinematics invented by prof Clavel [4] is
lower mobility PKM (displacements of the traveling
plate are restricted to three translations). It is a light
weight structure having intrinsically high dynamic per-
formances. Robots based on this architecture are widely
available (see, for example FlexPicker by ABB). MTs
based on the Delta robot principle were also designed
such as UraneSX [5] that can reach up to4g (g =
9, 81m.s−2) in its workspace or the Quickstep by
Krause & Mauser [6].

Whatever the architecture is, geometrical calibration is re-
quired to get the best accuracy performances of the MTs. The

1http://www.parallemic.org/WhosWho/CompPKM.html

calibration tries to identify model parameters that enhance
machine accuracy [7]. Once these parameters are identified,
the model runs ”open loop”, i. e. the machine behavior is
expected to be the one that has been modeled and identified
whatever the deformations (elastic deformations, thermal
expansion, etc.) in machine components are. For Cartesian
serial MTs, the identification can be done axis per axis.
Parameter identification can be very accurate as the problem
is decoupled. Identifying PKM parameters, according to this
principle, is not possible as all axes are, generally, coupled
in the model. A full calibration of the model must be done,
but it always ends in a compromise between the number of
parameters and the numerical stability.
Moreover for MTs based on parallel architectures, geome-
trical calibration is not sufficient. To benefit to the high dy-
namics of the parallel architecture, the use of light elements
is necessary and therefore the stiffness of the machine can
be low [8]. This weak stiffness of parallel mechanisms is a
drawback when they are used in MTs. One solution consists
to add redundancy in the architecture to improve the mecha-
nism stiffness [9]. Another solution consists in modeling the
deformations with an elastic model of the structure [10] [11]
[12]. This solution is interesting to compensate the gravity
effects or when the stresses on the tool are known but it is
seldom the case.
The basic problem in machining is to impose accurate tool
positioning regarding the part to be machined. The best
way to deal with accuracy isto be always able to know
the tool position accurately, i. e. with a quality as close as
possible to a metrological one. This can be done by a device
which measures, continuously, the position of the tool. But
this measuring device must be independent of the actuation
device to avoid the perturbations on the measurement due
to the stresses applied on the tool. Two solutions can be
considered: a non-contact full pose measurement system or
a mechanical measuring device.
If we consider the first solution, vision systems or laser based
systems can be used. But, there is still ongoing research
on the vision measuring system and, even if algorithms are
available, they are not able today to guarantee the requested
resolution on the whole workspace of the machine [13].
Moreover, the refreshment rate is not high enough for the
control loop, but it is still a promising way of research for



the future. Concerning laser based systems, they are too
expensive and the non-contact laser measuring systems like
laser tracker cannot measure orientation.
The second solution is to build a mechanical structure,
with metrological considerations, which is able to give
information to compute the actual tool pose [14]. This
mechanical structure needs to have a good resolution and a
good accuracy and it must not transmit any stresses. Hence,
the design of this mechanism must be optimized to obtain
the best accuracy as possible. But dimensional synthesis
of a mechanism from error analysis is a complex problem
[15] [16] [17] [18]. Our approach is based on the error
analysis presented in [19]. In fact, from the given resolution
of the metrological mechanism encoder, we look for the best
dimensions of this mechanism to have the best measuring
resolution evaluated at the tool level.
To prove the feasibility and the efficiency of this concept,
a PKM MT architecture (Delta) must be firstly selected and
then a measuring architecture (Gough platform) is defined.
Justification, description and modeling are given in section
II. As it is well known that behavior of PKMs depends
strongly on their design parameters, an optimization for both
mechanisms is done in section III and IV. Conclusion and
future works are given in section V.

II. MACHINE DESCRIPTION

A. Selection of the architectures

1) Actuation architecture: Basic machining operations
(grooving, drilling, contouring) require three translational
degrees of freedom (dof). We must select an architecture that
provides these dof while constraining the three rotational
dof to a constant value. Several hybrid mechanisms or
PKMs are able to provide these dof [20]. Among them, one
can cite the Tsai mechanism [21], the Star mechanism [22],
and the Speed-R-Man mechanism [23].
But, the architecture that guarantees intrinsically the highest
dynamic performances is the Delta mechanism. For MTs,
linear actuation is preferred to make it as mechanically stiff
as possible. So the traveling plate will be actuated by a
linear Delta, as in the UraneSX MT. The Delta architecture
theoretically imposes a constant orientation of the traveling
plate and allows controlling three translations. But due
to the manufacturing and assembly errors, and the elastic
deformations of machine elements, it is not possible to
guarantee that no parasitic rotation of the platform occurs.
These rotations impairs machine accuracy because of the
varying lever arm (depends on tool length and position
of tool cutting edge) between the tool extremity and the
moving platform. The consequence is that the measuring
device to be integrated to the machine must be able to
measure thex, y, z position of the tool, but also its parasitic
rotation to forecast the imperfect shape of the machined part.

2) Measurement architecture:As mentioned before, a full
pose measurement system is required. Non contact system
based on vision are, today, not accurate enough and cannot
guarantee a fast refresh rate compatible with control loops.

Concerning the existing non contact measuring system based
on laser (like laser tracker), they are too expensive and cannot
measure directly the orientation of the measured object. We
propose here to use a mechanical measuring system. A strong
constraint on this measuring system is that it will be attached
on one side to the fixed base of the machine and on the
other side on the moving traveling plate. The problem is
that the traveling plate is expected to move in machine
workspace with a high acceleration capability. The measuring
system must not reduce this acceleration capability. The
consequence is that it must be light weight. Then, this
mechanical measuring device must not transmit any stresses
to insure a good accuracy. The kinematics of the system must
take account of it. Moreover collision considerations with
the actuation architecture must be taken into consideration
for avoiding any restriction of machine workspace.
To measure the position and the orientation of a solid, six
measurements are necessary. These measurements can be
distance measurements or angle measurements. To respect
the Abbe’s principle and to avoid the angular error amplifi-
cations due to lever arm, distance measurements are chosen.
From there, the choice of parallel architecture is natural
because measure an orientation from distance measurement
is impossible with serial architecture. The most common
and the simplest 6-dof parallel architecture is the hexapod.
Many arrangements of hexapod exist such as the system
MAST (Multi-Axis Simulation (or Shake) Table), the Gough
platform, the Stewart platform2. The system MAST is very
interesting because the strut adjustments would be simple and
interpretable for small variations. But in our case we need
quite big variations of the leg lengths to insure a good MT
workspace. Then, the system MAST has a singularity which
is close to the MT workspace ; that is decreased the accuracy
of the measuring device. Moreover, this system takes up too
much space.
An other type of hexapod is best suited to our machine:
the Gough platform. This mechanism is very compact and
can be placed behind the Delta mechanism away from the
working area (see Fig. 1). Its realization is very simple
because six take-down variable length struts are used. These
struts link the base to the traveling plate simply with spheres
and magnets; this facilitate the calibration of such a system
as we will see below.

B. Modeling of the linear Delta mechanism

Several arrangements of the Delta exists [4] [24] [25]. In
our case, a simple robot Delta with prismatic actuators is
chosen (Fig. 1). The motor axis are placed at120˚ to each
other. The only useful parameters of the Delta mechanism
are:

• ∆R, the difference between the radius of the base,RB

and the radius of the traveling plate,RTP

• L, the length of the arms
• d, the distance between pointsCi andCij (and points
Di andDij).

2http://www.parallemic.org/Reviews/Review007.html



(a) 3D view

(b) Front view

Fig. 1. Measuring device location

(a) 3D view

(b) Top view

Fig. 2. Delta geometrical parameters

Figure 2 shows the geometrical parameters of the Delta
mechanism. The coordinates of the traveling plate centerED

arexD, yD, zD and the active-joint variables areq0, q1, q2.
The optimization of the Delta mechanism presented in this
paper is based on the study of the condition number of the
Jacobian matrixJD which links operational speeḋxD to
joints velocitiesq̇D:

ẋD = JDq̇D (1)

The matrixJD is given by:

JD = J−1
x Jq (2)

where

Jx =







xD − ∆R
√

3
2 yD + ∆R

2 zD − q0
xD yD − ∆R zD − q1

xD + ∆R
√

3
2 yD + ∆R

2 zD − q2






(3)

Jq =





zD − q0 0 0
0 zD − q1 0
0 0 zD − q2



 (4)

C. Modeling of the Gough platform

Figure 3 presents the parameters of the Gough platform.
PointsAi (Bi) which represents the centers of the spherical
joints on the base (on the traveling plate) are placed on a
circle of radiusrb (rTP ). Then, three lines passing by the
base centerO and the traveling plate centerTH and separated
by an angleα0 are defined. PointsAi (Bi) are then located
symmetrically to these lines, two by two, with an angle of
αb (αTP ).
The measured-joint variables are defined by the hexapod leg
lengths notedli (i ∈ [1, 6]). The posexH of the platform is
defined by the coordinatesxH ,yH ,zH of the traveling plate
centerEH in the base frameRb together with 3 angles
ψH ,θH ,φH that allows to calculate the rotation between the
base frameRb and the traveling-plate frameRTP .
For the optimization of the Gough platform, we assume that
positioning errors∆xH and the length measurement errors
∆l are small enough to write an approximation of the error
model such as :

∆xH ≈ JH(P ,xH)∆l (5)

wherePT = [rb rTP αb αTP ] 3 is the vector of the geome-
trical parameters andJH(P ,xH) is the Jacobian matrix of
the Gough platform. Only the inverse of the Jacobian matrix
has an analytical form which can be calculated as follows:

J−1
H

=







u1 −u1 ∧ B1EH

...
...

u6 −u6 ∧ B6EH






(6)

with

ui =
AiBi

li
(7)

3 T denotes the matrix transposition



(a) 3D view

(b) Top view

Fig. 3. Geometrical parameters of the Gough platform

Fig. 4. Tool pointET and its bounding box

D. Modeling of the Tool Point

The optimization is performed to obtain the best resolution
for the measuring system evaluated at the tool level. But
the shape and the size of the tool is unknown since it can
be varied depending on the machining task. The lever arm
between the hexapod traveling-plate centerEH and the tool
pointET is variable and is defined by the vector in the base
frameRTP :

EHET =





Lx

Ly

Lz





RT P

(8)

In the case of this machine, as Delta mechanism impose the
orientation, the vectorEHET can be considered the same in
the base frame and in the traveling plate frame of the Gough
platform. The coordinatesLx,Ly,Lz are bounded and the
bounding box is presented in Fig. 4.

E. Machine Workspace

We designed a MT which allows to machine only small or
medium-sized parts. The considered workspaceW is a cube
whose sides are300 millimeters (Fig. 5). The optimization

Fig. 5. MT workspaceW (300 × 300 × 300 mm
3)
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Fig. 6. Maximum of the condition number of the Jacobian matrix in a
0.3 × 0.3 × 0.3 m3 workspace

of the robot Delta and the Gough platform is performed in
this workspace.

III. OPTIMIZATION OF THE DELTA MECHANISM

A. Optimization Criterion

The main quality sought for the Delta mechanism is
the isotropy of its Jacobian matrix. That is to insure a
homogeneous behavior in velocity and to have an accurate
control of the manipulator [18].

B. Optimized Delta parameters

A grid of points is defined within the workspaceW , and
for each point of this grid, the condition number of the
Jacobian matrixJD is calculated for variable values ofL and
∆R. Figure 6 shows the variation of the maximum condition
number according toL and∆R. This figure allows to choose
the parameter∆R considering that the arms must not be too
long in order to avoid too deform because of the cutting
forces. So, the length of the arms are fixed to800 mm and
∆R is equal to480 mm. The choice of these parameters is
a compromise between the performances and the size of the
machine. Concerning the parameterd, it is chosen as big as
possible to decrease the orientation error of the end-effector
[26]. The final values of Delta parameters are presented in
Table I.



TABLE I

OPTIMIZED DELTA PARAMETERS

RB RTP L d

540 mm 60 mm 800 mm 75 mm

IV. OPTIMIZATION OF THE GOUGH PLATFORM

A. Introduction

The Gough platform as measuring system must have good
positioning capabilities: repeatability, resolution andaccu-
racy [7]. These capacities are dependent on several factors.
Some factors can be controlled during the design process
while others do not. Let’s see this for each positioning
capability.
First of all, repeatability is extremely dependent on the
realization of the joints and on the choice of the mechanical
elements. Backlashes or friction on the joints, and the errors
due to the finite resolution of the active-joint encoders can
decrease the repeatability.
Concerning the robot accuracy, calibration is required to
eliminate the positioning errors due to manufacturing errors.
On the designed Gough platform, the calibration is very
simple. The measuring legs can be calibrated with an artefact
one by one, while the position of the spherical joint centers
on the traveling plate and the base can be measured with
a coordinate measuring machine. Other sources of errors
exist as compliance which can be modeled and identified
[12]. In our case, the compliance of the Gough platform
is neglected since no stresses are supposed to act on the
elements of Gough platform (except the weight of the legs
which is neglected).
Finally, the last capability is the resolution of the mechanism.
The first element who gets involved in the mechanism
resolution is the active-joint encoders resolution. The second
element is the mechanism architecture which is determined
during the design phase. So, the mechanism theoretical reso-
lution can be improved by an optimization of the dimensions
of mechanism elements.
The goal of the optimization is to improve the measurement
resolution at the tool level. In other words, considering the
resolution of the leg encoders, the resolution at the tool
level is the minimal displacement of the tool which can be
detected by the measuring device. The objective is to have
a measuring device which can detect the smallest possible
displacement of the tool. The optimization consists in finding
the dimensions of the Gough platform which allow to reach
this objective.

B. Optimization criterion

Two phases are distinguished concerning the Gough plat-
form optimization. First of all, the optimization problem is
analyzed considering the tool point as known. Then, the tool
bounding box will be considered.

1) Leg Encoder Errors:Any small displacement of the
Gough platform traveling plate, in position∆pH and orien-
tation∆rH , results in a small displacement of the considered

tool point can be approximated by∆pT ; this displacement
is evaluated at first order as follows:

∆pT = ∆pH + ∆rH × EHET (9)

with

∆xH =

[

∆pH

∆rH

]

(10)

From (5), the relation mapping the length measurement
errors∆l to the corresponding tool positioning errors∆pT

can be written:

∆pT = JHP
(P ,xH)∆l + JHR

(P ,xH)∆l × EHET (11)

with

JH(P ,xH) =

[

JHP
(P ,xH)

JHR
(P ,xH)

]

(12)

To simplify (11), the second term of its right member is
rearranged as follows:

JHR
∆l × EHET = −EHET × JHR

∆l

= −ÊHET JHR
∆l

(13)

whereÊHET represents the cross-product matrix.
A small change in the length of the six hexapod legs is
mapped into a displacement for the considered tool point by
the following relation:

∆pT = JT ∆l (14)

where

JT = JHP
− ÊHET JHR

is a 3×6 matrix.
Looking for the ’worst case’ requires to find the largest value
of ‖∆pT‖ (Euclidean norm of the vector∆pT ) when each
measuring leg encoder suffers from an uncertainty ofε equal
to their resolution:

−ε < ∆li < ε (15)

Due to the linearity of the system (14), for a given
point of the workspace and for a given tool point, the
maximal value of‖∆pT (P ,XH)‖ corresponds to the26

possible combinations corresponding to vectors∆l whose
components are equal to+ǫ or −ǫ.

2) Unknown Tool Size:Now, for a given∆l belonging to
the26 combinations, the fact that the tool point is considered
inside a bounding box has to be taken into account.
Equation (14) can be developed as follows:

∆pT =

















6
∑

i=1

J1i∆li +
6
∑

i=1

J5i∆liLz−
6
∑

i=1

J6i∆liLy

6
∑

i=1

J2i∆li +
6
∑

i=1

J6i∆liLx−
6

∑

i=1

J4i∆liLz

6
∑

i=1

J3i∆li +
6
∑

i=1

J4i∆liLy−
6
∑

i=1

J5i∆liLx

















(16)



whereJji is the element at j-th row and i-th column ofJH .
The norm of∆pT is given by:

‖∆pT ‖ =
(

(S1 + S5Lz − S6Ly)2

+ (S2 + S6Lx − S4Lz)
2 + (S3 + S4Ly − S5Lx)2

)
1

2

(17)

with

Sj =

6
∑

i=1

Jjiδli (18)

The squared norm is then studied as a function ofLx,Ly and
Lz:

f(Lx, Ly, Lz) = ‖∆pT‖
2 (19)

Finding the maxima of function‖∆pT‖ is equivalent to
finding the maxima of function‖∆pT ‖

2.
Briot [17] presents the mathematical background necessary
to study this function. He classifies four types of maximum
(first, second, third and fourth kind) which are respectively
in the whole bounding box, or on the faces, or on the edges
or on the corners, of the bounding box. Finally, we must
study the following functions:

f1 : (Lx, Ly, Lz) → f(Lx, Ly, Lz),
f2 : (Ly, Lz) → f(Lxmin

, Ly, Lz),
f3 : (Ly, Lz) → f(Lxmax

, Ly, Lz),
f4 : (Lx, Lz) → f(Lx, Lymin

, Lz),
f5 : (Lx, Lz) → f(Lx, Lymax

, Lz)),
f6 : (Lx, Ly) → f(Lx, Ly, Lzmin

),
f7 : (Lx, Ly) → f(Lx, Ly, Lzmax

),
f8 : (Lz) → f(Lxmin

, Lymin
, Lz),

f9 : (Lz) → f(Lxmin
, Lymax

, Lz),
f10 : (Lz) → f(Lxmax

, Lymin
, Lz),

f11 : (Lz) → f(Lxmax
, Lymax

, Lz),
f12 : (Ly) → f(Lxmin

, Ly, Lzmin
),

f13 : (Ly) → f(Lxmin
, Ly, Lzmax

),
f14 : (Ly) → f(Lxmax

, Ly, Lzmin
),

f15 : (Ly) → f(Lxmax
, Ly, Lzmax

),
f16 : (Lx) → f(Lx, Lymin

, Lzmin
),

f17 : (Lx) → f(Lx, Lymax
, Lzmax

),
f18 : (Lx) → f(Lx, Lymin

, Lzmin
),

f19 : (Lx) → f(Lx, Lymax
, Lzmax

),

whereLxmin
, Lxmax

, Lymin
, Lymax

, Lzmin
, Lzmax

designate
the minimal and the maximal bounds ofLx, Ly, Lz.
The first functionf1 reaches a maximum when its gradient
is null and when its hessian matrix is negative definite. The
system of equations which described that the gradient is null
is:






S6(S2 + S6Lx − S4Lz) − S5(S3 + S4Ly − S5Lx) = 0
−S6(S1 + S5Lz − S6Ly) + S4(S3 + S4Ly − S5Lx) = 0
S5(S1 + S5Lz − S6Ly) − S4(S2 + S6Lx − S4Lz) = 0

(20)
The three equations of this system are not independent. This
system represents the equation of a line. Now, it is necessary
to study the hessian matrix to qualify the critical points of

the function which belong to this line:

H(f1) =





2S52 + 2S62 −2S5S4 −2S6S4
−2S5S4 2S42 + 2S62 −2S6S5
−2S6S4 −2S6S5 2S42 + 2S52





(21)
This matrix is constant whateverLx, Ly and Lz. The
determinant of this matrix is null and its eigenvalues are
σ1 = 0 and σ2 = σ3 = 2S4

6 + 2S2
5 + 2S2

4 . The matrix
H(f1) is positive semi-definite and the functionf has no
maximum of the first kind.
Then, the functionsf2, . . . , f19 are treated as the first one,
that is, analyzing their gradients and hessian matrix. It is
determined that there is neither maximum of the second
kind nor maximum of the third kind.
Finally, only a maximum of the fourth kind exists and is on
one of the eight corners of the tool bounding box.

3) Global Optimization Criterion:Let ΩLx
, ΩLy

, ΩLz
,

Ωl0 , Ωl1 , Ωl2 , Ωl3 , Ωl4 , Ωl5 be the spaces defined by:

ΩLx
= {Lxmin

, Lxmax
}, ΩLy

= {Lymin
, Lymax

}
ΩLz

= {Lzmin
, Lzmax

}, Ωl0 = {l0 − ε, l0 + ε}
Ωl1 = {l1 − ε, l1 + ε}, Ωl2 = {l2 − ε, l2 + ε}
Ωl3 = {l3 − ε, l3 + ε}, Ωl4 = {l4 − ε, l4 + ε}
Ωl5 = {l5 − ε, l5 + ε}

(22)

Let Λ = ΩLx
×ΩLy

×ΩLz
×Ωl0×Ωl1×Ωl2×Ωl3×Ωl4×Ωl5

be the cartesian product of the spaces defined above.
Finally, the optimization criterion is given by:

Copt = max
(xH ,yH ,zH)∈W

Cint (23)

Cint = max
λ∈Λ

‖∆pT (P ,xH , λ)‖ (24)

Then, the optimization consists in finding the vector of
parametersP∗ which minimize the criterionCopt.

C. Gough platform parameters

The Gough platform optimization has to take into account
the Delta geometry to avoid collisions. The distance between
the center of the two structures is chosen such as it is
the smallest possible to minimize the size and the weight
of the traveling plate. This distance is equal to0.1 m.
Another parameters are not introduced in the optimization
process. Indeed, the hexapod leg lengths can vary between
two bounds chosen by the designers (li∈[634 mm, 1080
mm]).
A preliminary study showed that the optimization criterion
of the Gough platform is better if the anglesαb andαTP are
small and if the radiusrb andrTP are big. Considering this
and the collisions aspect a first set of parameters is chosen
to initialize the optimization algorithm.
The final values of Gough platform are presented in Table
II.
Finally, the parameter optimization allows to reach a theo-
retical resolution evaluated at the tool level about20 µm for
a resolution of the leg encoders of1 µm.



TABLE II

GOUGH PLATFORM PARAMETERS

rb rTP αb αTP

375 mm 75 mm 6 ˚ 40 ˚

V. CONCLUSION

In this paper we have proposed the design and the
optimization of a parallel machine-tool composed of (i)
an actuated parallel 3-dof mechanism (a linear Delta) and
(ii) a measuring 6-dof mechanism (a Gough platform). We
have explained the interest for a machine-tool to have a
measuring device independent of the actuated mechanism
notably to measure the consequence of its deformations due
to the machining stresses. Finally, we have proposed an
optimization which is performed to obtain the best resolution
for the measuring system evaluated at the tool level. The
final design of the coming prototype is shown in Fig. 1.
Different control strategies will be evaluated on the prototype
for example online calibration, compensation or control of
the machine in the measurement system space.
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en Robotique Parallèle,” Ph.D. dissertation, Universit´e Montpellier II,
Montpellier, France, 2002.

[10] C. M. Gosselin and D. Zang, “Stiffness analysis of parallel mecha-
nisms using a lumped model,”International Journal of Robotics and
Automation, vol. 17, no. 1, pp. 17–27, 2002.

[11] G. Ecorchard and P. Maurine, “Self-calibration of delta parallel robots
with elastic deformation compensation,” inProc. IEEE International
Conference on Intelligent Robots and Systems (IROS’05), Edmonton,
Alberta, Canada, August 2005.

[12] D. Deblaise, X. Hernot, and P. Maurine, “A systematic analytical
method for pkm stiffness matrix calculation,” inIEEE International
Conference on Robotics and Automation (ICRA’06), Orlando, Floride,
USA, May 2006.

[13] P. Renaud, N. Andreff, F. Pierrot, and P. Martinet, “Combining end-
effector and legs observation for kinematic calibration ofparallel
mechanisms,” inIEEE International Conference on Robotics and
Automation (ICRA’04), News Orleans, USA, April 26-May 1 2004,
pp. 4116–4121.

[14] T. Arai, R. Stoughton, K. Homma, H. Adachi, T. Nakamura,and
K. Nakashima, “Development of a parallel link manipulator,” in IEEE
International Conference on Advanced Robotics (ICAR’91), Pisa, Italy,
June 1991, pp. 839–844.

[15] J.-P. Merlet, “Computing the worst case accuracy of a PKM over
a worskpace or a trajectory,” inProc. Parallel Kinematics Seminar
(PKS’06), Chemnitz, Germany, April 2006.

[16] J. Merlet, “Jacobian, manipulability, condition number, and accuracy
of parallel robots,”ASME Journal of Mechanical Design, vol. 128, pp.
199–205, January 2006.

[17] S. Briot and I. Bonev, “Accuracy analysis of 3-
DOF planar parallel robots,” Mech. Mach. Theory,
doi:10.1016/j.mechmachtheory.2007.04.002.

[18] C. Gosselin and J. Angeles, “A global performance indexfor the kine-
matic optimization of robotics manipulators,”International Journal of
Mechanical Design, vol. 113, no. 3, pp. 220–226, 1991.

[19] A. Yu, I. Bonev, and P. Zsombor-Murray, “Geometric approach to the
accuracy analysis of a class of 3-DOF planar parallel robots,” Mech.
Mach. Theory, doi:10.1016/j.mechmachtheory.2007.03.002.

[20] R. Katz, Z. Li, and F. Pierrot, “Conceptual design of a high speed
drilling machine (HSDM) based on PKM module,” inTechnical
Report, ERC/RMS, The University of Michigan, 2001.

[21] L. W. Tsai and S. Joshi, “Kinematics and optimization ofa spatial
3-UPU parallel manipulator,”ASME Journal of Mechanical Design,
vol. 122, p. 439446, December 2000.
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