
HAL Id: lirmm-00402195
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00402195v1

Submitted on 8 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Foundation of Self-developing Blob Machines for
Spatial Computing

Frédéric Gruau, Christine Eisenbeis, Luidnel Maignan

To cite this version:
Frédéric Gruau, Christine Eisenbeis, Luidnel Maignan. The Foundation of Self-developing Blob
Machines for Spatial Computing. Physica D: Nonlinear Phenomena, 2008, 237 (9), pp.1282-1301.
�10.1016/j.physd.2008.03.046�. �lirmm-00402195�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00402195v1
https://hal.archives-ouvertes.fr

The Foundation of Self-developing Blob Machines for Spatial Computing

Frédéric Gruau a,b,c,d Christine Eisenbeis b Luidnel Maignan b

a LRI - Université de Paris-Sud 11, bâtiment 490, 91405 Orsay Cedex, France
b Inria Futurs Saclay - Parc Orsay Université, 4, rue Jacques Monod, 91893 ORSAY Cedex, France

c Laboratoire d’informatique, de robotique et de microélectronique de Montpellier, 31 rue Ada, 34000 Montpellier, France
dUniversity of the West of England, Frenchay Campus, Coldharbour Lane Bristol BS16 1QY, United Kingdom

Abstract

The current trend in electronics is to integrate more and more transistors on a chip and produce massive hardware resources. As
a consequence, traditional computing models, which mainly compute in the temporal domain, do not work well anymore since
it becomes increasingly difficult to orchestrate these massive-scale hardware resources in a centralized way. Spatial computing
is a unifying term that embodies many unconventional computing models and means computing on a relatively homogeneous
physical medium made of hardware components, where the communication time is dependent on the euclidean distance between
the components (locality constraint). This constraint makes the programming for high performance significantly more complex
compared to classical non-spatial hardware because performance now depends on where computation happens in space (mapping
problem). Blob computing is a new approach that addresses this parallel computing challenge in a radically new and unconventional
way: it decouples the mapping of computations onto the hardware from the software programming while still elegantly exploiting
the space of the underlying hardware. Hardware mapping of computations is done by a physical force-based approach that simulates
forces between threads of computation (automata). Attractive forces are used to keep automata that need to communicate with
each other closer while repulsive forces are used for load balancing. The advantage of theses primitives is that they are simple
enough to be implemented on an arbitrary computing medium. They form the basis of a runtime system (RTS) that transforms
an arbitrary computing medium into an easier-to-program virtual machine called the blob machine. The basic objects of the blob
machine are those automata, and the instructions let automata create new automata in specific ways so as to maintain a hierarchical
organisation (which facilitates both the mapping and the programming). We detail the basic instructions of the blob machine and
demonstrate their confluence. Programming a spatial medium to perform a given algorithm then boils down to programming the
blob machine, provided the RTS is implemented on it. The advantage of this approach is the hardware independency, meaning that
the same program can be used on different media. By means of several examples programmed using a high level langage description,
we further show that we can efficiently implement most current parallel computing models, such as Single Instruction Multiple Data
(SIMD), data parallelism, “divide and conquer” parallelism and pipelining which demonstrates parallel expressiveness. On sorting
and matrix multiplication algorithms, we also show that our approach scales up optimally with the number of basic hardware
components.

1. Introduction

1.1. Motivation: scalability and expressiveness

An important part of computer science is devoted to
designing a context that is conducive to programming
the computer and obtaining results efficiently. This cov-
ers many areas of research, organized in layers, including
hardware, architecture, machine language, and high-level
language. The lowest layer deals with the physical prop-
erties of physical entities to provide a preliminary set of
manageable components and rules, and the highest level
attempts to provide an abstract representation of the
former so that the programmer can describe the desired

task in an expressive way, while offering the best feasible
performance.

The scalability problem. At the lowest physical level,
technology already produces chips with billions of transis-
tors. As a result, the number of processing elements (PEs)
is steadily increasing and research in unconventional com-
puting currently focusses on building hardware on a scale
that outreaches today’s technology. Given such magni-
tudes, scalability becomes imperative at the high level: as
the number of PEs increases, does performance increase
accordingly? This paper advocates that the conventional
ways of designing parallel hardware architecture are not
appropriate for scaling to arbitrary large size because
too many of the physical level properties are lost in ab-

Preprint submitted to Elsevier 3 March 2008

straction. For example, many classical features of parallel
architecture, such as shared memories or all-to-all routers,
design out the notion of space to establish a single Uniform
Memory Architecture (UMA). In shared memories the ac-
tual location of data is not an issue. With all-to-all routers,
any two PEs are considered as being close together. But
the performance of these features cannot be scaled, which
is necessary in larger systems where communication time
(to access a single memory or communicate with another
PE) increases with size. The time required for a signal to
travel the length of the wire is not taken into account 1 .
The spatial computing framework identifies space as the
key physical property and proposes to organize hardware
resources as a spatially extended homogeneous computing
medium in order to take space into account and achieve
greater scalability. Computation and data must be dis-
tributed in 2D or 3D space and the particular spatial ar-
rangement must be closely articulated with performance.
Section 1.2 outlines state-of-the-art spatial computing as
a hierarchy of horizontal layers from hardware to software.

The expressiveness problem. At the highest level, the
computing medium must be programmed, i.e. the behavior
of each individual processing element (PE) in space must
be described. This is a difficult task in comparison to pro-
gramming sequential machines: there is no centralized con-
trol, no overall coherent memory image of the machine con-
figuration, and no global clocking. Because of locality in
space, each PE communicates only with its nearby neigh-
bors. Most programs running on spatial computers imple-
ment a single purely spatial algorithm where input and out-
put data are located in space and data computation can
also take place naturally in space. This is clearly insuffi-
ciently expressive when aiming to use spatial computing
to solve complex tasks involving different algorithms and
data structures. The task is even more difficult when per-
formance is important.

The blob machine concept proposes to solve the program-
ming problem by using a vertical approach to spatial com-
puting, i.e. by proposing two levels that gradually abstract
space while never completely ignoring it. Programming is
carried out on an intermediate virtual machine called the
blob machine, whose primitives are based on physics sim-
ulation and are sufficiently simple to be implemented on
an arbitrary computing medium. On one hand this allows
the user to program traditional parallel algorithms with-
out worrying about the exact spatial location of data and
computation. On the other, if the programmed task graph
is simple enough, as is the case for a planar graph, then the
runtime system can efficiently map it in two-dimensioanl
space. Section1.3 informally introduces the blob approach
and its main features of interest. The self-mapping prop-

1 Consider the example of a router where spatial location has been
abstracted away and the router diameter is the measure of router
performance. If the communication time between any pair of PEs
does not depend on the communicating PEs, it necessarily depends

on this diameter, which represents the worst case.

erty, a significant facet of the blob model, is described in a
separate sub-section.

The rest of this article is organized in two sections. Sec-
tion 2 gives a formal definition of a simplified blob machine,
i.e, the binary blob machine and the state of the art of its
implementation. The model semantics are described in de-
tail and semantic confluence is demonstrated. An explana-
tion follows describing implementation of the blob machine
on a computing medium and defining a complexity model,
i.e., “dDcomplexity”, used to measure performance in the
examples of blob execution presented in Section 3. Those
examples have been chosen to cover a wide range of par-
allel algorithms. The purpose is to establish the feasibility
of programming and assess the resulting efficiency. Opti-
mal time and space complexity can be achieved, as long as
implementation meets dDcomplexity requirements.

1.2. Background on spatial computing

Spatial computing is an umbrella term that groups to-
gether different approaches, all based on the observation
that future computing platforms — whether VLSI, bio, or
nano — will consist of a vast number of Processing Ele-
ments (PEs) homogeneously embedded in 2D or 3D space,
where the magnitude involved obliges the programmer to
incorporate the locality constraint, where each PE has a
specific location in space, and communication time is a
function of Euclidian distance in that space. For example,
in the (classic) VLSI complexity model [1], this relation-
ship is linear. Communication costs have always been a
major issue in parallel computing. But scaling up to an ar-
bitrary large space is rarely considered as an option, where
communication must be optimized by taking into account
physical distance. For example, a black-box router can be
implemented efficiently in all-to-all communication, but it
abstracts away spatial location. Architectures embedded in
space, referred to here as “computing media”, include not
only regular classic models, such as cellular automata, sys-
tolic arrays and FPGAs 2 , but also irregular models where
the constraints of lattice tiling of space and synchronism
in time are relaxed, as exemplified in the amorphous com-
puting model [2]. Spatial computing was the subject of a
recent workshop [3]. A complexity model of computing me-
dia called “spatial machines” is presented in [4].

Spatial computing calls for a departure from computing
in time, which uses a conventional centralized programming
approach with a step-by-step modification of a given over-
all state. Intuitively, to exploit space, computation must
be deployed in space by dynamically constructing spatial
entities such as circuits. Spatial computing also calls for
new architectural designs. The hierarchy of different long-
distance connections used in FPGAs is an example of a scal-
able building block that reduces total network diameter.

2 Field-Programmable Gate Array. An FPGA architecture can be
reconfigured on the fly and therefore be adapted to the dynamic

features of the program it executes.

2

Spatial computing is a broad subject covering a large part
of unconventional computing. The following classification
proposes to include all levels from hardware to software.

(i) Hardware: the development of new technologies that
enable spatial computing. In this context, space is a
factor of scalability. Nanotechnologies include nan-
otubes [5] [6], DNA computing [7], and chemical re-
actions [8]. In Goldstein’s programmable matter con-
cept [9], processing elements themselves can move.

(ii) Architecture: a structure designed on existing spa-
tial computing platforms, such as FPGAs, in such
a way that when the number of hardware resources
increases, the same given program can use the added
space and thereby improve performance. In this con-
text, space is a factor of performance. Dehon [10]
proposes a framework called SCORE that deploys
pipelined circuits in space during runtime and can
adapt to various hardware dimensions by trading
time for space. The “poetic” project at EPFL [11]
has developed a chip specialized in bio-inspired
algorithms including evolution, development, and
learning.

(iii) Algorithm: the development of spatial primitives that
use space and compute information about space. In
this case, space is a factor of functionality. For exam-
ple, the MIT amorphous computing group [2] shows
how to compute a set of coordinates for each PE of
an amorphous medium and Eric Rauch [12] simulates
wave propagation, which can support communication
on amorphous computers. Using reaction diffusion
computers, Adamatzky [13] computes the Voronöı
tessellation, which partitions space and also estab-
lishes a network using Delaunay triangulation.

(iv) Spatial language: in this context the notion of space
is explicitly used as a metaphor of programming and
semantics, where space is a factor of expressiveness.
Giavitto and Michel [14] [15] use the data structure
itself as the computation space. Their MGS language
shows that reasoning in terms of space leads to com-
pact programs if the task has a spatial formulation.
Gamma formalism [16] uses the parallelism inherent
in chemical reactions while avoiding any artificial
constraints caused by sequential execution; this also
leads to very concise programs. The idea of using en-
capsulated membranes has stimulated two projects
based on specific languages: Paun [17] studies the
formal language of a model called P-system while
Cardelli [18] programs algebraic systems of mem-
branes focused on simulating actual biological cells.

Vertical approaches to spatial computing.
Ideally, the overall goal of spatial computing is to en-

compass these four levels in a complete vertical model that
combines both language and machine: a program in an ex-
pressive high-level language based on a functional library
of spatial primitives, run on an appropriate architecture de-
signed for scalable hardware. Several research projects al-
ready address this great challenge: Nagpal [19] proposes

a language based on primitives for folding a sheet of pa-
per as in Origami; Coore [20] has developed the Growing
Point language, based on primitives which manipulate par-
ticles that produce gradients and move along them. Both
Nagpal and Coore use amorphous computers and have de-
veloped patterns or circuits that are above the amorphous
medium. Once the structure is laid out, however, it cannot
evolve any more. This limits programming expressiveness.
Toffoli [21] proposes a programming framework also called
“programmable matter” (like Goldstein), that focuses on
efficient compilation for cellular automata with block rules.
The language level, however, is not very high. It covers
mainly simulations in physics with problems such as noise
filtering and polymer simulation. Dehon [10] is also work-
ing on both a language and an architecture with a focus on
performance that specifically targets stream processing.

In a vertical framework both performance and expres-
siveness requirements must be met, but are very difficult
to achieve simultaneously. In practice, research on spa-
tial languages does not seek efficient use of the computing
medium, and performance-oriented research contents itself
to use languages whose expressiveness is limited to a spe-
cific niche of applications, as long as significant improve-
ments in speed are obtained.

1.3. The Blob approach

The blob machine is a vertical framework for spatial com-
puting that aims to achieve both expressiveness and per-
formance by using two types of simple building blocks to
manage space: blobs and channels. With regards to per-
formance, blobs and channels are like physical 2D or 3D
objects, such as membranes and filaments, and can thus
be parallelized by using discretized physical laws on an
arbitrarily large 2D/3D computing medium. This imple-
mentation requires a library of spatial algorithms (Level
(iii) in the previous classification). In terms of expressive-
ness, blobs define a virtual machine above the computing
medium which is much easier to program (Level (iv)). Blobs
and channels can be developed dynamically and therefore
are naturally capable of handling dynamic data structures.
In general, blobs represent the concept of compartmental-
ization and therefore allow the programmer to ignore the
specific spatial arrangement of the hardware. Blobs alone
can create only pure hierarchical structures, where com-
munication occurs between a blob and its sub-blobs. Chan-
nels allow communication between arbitrary blobs by pro-
viding a dedicated point-to-point communication pathway
through the computing medium between a pair of blobs.

Blobs compartmentalize the medium for non-uniform pro-
cessing. Blobs act functionally like membranes that divide
the computing medium into different connected regions.
This type of compartmentalization is not required in the
case of pure spatial primitives, such as providing a gradi-
ent to measure the distance to a given point, where the
problem can be solved by having all participating PEs ex-

3

ecute the same simple local rule. But whenever different
types of tasks must be run in parallel, by compartmentaliz-
ing the computing medium into disjoint connected regions,
different parts of the medium can run different programs
more efficiently. In the present example, each connected re-
gion has its own execution thread and only needs to store
and execute the program it is running. The example only
considers a simplified case where the program is a finite-
state automaton (FSA) that controls the region and can
be stored on a single PE. This master FSA can broadcast
commands to the other PEs within the region. The PEs
are either empty or are holding an elementary data item.
The commands tells them which operation to apply to the
data. They can be thought of as special blobs referred to
as atomic blobs, without sub-blobs.

Blobs embody dynamic development for dynamic compu-
tation. Programming with dynamic data structures greatly
enhances expressiveness. The memory can be colonized
with new data structures created on the fly, which can then
be deleted. Using a single recursive function can result in
the allocation of arbitarily large space on the stack. To
achieve similar expressiveness in spatial computing, the lan-
guage description must be able to develop and install spa-
tial structures on the computing medium and delete them
dynamically. Blobs embody this feature of dynamic devel-
opment. Each FSA that controls a region can output in-
structions. This results in a distributed coordinated effort
between the PEs in the region and the creation of compart-
ments and the corresponding master FSA. An FSA that
outputs instructions is usually called a Mealy machine, but
the term FSA has been kept here for simplicity.

A blob machine is a type of virtual machine called a self-
developing machine. All the FSAs together with the com-
munication pathways involved in the topology of encapsu-
lated membranes and channels define a graph of FSAs. An
entire region, or “blob”, is abstracted by a vertex of this
graph. FSA instructions add or delete compartments, add
or delete vertices and edges, thereby expanding or reducing
the FSA graph. In [22] the authors defined a general frame-
work referred to as the “self-developing automata graph” or
more simply, a Self-Developing Machine (SDM), based on
FSA graphs with output instructions that can add or delete
vertices or edges. Certain specific edges, called “ports”, are
used for parallel input and output and remain fixed dur-
ing development. The initial configuration is a single vertex
called the ancestor, connected to the port edges p, whose
FSA is the SDM program. During execution, the graph ex-
pands or contracts according to the program and the in-
structions ordered by the automata. All the automata ex-
ecute the same FSA but with distinct states stored locally.
A blob machine is a particular example of an SDM, but
there are others, such as those described in [23], introduced
to model self-reproduction.

Self-developing graphs generalize task graphs. The paral-
lel computing community uses task graphs as a practical
generic intermediate format to expose parallelism: vertices
contain tasks to execute, and edges are used to commu-

nicate data between tasks. For certain problems such as
“quicksort”, however, the number of tasks and the graph
structure between tasks is dynamic, i.e. it depends on the
data, therefore it cannot be drawn statically for arbitrary
data. Quicksort sorts a list of numbers by randomly select-
ing a pivot in the list, comparing all the items in the list
with the pivot, and recursively sorting the two lists of items
that are smaller (or greater) than the pivot. Self-developing
automata graphs can also be used to handle dynamic cases,
thereby allowing self-development to expose greater paral-
lelism. Figure 1 illustrates an example of how the compu-

Fig. 1. These snapshots illustrate quicksorting of four integers:
5,9,3,7. The program is given and explained on page 14

.

tation used to quicksort four values n1, . . . , n4 are mapped
on a dynamic graph having up to eight vertices (not count-
ing the top “master vertex”). Each instance n1, . . . , n4 is
stored on a distinct automaton a(n1), . . . , a(n4), and all
the comparisons between a given ni and the various pivots
encountered during execution are mapped to the same au-
tomaton a(ni). This is accomplished by passing the pivots
along a dynamically evolving intermediate graph structure
consisting of one, then two, then four vertices. The inter-
mediate vertices pass the pivot and store a temporary rank.

1.4. Self-development + hardware freedom + physical
forces = self-mapping

The parallel semantics of SDMs do more than just ex-
pose parallelism: communication is always local, i.e., an
automaton only communicates with its direct neighbors.
Note that this network is virtual, which does not imply
that two communicating automata can always be placed on
neighboring PEs 3 . What it does imply is that there is no
shared memory, or even a global name space. Who commu-
nicates with whom is thus clearly represented at any time
by the network itself. This allows the runtime system to
automatically map the network. The architectures in ques-
tion, which are computing media, are embedded in a 2D or
3D space. Space is partitioned and each PE is responsible
for a portion of it. Each SDM vertex has coordinates that
determine which PE is responsible for hosting and updat-
ing the SDM. To dynamically map the SDM, the runtime
system must carry out two operations:
– First, vertices and edges must be allowed to move freely

between neighboring PEs without interference from any

3 Consider, for example, a 2D grid of PEs. If an automaton is con-
nected to n other automata and each PE stores a single automaton,
it takes a sub-grid of at least n PEs to store all the neighbors and
the number of hops to cross in order to communicate will be the

sub-grid diameter n1/2.

4

underlying computation underway. This is referred to as
a “hardware-free” distributed representation of the self-
developing graph.

– Second, the runtime system must determine in which di-
rection the vertices are to be moved. This is accomplished
by simulating physical forces of attraction between ad-
jacent vertices so as to optimize communication latency,
and forces of repulsion between nearby vertices so as to
homogenize density and thus optimize load balancing.

In the initial situation, development starts with a single an-
cestor vertex balanced with the fixed vertices used as ports.
Whenever self-development occurs, vertices or edges are
added or deleted, thereby upsetting the balance. Each ver-
tex locally computes the force applied to it from its neigh-
bors, and moves according to these forces, possibly migrat-
ing to a neighboring PE if its coordinates are no longer in
the area managed by its current owner PE. After a few iter-
ations, the situation stabilizes again and computation can
carry on.

Comparable techniques based on force simulation have
already been developed. 1) The placement and routing
problem on VLSI systems [24] uses a technique called force-
directed placement where, starting from random initial
states, wires linking gates act as springs to move the gates
over the VLSI surface. In the present example, the combi-
nation with step-by-step development intuitively reduces
the plague of local convergence. The adjustment required
at each step is hopefully simple enough to allow vertices to
be directly attracted to their new optimal position. There
are fewer chances to be trapped by local sub-optimal basins
of attraction. Computer simulations to support this claim
have not yet been developed. It should be interpreted in
light of the development examples presented in this article
which use planar graphs, simple enough to be convincing.
2) In the MaRS dataflow machine [25], task density has
been used for load balancing, which is similar to a repul-
sive force that distributes density evenly. But this example
uses an all-to-all network, resulting in a non-scalable single
space where each pair of PEs is at the same distance.

Self-mapping of blob machines. Self-mapping applies to
blob machines, which represent a particular type of SDM.
But since blob machines use encapsulated membranes
to represent adjacency, the different concepts must be
re-interpreted, in particular hardware-free compartments
which can be adjusted at runtime. Let’s assume there are
two tasks to be run and the medium is to be divided in
two, thus creating two compartments, one for each task.
If the tasks perform any dynamic allocation and the com-
partments subdivide further, it is impossible to predict
at compile time the amount of resources that should be
assigned to each task, and therefore, how big the compart-
ment should be and where the boundary should be placed
between the compartments. If the compartment bound-
aries can move dynamically once they have been initiated,
then the system can adjust the location of the separating
membranes and likewise adjust the amount of hardware
resources allocated to each task. The system performs a

kind of runtime load balancing. Since blobs hold compu-
tation as well as data, moving blobs balances not only
the CPU load, but also memory occupation. The system
also balances communication load by moving channels to
obtain a uniform distribution of channel density.

2. The Blob Machine

The virtual blob machine is a particular type of self-
developing machine (SDM) whose instruction set is de-
signed to satisfy the opposing requirements of efficiency
and expressiveness (see page 3). The instructions are sim-
ple enough to run on arbitrary computing media and ex-
pressive enough to program non-trivial applications.

Section 2.1 explains how blob machines self-develop and
illustrates this with an example. To avoid the complexity
of handling integers in the example, only binary digits are
considered in a simplified device called the Binary Blob
Machine, which demonstrates the essential features while
simplifying the presentation. The exact semantics of the in-
structions are given and confluent behavior is established.
Section 2.2 presents the state of the art for this implemen-
tation.

2.1. The formal binary model

Fig. 2. Two representations of a blob graph: (a) a network repre-
sentation where arrows with a round (or sharp) head represent a
vertical edge (or channel) and their dynamic orientation, while the
static orientation of vertical edges is upward; (b) a topological rep-

resentation that omits vertical edges and automata.

2.1.1. Overview of the virtual blob machine
Blob graph: A blob machine is self-developing and is rep-

resented by a graph — called “blob graph” — of nodes ex-
ecuting a Finite State Automaton (FSA). Actions output
by the automaton are the blob management instructions.
The FSA is referred to as a Self-Developing Automaton
(SDA). If the instruction returns a value (i.e. instruction
setp), then this value is input to the SDA. “Blob” is just
another name for the nodes of the SDA. Throughout blob
graph development the tree representing blob hierarchy is
always embedded in the graph and is therefore a spanning
tree — a connected tree that includes all the nodes in the
graph. A natural way to represent this hierarchy is to draw
nodes as if they were blob-like membranes, as shown in Fig-
ure 2 (b). The blob at the root of the tree contains all the

5

other blobs and is called the “skin”. The empty blobs form-
ing the leaves are called “atoms”. An inner blob (or outer
blob) of a blob is one that is immediately encapsulated (or
encapsulating).

Topological and graph representations of blobs are like
Dr. Jekyll and Mr. Hyde: when looking at one of them,
one tends to forget the other, which is hidden. For exam-
ple, the topological representation (right-hand side of Fig-
ure 2) does not show that an automaton is associated with
each blob. The network representation is more conveniently
used for programming. The topological representation is
more “physical”, and reflects the actual implementation on
a computing medium (see Figure 7). The topological repre-
sentation recalls the membrane systems, called P-systems,
developed by Paun [17]. The difference is that each blob
is controlled by a single FSA, whereas in Paun’s system,
each membrane hosts an unlimited number of molecules.
The program is a finite set of rules modeling chemical in-
teractions between molecules. If atomic blobs are used to
represent molecules, P-systems can be thought of as a par-
ticular “chemical flavored” way to program blob systems
capable of exploiting the parallelism inherent in chemical
reactions, which is not within the scope of this paper.

There are three kinds of edge in the blob graph: verti-
cal edges, channels, and ports. First, vertical edges encode
blob hierarchy. They are oriented so that a blob can dis-
tinguish between its unique outer blob and its inner blobs.
Vertical edges can represent tree-structured blob graphs.
This already makes it possible to program non-trivial al-
gorithms such as sorting algorithms. Certain algorithms,
however, require non-hierarchical graphs, such as 2D grids.
The second type of edge, the channel, is then used to con-
nect arbitrary blobs and is represented as a filament on the
computing medium (see Figure 2 (b) and Figure 7). Last,
the blobs may need to exchange input/output data with
an external host. The host is modeled as a distinct node
whose behavior is controlled externally and the port edges
establish a connection between the host and a blob, which
can receive inputs or send outputs to the host. The num-
ber of ports is fixed during execution and determines the
amount of parallelism available for input and output. Like
channels, port edges must be represented as filaments on
the computing medium.

Blobs are controlled by the same automaton, but with
distinct states stored locally on the node. Each blob au-
tomaton can run asynchronously in parallel. But at any
given phase in time, a blob can run its automaton only if
it satisfies two readiness predicates: the parallel readiness
predicate and the confluence readiness predicate.

The parallel readiness predicate establishes mutual ex-
clusion between adjacent blobs that share a connecting edge
and are about to modify it. This is accomplished using dy-
namic orientation of the edges, which is different from the
up/down static orientation defined for all edges, not just
vertical edges. Dynamic means that an instruction called
a flip can change the orientation. Dynamic orientation de-
fines which of the two blob ends owns the edge, thereby

becoming the source blob of the edge. The parallel readi-
ness predicate states that a blob can modify only the edges
that it owns. If the next instruction to be performed needs
to modify an edge that is not owned by the blob, then the
blob is not ready. A precise definition of “modify” will be
given later. If it is not ready, the blob must wait for the
neighbor that owns the edge to flip it back or delete it. This
is the first condition.

The second condition — the confluence readiness pred-
icate — ensures confluence. This notion is more technical
and will be explained later in the paper.

Labeling of edges: vertical edges carry a polarity, noted
+ or −, used for communication and differentiation:
– For communication purposes, the polarity bit behaves as

a register that is shared between a blob and its elements.
The polarity of an edge is set from one end using the
setp instruction, and is tested from the other using the
testp instruction. Setting the polarity downwards with
the setp down± instruction is analogous to a broadcast,
since there can be an arbitrary number of inner blobs.

– Whenever a blob creates a child blob, they are initially
set to the same state specified by the SDA transition
function. However, the upper edge of the created blob (or
creating blob) is negative (or positive) (see Figure 4 or
upper part of Figure 3 after the wrap instruction is per-
formed). Therefore, by testing the polarity of the upper
edges, the creating and created blobs can execute their
next transition to distinct states.

Vertical edges also carry a static orientation: up (or down),
which refers to the outer (or inner) blob. Channel edges
do not carry static orientation or polarization. Port edges
are treated like vertical edges: communicating with ports
or moving ports is like communicating with inner blobs or
moving blobs, respectively. In total, as shown in Figure 4
upper left, there are five labels used to address edges: up+,
up−, down+, down−, chan.

The initial configuration consists of a single ready blob
called the ancestor blob, connected to the port edges by a
+ polarity, owned by the host (upper left of Figure 3). One
of the ports, called the control port, is statically oriented
upwards to the host so that the ancestor, and later the skin,
also has a unique Up vertical edge, like any blob. All the
other edges are linked downwards to the host. The ancestor
state is the SDA initial state q0.

Example of SDA. Figure 3 shows how to implement a
priority queue using an SDA. The purpose is to present
a simple example in order to show the details and basic
steps of development. The only self-developing instruction
used is the wrap instruction that develops the blob graph
vertically in a degenerated tree representing a stack. The
SDA uses the ”push” operation in an ordered stack. Values
flow from top down to the appropriate location so that
the stack is ordered. In general this stack processes integer
values by binary-encoding them as a sequence of + or −
polarities. For the sake of simplicity, the example is shown
for 0(−) and 1(+) values. Each blob evolves according to
the automaton illustrated in Figure 3. The upper part of the

6

testpup
("0")

wrap testpup flipup

0testpup flipup

"0"

+

− −− −

+ +

0 0 −1

−

−2 −4 −5

−3−2

setpdown−

flipdown

−4

−5

−6 −7

1

0

testpup

flipup testpup

wrap

testpup

flipup

flipup

testpup

6

5

4

7

flipup

−3
−2

−1 1

2
3

setpdown−
flipdown setpdown−

flipdown flipdown
setpdown− flipdown

setpdown+

testpup

wrap

0(−) 0(−)

0 1
0

10

11(+) 1(+)

value 0 value 1

stack−bottom (0) stack−bottom (1)

Fig. 3. Example of a basic self-developing automaton (SDA) imple-
menting a priority queue. To simplify, values are only 0 (-) or 1 (+).

The automaton has 3 parts: the stack bottom and the stack elements
set to 0 and 1.

figure describes the first development steps starting from
the ancestor blob b connected to the host via the control
port. The initial state is 0, the initial stack bottom state.
The host sends the value “0” by setting the polarity of
the control port to − and gives port ownership to b using
the flip down instruction. Then b can receive this value
using testp up to test polarity followed by a wrap. The
inner blob becomes the new stack bottom, while the outer
blob is a dynamically created stack element set to “0”,
corresponding to states -4 to -7. The symmetric states 4
to 7 correspond to a stack element set to “1”. To push a
“1”, the host sets polarity to positive instead of negative.
When a stack element set to v receives a pushed value v′,
it propagates min(v, v′) downward and stores max(v, v′).
Values are sorted as they travel down the stack elements,
and a new stack element is inserted when the value reaches
the stack bottom. The flip up and flip down instructions
synchronize the receivers with the senders. They change the
direction of the up/down edges. This results in a pipelined
parallelism, since a new value can be pushed every five clock
cycles.

2.1.2. Semantics of the eight binary blob instructions
The binary blob machine is defined by the eight instruc-

tions listed in Table 1, which develop a blob system start-
ing from the initial configuration. Figure 4 gives a com-
plete description of the semantics in the eight instructions
in a graphic representation. Each instruction is formally a
graph-rewriting rule. This rule is local and does not require
knowledge of the entire blob graph. Only adjacent edges of
each blob are taken into account to trigger rewriting.

Triggering predicate. The possible contexts on the left-
hand side are multisets of oriented labels carried by edges
connected to the blob. The triggering predicate applies cer-

Static

Op Code Semantics modified tested

Flip dir Changes orientation of edges dir dir±

Setp dir q Polarizes edge dir dir q

Testp dir Tests for presence of + edges dir+

Move Exchanges parent blob and channel up±,chan

Self-developing

Op code Semantics modified tested

Wrap Encapsulates a new blob up±

Div Divides blob, duplicates channel up±

New chan Creates a brother, linked by a channel up±

Mrg up Merges blob, deletes channel up±, chan

Mrg down Same as above up±, chan, down+ down+

Table 1
Blob instruction set: four static instructions to modify edge labels,

four developing instructions to add or delete vertices and edges.
Operand “dir” takes values {up, down}; and operand “q” represents
+ or - polarity.

tain restrictions on the multiplicity of certain labels. The
conjunction of both readiness predicates imposes the ab-
sence of certain labels, plus an optional instruction-specific
predicate used in the merge and testp instructions: 1) For
the merge down instruction, the predicate | down+ |= 1
states that merging takes place only if there is exactly one
positive inner blob. 2) The testp down instruction can be
seen as two rewrite rules with the predicates | down+ |= 0
and | down+ |> 0. The two rules are conveniently reduced
into one by making the SDA input a parameter computed
from the context. The down+ label is said to be tested by
testp down and merge down. To prevent deadlock, if an
instruction is ready but the instruction-specific predicate is
not true, then the instruction is considered to be nop, i.e.
the neutral instruction that has no effect. This only occurs
for the merge down instruction.

Rewriting process. The left member of the rewriting rule
that models an instruction represents the node n being
rewritten in the center of a gray disk, with edges leaving
n. There is at most one edge for each of the five possible
labels, all represented in the upper left figure. An instruc-
tion does not necessarily use all five labels. The right mem-
ber contains a blob graph with a distinctive node called
the root, identified as n, which has two implications: first,
rewriting n only requires the creation of other nodes if the
right member contains nodes other than the root; second,
any edges of n with labels that are not contained in the
left member implicitly remain connected to the root. An
edge labeled l in the left context points to a specific loca-
tion on the perimeter of the disk called the l-location that
represents all the neighbors of b, connected to an edge la-
beled l called the l-neighbor. The l-location is used in the
right member to specify how to establish a connection to
the l-neighbor, and the blob graph of the right member.
If the right member contains an edge labeled l1 between
an l0-location and node n (or another l2-location), then an
edge labeled l1 must be created to connect each l0-neighbor
to n (or to each l2-neighbor). Rewriting could potentially
add an arbitrary number of connections. But a closer look
shows that an instruction never adds more than two edges.

7

1) Only the outgoing channel and the upper edge are du-
plicated, (by divide and new chan). But the number of
upper edges (or outgoing channels) is always one (or less
than one). This is true for the initial blob graph and re-
mains true for each instruction. 2) When direct connections
between l-neighbors are established (by mrg), one of the
two is up or down+ with multiplicity restricted to 1.

Modified labels, used labels. Figure 4 illustrates the precise
meaning of the expression “modified label” used to define
the parallel readiness condition: a label l is modified if the
l-neighbor context changes after the instruction has been
executed. This includes any modification to a label associ-
ated with an edge, removing an edge, or a adding new one.
The labels represented in the left member are called used
labels and may include labels that have not been modified.
For example, with the divide instruction, the polarity of
inner blobs is used to determine which node they will be
connected to. The down+ and down− edges are used, but
not modified. By convention tested edges are considered to
be used, i.e. they must appear in the left context. Table 1
indicates which edges have been modified and tested by
each instruction.

Fig. 4. Complete semantics of the eight binary blob instructions. No-

tation is the same as in Fig. 2. The root of the right member is rep-
resented using a darker gray. The setp, testp, and flip instructions
are symmetric with respect to up and down, so only one direction is
represented. testp returns an input b to the SDA, which is true if

there is at least one positive inner blob.

The static instructions setp, testp and flip have al-
ready been described in sufficient detail. Figure 5 shows
a topological representation illustrating instructions that
create, delete or move blobs, where the semantics are more
straightforward.

Creating a blob. wrap encapsulates a new blob, which
receives all the inner blobs, and develops the blob hierar-
chy vertically. The divide instruction produces a brother
blob, moves any negative elements to this blob, and devel-
ops the blob hierarchy horizontally. Last, new chan also
creates a brother blob that does not contain any elements
and is linked to the creating blob via a channel edge. An

additional wrap- instruction is then used to move the neg-
ative elements into the newly created encapsulated blob.
It can be thought of as a macro-instruction that combines
the wrap, divide and mrg up instructions. In divide and
new chan the upper edge is duplicated. But since the port
edge cannot be duplicated, the skin, which always has an
upper edge that is the control port edge, cannot execute
divide or new chan. In turn, this implies that the skin
maintains its property of enclosing all the other blobs.

Deleting a blob. Blobs are deleted when all five labels
are used and the root is isolated, any root disconnected
from the blob graph being deleted automatically. The mrg

up instruction merges the blob with its outer blob, which
receives any inner blobs, and deletes any channel. This
amounts to simply deleting the membrane and the chan-
nel. The mrg down instruction is not symmetrical to mrg

up. The executing blob must have a single positive element
whose membrane is noted m+. It moves all the other nega-
tive inner blobs inside m+ and then deletes its membrane m
and channel. To avoid moving blobs, m+ is deleted instead
of m, as shown in Figure 5. The automaton controlling m
must be replaced by the automaton that was controlling
m+, which is not shown in the figure. Port edges cannot
be deleted, therefore it is not possible to merge through
a port edge. As a result, the skin cannot merge up and is
preserved.

Communicating blobs through channels. Note that all
self-developing instructions preserve the following invari-
ant, referred to as the channel invariant. A given blob b0

owns at most one channel which, if it exists, points to an-
other blob, b1, that is not contained in b0. Because of this
invariant, blob b0 may choose to move in order to become
an element of b1 using the move instruction. In the graphic
representation, move simply exchanges the labels of the
single owned channel, if it exists, with the single outer
blob. The topological representation in Figure 5 illustrates
why this is called a movement, since changing the outer
blob actually implies moving into the membrane of the new
outer blob. Flipping a channel is not allowed, as this would
break the channel invariant rule. This is why communica-
tion through channels consists exclusively of moving blobs.

Fig. 5. The developing instructions shown in Figure 4 along with the

move instruction in the — more intuitive — topological representa-
tion.

8

2.1.3. Confluent Asynchronous Parallel execution
Asynchronism eliminates the need for a global clock,

which is important for scalability. In asynchronous execu-
tion, only a (randomly selected) subset of all the ready
nodes execute their instructions simultaneously. One of the
aims of this work is to define a confluence property to en-
sure that the order in which instructions are executed has
no effect, the system consistently converging to the same
configuration. For example, a data-flow network runs in-
structions asynchronously, but is confluent. Confluence is
analyzed in a systematic way 4 that may be used for other
self-developing instruction sets. The first consideration con-
cerns the conditions applied to orientation and edge labels
for each instruction, as well as the effect of each instruction
on these edges. This is summarized in Figure 6. Let’s con-
sider a node n0 and an edge e0 connecting n0 with another
node n1, such that e0 is not owned by n0. The node n1 can
thus modify e0, and create a new edge e1 that connects it to
n0. Edge e0 is said to “produce”e1. Figure 6 represents the
production relationship, which is defined from the point of
view of n0. It uses oriented labels, formed by a label and
an orientation coded as 0 for incoming, and 1 for outgoing.
For each oriented label (l0, d0), the relationship indicates
the possible oriented labels (l1, d1) of new edges that b0 can
get from its neighbor at any time. The confluence readiness
predicate states that a blob is ready to execute an instruc-
tion i only if its context does not contain oriented labels
that can produce labels used by i. To be ready, a node must
simply check that there are no labels of this type, which
is a local criterion. The confluence predicate implies that
all used labels are outgoing, because an outgoing label pro-
duces itself. This generalizes the fact that modified labels
are outgoing, and is indeed true for the blob instructions.

It can also be shown that the confluence predicate implies
commutativity, which is stronger than confluence: commu-
tativity is true if the result of executing any two nodes n0

4 It is difficult to apprehend confluence in the blob model without

actually trying to program something. With practical experience, it
is easier to understand exactly what can be programmed using the
eight instructions. To illustrate how the model works, let’s examine
the classical (non-confluent) example of a non-deterministic merge

of two input streams to an output stream, and see why it cannot be
implemented in a blob network. A blob b0 can, for instance, receive
inputs from two different inner blob sources, b1 and b2. b1 and b2

can each send one bit to b0 using the Setp up instruction. First of

all, b0 cannot receive anything before both b1 and b2 have flipped
back the edge to their outer blob. Second, with the Testp down

instruction, b0 does not read the two bits, but a logical OR of the

bits. To distinctly receive both bits, b1 and b2 must agree to send
their bit each one in turn, while the other sends a 1 bit. These
two points imply bit-level synchronization, which excludes a non-
deterministic merge. Data-flow graphs use non-deterministic merges

while remaining confluent in the case where either b1 or b2 does not
receive any input stream at all. It may be preferable to allow the other
node to forward its input stream. In blob computing, additional non-

confluent instructions could be added to increase expressiveness and
facilitate programming of these gates. Alternately, if only the eight
instructions are used, one of the two inner blobs can be informed
that it will not receive input streams and that it can send a flow of

ones of the appropriate length.

and n1 that are ready simultaneously does not depend on
the order in which they are executed. Whether or not n0

and n1 are neighbors is unimportant. As before, let’s con-
sider an edge e0 connecting n0 to another node n1, such
that e0 is owned by n1. Let i0 and i1 be the instructions
executed by n0 and n1. Executing i1 first brings new edges
e1 . . . ek to n0. These edges are not used by i0, otherwise it
would contradict the confluence readiness predicate for i0.
Being not used implies that the labels of e1 . . . ek: (1) are
not tested by i0; (2) do not appear in the left member of i0.
Condition (1) implies that the instruction executed by n0

after i1 has been executed is still i0. Condition (2) implies
that when i0 is executed, e1 . . . ek remain connected to n0,
which also occurs if i0 is executed before i1, because e0 is
not owned by n0 and therefore e0 remains connected to n0

after i0 has been executed.
Figure 6 shows two extra readiness confluence predicates

in the case of blob instructions: 1) Since (up±, 0) generates
(up±, 1) and (down±, 0) generates (down±, 1), an instruc-
tion that uses up (or down) should own all the up (or down)
edges. If the instruction is a modification, the resulting con-
dition was already specified in the parallel readiness condi-
tion. If the instruction is a test, i.e for the testp dir instruc-
tion, confluence readiness states that testp dir must own
dir edges. This ensures that the value will not be changed
by the neighbor while it is being read. The automaton in
Figure 3 illustrates a direct consequence of this principle:
to send bits, the edges must be flipped back and forth by
the sender (state q±6,q±7) and receiver (state q±3, q±4) for
each bit exchanged. 2) Since (up±, 0) and (chan, 0) gener-
ate (down±, 1), an instruction that uses down should not
have incoming channels, nor any incoming upper edges.

Fig. 6. Production relationship between edge labels. A label l0 can
produce another label l1 if there is a path leading from l0 to l1. The

arrows between nodes are labeled by the instruction responsible for
production. Certain instructions have not been shown because they
do not add new edges to this graph.

2.2. Implementation of the runtime system

For the moment this discussion has considered essentially
only 2D or 3D Cellular Automata (CA) as target comput-
ing medium. The specific features of more realistic hard-
ware structures such as long lines in FPGAs, or memory in
coarser grain hardware, can be exploited to improve imple-
mentation. When considering computation complexity for
a problem of an arbitrary size, however, it is the spatial lo-

9

cality constraints that dictate asymptotic behavior. At this
stage, the aim is to derive this complexity, rather than gain
speed by a constant factor by exploiting technologically de-
pendent features. The 2D CA is a simple framework exhibit-
ing these spatial constraints. The term Processing Element
(PE) is used here to refer to the automata of the 2D CA
to avoid confusion with the SDA automata. Because PEs
have a finite small state, it may be assumed that the state
of each node in the blob graph is stored on a distinct PE. In
the basic blob machine, each PE runs the same automaton,
but in a different state. Alternately, a more universal repre-
sentation for running different automata uses two levels for
PE configuration: a fixed automaton implements another
parameterized automaton where parameters are input from
the host in a preliminary phase, and can include the netlist
of an FPGA-like circuit with flip-flop registers and look-
up table, or a more conventional microprogrammed con-
troller. Fine-grain implementations such as CAs are also
interesting for their own sake: 1) With a finer grain, the
blob membrane has a larger diameter, counted in number
of PEs, thereby augmenting the parallelism of blob move-
ment across the hardware (corresponding to dynamic code
and data migration). Parallelism increases in two ways: in
the pipelined (or data parallel) direction, and in the direc-
tion parallel to (or perpendicular to) blob movement. 2)
The problem of finding the finest possible granularity is an
interesting challenge. What is the simplest hardware build-
ing block that can be combined in an arbitrary number,
and provide a computing medium capable of simulating an
arbitrary blob machine? The problem is the finite memory
of this building block, which forces partitioning of the SDA
itself into several elementary SDAs of fixed size whose state
fits on a PE. This problem is addressed in [26].

2.2.1. Mapping a blob graph on a 2D CA

Fig. 7. (a) A blob graph. (b) Fine-grain mapping of this graph.
Atomic blobs are black PEs. Gray PEs store the automaton of a
non-atomic blob. Membranes are represented by hatched PEs. Chan-

nels and port filaments are also hatched in opposite directions. PEs
at the end of a filament are shown in bold lines.

The entire blob graph is mapped on a 2D CA by dis-
cretizing its topological representation: mapping is simply a
“pixelized” version of the topological representation. Con-
sider a given instant t. 1) An atomic blob b is mapped on
a single PE A(b, t), storing its state. A(b, t) is called a par-
ticle. As mentioned previously, in a realistic implementa-
tion the PEs can execute distinct parameterized automata.
In this case A(b, t) also stores the automaton itself, which

must be loaded from the host, and the blobs can execute
distinct automata.

2) A non-atomic blob b is represented by a membrane,
which is a connected set of PEs, M(b, t) dividing the space
into two connected components: the inside and the outside.
The inside is called the hardware medium of b and noted
H(b, t). H(b, t) contains the inner blobs of b and a particle
A(b, t) containing b’s automaton, that is distinct from other
particles representing atoms of b. Let N(b, t) be the number
of automata contained in b. This gives |H(b, t)| > N(b, t).
3) A channel c from b0 to b1 is represented by a filament,
which is a connected set of PEs called H(c, t) adjacent to
A(b0, t) and H(b1, t). Filaments must be represented on a
different layer than automata and membranes in order to
cross membranes and move freely over automata and mem-
branes. If the computing medium is 2D, filaments cannot
cross each other to represent a non-planar graph. The solu-
tion is to provide a third dimension with a minimum thick-
ness of 2.

Consider a blob b connected to n blobs by channels. In
2D all the channels need to connect to the perimeter of
H(b, t), which is O(n). If the blob is round, the minimum
compatible bound on H(b, t) is O(n2). In contrast, if b is
connected to n blobs by vertical edges, a size of O(n) is suf-
ficient for H(b, t). Saving space in this way is one of the key
advantages of membranes, justifying their use. Membranes
allow communication along vertical edges, without having
to explicitly represent these vertical edges, by using pure
flooding within H(b, t). This means that reaching n nested
membranes only requires n1/d steps in d dimensions.

Hardware freedom means that changes in the hardware
media of blobs, automata, and channels, i.e. the mem-
branes, particles and filaments, must be possible in the
course of time. This is why H(b, t), A(b, t) and H(c, t) all
depend on time t. These movements must keep the topolog-
ical properties that provide functionality. As stated above,
these properties include, in addition to connectedness, sep-
arating inside from outside for membranes, and maintain-
ing adjacency for filaments. In [27] it is shown that sep-
aration and adjacency can also be expressed in terms of
the connectedness of specific sets of PEs, where connect-
edness is defined by predicates relevant to membranes or
filaments. This work introduces the “blob rule”, specifying
which modifications are allowed and which are not in or-
der to maintain local connectedness and prove that it is
sufficient to preserve global connectedness. In other words,
modifications leading to movement are accepted if they are
allowed by the blob rule. The idea of a connected “spot”
that can move explains the origin of the term “blob”. The
blob rule not only establishes blobs, but also channels.
In [27] it is also established that this local rule can be de-
fined on arbitrary architectures, and asynchronously. This
opens up the possibility of mapping blob graphs on irregu-
lar architectures, embodied in the amorphous scalable ar-
chitecture model.

10

2.2.2. The blob “dDcomplexity” model
Definition of dDcomplexity. The time required to iterate

an SDA node b includes the time it takes to update the
automaton state, and the time T (i, b) necessary to execute
instruction i. The state is updated locally on a PE, requir-
ing one unit of time. Most blob instructions, however, need
to modify the hardware medium at time t, H(b) = H(b, t),
which is distributed in space. In general i needs to reach all
the PEs in the hardware media under its control. T (b) is
the time required for this purpose, with T (i, b) < T (b) and
T (b) = O(D(H(b))), where diameter D(H(b)) is defined as
the maximum distance between any two PEs of H(b) for
the distance induced by H(b), representing the hop count
required to go from one PE in H(b) to another while re-
maining inside H(b). Certain instructions also use channel
c and its associated filament at time t, H(c) = H(c, t), in
which case T (b) = O(D(H(b)) + D(H(c))). In this case
d is the dimension of the computing medium, d = 2 or
d = 3. The “dDcomplexity” model is a set of three con-
ditions that must be met by the implementation: (i) the
particle density is homogeneous throughout the skin, equal
to α, resulting in |H(b)| = α−1(N(b)); (ii) H(b) is always
close to the disk or sphere: D(H(b)) = O(|H(b)|1/d); (iii)
the model targets the best possible performance: T (i) =
O(D(H(b)) + D(H(c))). For a blob graph with channels of
bounded length, combining (i) with (ii) and (iii) using sim-
ple substitution results in (iv) T (i) = O(N(b)1/d), which
defines dDcomplexity time T (i) of a blob instruction inde-
pendently of mapping. This makes it possible to calculate
the time complexity of SDA execution given only the di-
mensionality of the computing medium. This principle is
applied in Section 3 for a variety of SDAs.

The stalling problem. Consider a second-order blob b
containing first-order blobs b1, . . . bn, all dividing simul-
taneously, thus doubling the density within b. Condition
(iii) takes into account the time required to move particles
within bi in order to divide bi. It does not consider the time
needed to inflate b’s membrane and relocate bi’s particles
and bi’s membrane inside b in order to re-establish uniform
density of α throughout b. This homogenization process in-
volves the entire blob system, because b itself needs to push
on neighboring blobs until the skin membrane is reached.
Furthermore, if blob bi needs to repeat duplication several
times, the duplication rate will be greater than homoge-
nization speed, and development may stall due to a short-
age of empty PEs: a particle that needs to duplicate and
has no empty PEs in its neighborhood is stalled. Complex-
ity as defined in (iv) does not take into account the waiting
time incurred due to stalling. Stalling occurs particularly in
the initial stage of development, which starts from a single
ancestor blob that creates a multitude of blobs, for exam-
ple, to store the inputs of the algorithm as they are loaded
from the ports, or to establish a circuit.

The allocate instruction. This instruction involves algo-
rithms featuring only one growth phase, followed by a sta-
ble phase and a reduction phase. For any blob b created, it is

possible to dynamically evaluate the maximal size Nmax(b)
that it will reach during its lifetime. In the cases considered
here, a program variable directly indicates how many sub-
blobs will be contained in the created blob. This is a loose
condition that usually tests as true and does not imply that
the algorithm has a static task graph (such as quicksort).

In this restricted framework, a simple development strat-
egy provides good complexity estimates. When created, a
blob that is called on to grow later executes a specific in-
struction called allocate Nmax(b) that generates a repul-
sive force emanating from A(b) which inflates the mem-
brane of b so that it becomes large enough to contain the
expected future Nmax(b) particles. The density of b tem-
porarily falls below α so conditions (i) and (iv) need to be
modified by replacing N(b) with the “virtual size” Nmax(b).
This method must be applied first to the ancestor, whose
very first executed instruction is allocate N , where N is
the maximum number of blobs developed during the en-
tire run. This inflates the skin’s membrane to its maximum
size right from the first step of development. An algorithm
systematically using allocate becomes size-preserving : the
size of all blob membranes remains constant after creation.
A size-preserving algorithm does not need hardware-free
membranes: the initial location of a created membrane can
be maintained throughout the blob’s existence. The allo-

cate instruction is like a pragma in parallel computing: it
can enhance parallel performance without modifying the
semantics, in an architecture-independent way.

Uniformly dividing development. Since a certain amount
of bounded variability in density can be tolerated, blobs
whose size is quasi-preserved, i.e. varies between n and 2n,
do not need to allocate space. The following development,
referred to as uniformly dividing development, is naturally
quasi-size-preserving, without any use of allocate: a first-
order blob that initially has n atoms divides iteratively into
two blobs that have an equal share of atoms until they con-
tain a single atom. In terms of sets, a set is divided into
two subsets iteratively until singletons are obtained. After
each division, a different processing operation can be ap-
plied to each subset, which is actually a standard method
for processing the elements in a set in a non-uniform way.
This method is used along with uniformly dividing devel-
opment programming to obtain divide-and-conquer par-
allelism in Program 2, and to align two arrays coded as
sets in Program 3. Uniformly dividing developments are
quasi-size-preserving because the outer blobs, where divi-
sion takes place, are sized between n and 2n as is clearly
shown in the figure illustrating Program 2. The size of the
outer blob grows from n to 2n because of the master parti-
cles created when dividing the inner blobs. Since the blob
size is divided by two at each division step, in dimension
d, the diameter D(H(b)) is divided by q = 0.51/d. The
total time required for uniformly dividing development is∑

1≤i≤n(D(H(b))/(qi)), or O(D(H(b))). In other words,
uniformly dividing development within blob b occurs over
time period O(T (b)), i.e. the same time b needs to execute a
single instruction. Uniformly dividing development resem-

11

bles “nested parallelism” used on sequences in the NESL
programming language introduced by Blelloch [28], who
also proposes a simple framework to evaluate the parallel
complexity of the relevant programs.

2.2.3. State of the art of model implementation
How can a runtime system that tests the three conditions

be implemented on a particular computing medium? Con-
ditions (i) and (ii) correspond to a set of background rules
running continuously through the CA. A set of rules of this
type was proposed in [29] consisting of well-known, very
simple CA rules for discretizing simple physics, explained
in [30]. The CA rule HPP models particles as a gas under
pressure. This does not place an exact lower bound on it,
but makes the creation of empty spots highly improbable,
so that (i) is true on an average basis. The membrane is
implemented as an elastic bubble on which the gas exerts
a pressure. A constant outside pressure exerted on the skin
determines the average density α. The CA rule called the
“voting” rule (one state bit) ensures (ii) by modeling sur-
face tension. Condition (iii) must be checked one instruc-
tion at a time. Some instructions are implemented natu-
rally: communication is accomplished by flooding the in-
side membrane or through filaments; Mrg is achieved by
deleting membranes and filaments, while Wrap splits the
membrane as if it was a zipper. Move for an atomic blob
causes a particle to travel through the filament. The diffi-
cult instructions are divide and certain new instructions,
not present in the binary blob machine, that improve com-
munication. Their implementation is presented when blob
b execution is first order, i.e. contains only atoms a1, . . . an.
The membrane contains n+1 particles: the atom’s particle
and b’s master particle A(b). Results in communication can
easily be extended to higher-order blobs, whereas division
of higher-order blobs needs to move membranes through
hardware, which has not yet been solved. The algorithms
described in this article only call on division of first-order
blobs.

Communication instructions. The following example
uses scalar instructions that can call on the 2D topological
representation to improve communication performance.
First, when sending the instruction upward, Send vi, ex-
ecuted by atom ai, can communicate scalar value vi to b
instead of just one polarity bit. To receive the n values of
v1, . . . vn, b must execute an associative and commutative
operator such as sum, which retrieves v1 + . . .+vn. Reduc-
tion is performed using a connected spot c, initially equal
to H(b), which is allowed to shrink, while maintaining its
connectedness using the blob rule described in [27]. Send

vi generates a temporary particle pvi
containing vi. These

temporary particles are collected by c, i.e., they stay within
c as c shrinks. They will eventually meet on the same PE.
When pvi

meets pvj
they merge into pvi+vj

. Because it
remains connected, c eventually has only one hardware
media PE pend, containing only one temporary particle,
with the reduction result r = v1 + . . .+ vn. Finally, when c

goes beyond A(b), c is also allowed to collect A(b) so that
A(b) stays within c. A(b) is also hosted by pend. A(b) can
test termination and read result r. This shrinking blob has
the additional advantage of centering A(b). Shrinking can
be applied in parallel, on every other PE of the border of
c. Mutual exclusion is required to maintain the connected-
ness of c. The whole shrinking process, illustrated in Fig. 8,
takes an amount of time proportional to the diameter of b,
which meets condition (iii). This is also the best time, in
general, to reduce PEs on a 2D or 3D grid.

Second, when communicating downward, instruction
Broadcast v broadcasts a scalar v instead of just one
polarity bit. In addition, instead of flooding a signal inside
the membrane, Broadcast v sends waves separated by
constant space intervals. This allows a list of scalar values
to be broadcast at a constant throughput and avoids wait-
ing for latency across the entire diameter, which would be
implied by flipping back and forth. The receiving instruc-
tion is called Rec.

Fig. 8. Four steps in the blob shrinking process using the “sum”
reduction operator.

Mathematical proof of division for rectangular blobs with
static membrane. Consider a 2D CA and a vertical rectan-
gular membrane. Vertical division requires a mechanism to
move the positive particles down and the negative parti-
cles up so that they can be separated by a new horizontal
wall. This separation can be achieved by stacking positive
particles downward (or negative particles upward) into two
heaps with a 45-degree slope. Stacking is sufficient if the
particle density is less than 1/4. A simple CA stacking rule,
shown in Figure 9, has been presented with Tromp [31].
Proof has been given (in 3 pages!) that the stacking time
is less than three times the rectangle length, which meets
condition (iii). This demonstration does not take into ac-
count hardware-free membranes. However, it is sufficient
to justify our result on complexity, since the algorithms
described only use uniformly dividing development, where
hardware-free membranes are not necessary and rectangu-
lar membranes are sufficient.

Fig. 9. Tabulation of a 2D CA block rule that stacks particles by

moving them downward. It uses one state bit that indicates whether
the particle is occupied. The rules not represented are either quies-
cent, or can be obtained by horizontal symmetry.

Measuring division with round blobs and a hardware-free
membrane. In the case where blob b has a hardware-free
round membrane, no formal results are available except for
implementation results in [29] using gas models for con-
ditions (i) and (ii). First A(b) broadcasts a divide signal.

12

When the other particles receive the divide signal, plus and
minus migrate to opposite ends of the blob according to the
stacking rule. This automatically creates a retraction in the
equatorial zone. During this process, the center-shrinking
blob pushes the master particles toward the center of the
dividing blob, and collects information on whether or not
there are only plus and minus particles on each side. When
A(b) touches the two retracting walls, it waits until all the
plus particles are on one side and the minus on the other
side; then A(b) does the final cut-and-duplicate, producing
two blobs (see Figure 10 (d)). Testing covered the division
of blobs having up to 1600 atoms. Measurements showed
that the latency time for dividing a blob containing n par-
ticles is proportional to n1/2, which corresponds exactly to
dDcomplexity condition (iv).

Fig. 10. Snapshot of blob division: (a) start; (b) grouping plus and
minus together; (c) wall retraction; (d) final cut; (e) end. The video

is available at [32].

3. Programming efficient blob development

Since there is no order among the blobs inside a given
blob, a blob is functionally a multiset of its inner blobs. A
multiset, also referred to as a “bag”, is a set where elements
can be repeated. It is a free monoidal data structure. This
property has served to describe parallelism in a concise way.
In [33], Tannen defines algebraic high-level parallel opera-
tions such as reduction. In Haskell and SETL [34], language
constructs allow bags to be defined in comprehension. The
NESL programming language introduced by Blelloch [28]
uses nested parallelism on sequences that are collections
similar to bags. He manipulates sequences to implement
divide-and-conquer algorithms in a style very similar to the
present authors’ technique. The work of Lisper [35] uses
sets (data fields) to describe a generic data parallelism in
a functional way. In [36] the efficient parallelization of set-
based language is also considered. The blob language un-
der development in the present authors’ works is also based
on bag properties. This paper presents language constructs
for describing SDAs at a higher level than just finite state
automaton. The description is compact enough to present
elaborate blob algorithms with optimal dDcomplexity. It
is close enough to blob graphs to provide the programmer
with a clear mental model of how it can be compiled to SDA,
and can optimize his code to develop small blob graphs.

To increase compactness, OCAML [37] syntax is used to
enable automatic type inference. The function type is in-
ferred and given in italics, according to common practice.
This work is still in progress: the blob language compiler
has not yet been implemented and blob language itself has
not yet been stabilized.

The finite state constraint. An SDA in a finite state au-
tomaton, i.e., a blob, can only host scalar variables, not
collections of data such as arrays or lists. Collections of
this type must be distributed on different blobs, and must
be encoded as bag hierarchies. OCAML arrays and lists
are therefore not allowed (although OCAML arrays have a
fixed size and could be used in a static framework). Like-
wise, recursive functions are banned, unless they are ter-
minal, in which case they can be compiled by using a stat-
ically bound stack. With parallel languages, it is generally
accepted that certain conditions must be met in order to
produce a feasible code. The finite state constraint has a
simple formulation and can be easily understood by the pro-
grammer. He is obliged to use bags extensively. To achieve
good performance, the program must generate uniformly
dividing development, which corresponds to iterative bag
division.

Code size. In a first approach it is assumed that each blob
contains the entire program and can therefore access the
code to be executed. Since the program is finite, this results
in an FSA. By using object-oriented programming, objects
can be distributed as well as the code itself so that each
blob only carries the code of the method used by the object
it represents. But this is beyond the scope of this article.

3.1. Basic manipulation of bags (SIMD parallelism).

line0: let X = newbag () and Y = newbag ();;
line1: X <- { 1 || 1 ||1 }; Y < − { 2 || 2 };;
line2: X <- union of { (X || Y) || { sum of X || 4 || 5 } };;
val X: int bag = {1, 1, 1, 2, 2, 3, 4, 5}
line3: ...next...

Prog. 1. (a) is the blob graph obtained after executing line 1, (b)-(f)

describe the steps for executing line 2. The top node can already
begin executing line 2 in (b). The bag id X (or Y) is represented by
horizontal (or vertical) hatching. Master nodes are labeled by the

compilation rule, which produces the code that the nodes execute in
the next step. Slave nodes are labeled by the integer element hosted.
The round arrow head indicates dynamic orientation.

Basic manipulation of bags involves a parallelism simi-
lar to SIMD: a bag of n integers S = {v1, . . . , vn} is stored
in n atoms b1, . . . , bn. Atom bi is called an elt-blob and

13

stores vi in a SDA register called elt. The elt-blobs exe-
cute commands broadcast by their outer blob, called the
master blob. Program 1 illustrates the development ob-
tained when blob b builds a new bag by forming the union
of two existing bags X and Y , and a third bag {sum of

X,4,5}, where the first element is the sum of X’s ele-
ments. Union is implemented as a reduction operator. Elt-
blobs have a second register called id containing the “bag
address” S. The bag address is allocated by the newbag

primitive. In the example, X = {1, 1, 1} and Y = {2, 2},
thus b contains three atoms with id = X and elt = 1,
and two atoms with id = Y and elt = 2. Blob b sends
commands to its elt-blobs by broadcasting down a list of
scalars [S, f, p1, .., pk, end] including bag address S, a func-
tion name f , and scalar parameters p1, .., pk; it also flips

down to give edge ownership to elt-blobs. The instruc-
tion broadcast([l1, . . . , lk]) is a shortcut for broadcast

l1, . . . , broadcast lk,broadcast end. The elt-blobs exe-
cute a fixed SDA implementing the following slave loop:
they receive a command [S, f, p1, .., pk], they test if their
id matches S, and if so, they execute the function call
f(p1, .., pk). In any case, they finish by flipping up to
return edge ownership. The catalog of predefined remote
function calls includes (1) crude blob instructions: setp,
divide, merge, (2) two functions using the blob-elt regis-
ters let send elt () = send !elt;; and let set id x =

id:=x;; 5 which send the element up to b and set the identi-
fier, and (3) two functions for routing blobs: let duplicate
() = broadcast([*,duplicate]); divide;; let delete

() = broadcast([*,duplicate]); merge;; which dupli-
cate and delete a blob hierarchy, by calling themselves re-
cursively on all inner blobs, using the symbol ’*’ to match
all ids. The SDA program part executed by b is compiled
using the six rules described in figure 11 6 .

r1: code(S<-exp1;exp2) = route(exp1,exp2); wrap-;

if testp up then code2(exp1,S) else code(exp2)

r2: code2(S2,S)=broadcast([S2,setid,S]);flip down;merge;

r3: code2({exp},S)= id:= S; elt:=code(exp);flip up

r4: code2(exp1||exp2,S)=route(exp1,exp2); divide;

if testp up then code2(exp1,S) else code2(exp2,S)

r5: code2(union of{exp},S)=code2(exp,S)

r6: code(SUM of S)= broadcast([S,send elt]);flip down;sum;

Fig. 11. Rules for compiling blob programs into blob primitives

The rules in r1 compile the bag assignment S<-exp1;exp2.
The code produced by route(exp1,exp2) routes inner
blobs by analyzing liveness of bag variables present in
exp1 and exp2. It commands a negative polarization (or
positive polarization, duplication, deletion) to inner blobs
representing bags which are alive only in exp1 (or only in
exp2, in exp1 and exp2, neither in exp1 nor in exp2). In the
example, the code produced by route to go from (a) to

5 In our OCAML notation, elt is a reference, so !elt returns the
referenced value.
6 The compiler that produces low-level blob pseudo-code is formal-
ized, but not yet implemented. A low-level blob pseudo-code simu-

lator has been implemented to check the quicksort algorithm.

(b) is broadcast [Y, duplicate]; broadcast [X,setp

-];flip down; Y is duplicated because it is assumed to
remain alive in the upcoming instruction exp2 = next,
while X is not because it is being redefined. As a result
of this preliminary routing, the instruction wrap- encap-
sulates all the elements needed to evaluate exp1 into blob
b1, which can evaluate the bag expression exp1 in paral-
lel with b, which in turn continues evaluating exp2. b1 is
called the bag-ancestor. The bag expression exp1 is not
compiled using code, but code2, which has an additional
second argument S carrying the address of the bag being
computed. The parameter S is used in rule r2 and r3 to
initialize the id of the elements produced by the bag an-
cestor. Rule r4 compiles the double bar || that makes the
bag ancestor divide. Each of the two children computes
a separate sub-bag of elements in parallel. As for bag as-
signment, this parallelism implies a preliminary routing,
so that each child gets the inner blobs it needs. Rule r5 is
a simple compilation optimization. Rule r6 performs re-
duction. When a bag variable is no longer alive, the inner
blob representing it must be deleted. This garbage collec-
tion function is not completely described in the presented
rules. For example, in Figure (e) of program 1, the blob
executing r6 must delete its inner blob, as shown in Figure
(f). Bag hierarchy can be defined as S<-{(1, {(2, {(3,
{})})})}, of the type blob-list = (int*blob-list) bag.
Circular structures, however, cannot be used because they
would break the blob hierarchy. An assignment such as
S<-{(1,{ (2,{(3, S)})})} defines the new value of S by
making a copy of the old value.

3.2. Remote function calls in inner blobs (DVC parallelism)

let card var X = sum of for x in X do return 1 done
val card: var ’a bag -> int
let qsort(X, nX, i) = let pivot = sum of X / nX and Y = newbag () in

if n = 1 then { (i, pivot) }
else Y <- for x in X do if !x < pivot then return (consume x) done;

let nY = card Y in union of
{ qsort(Y, nY, i) || qsort(X, nX-nY, i+nY) }

val quicksort: int bag * int * int -> (int * int) bag

Prog. 2. Quicksort program. A development for this algorithm is
shown in Fig. 1 in network representation. This shows the topological
development for the call qsort({ 0 || 1 || 3 || 4 || 5 || 8 || 9

}, 8, 0). It is uniformly dividing. Particles are represented by the
content of their elt register: the master particle by the i index in
bold font, and the slave by their element being sorted.

The for-in construct. Basic manipulation of bags only
provides a fixed catalog of functions that elt-blobs can per-
form. The for-in construct for s in S do exp done allows
master blob b to remotely trigger an arbitrary computation

14

on its inner elt-blobs b1 . . . bn whose id is S. S is called the
range, s the range index and exp the body. The master b
first broadcasts down information contained in exp that the
elt-blobs b1 . . . bn do not have locally. Thereafter, b1 . . . bn

can evaluate exp in parallel on the elements that they host,
which is referred to in exp by the range index s. The body
may contain an instruction return v, in which case the elt-
blobs return the value v to b. The values that are returned
can be reduced by b, as is the case for the card function
in program 2. Reduction is restricted to some predefined
set of available operators. The returned values can also be
regrouped in a new bag Y , as performed by the for-in of
function qsort in program 2. From a theoretical point of
view, there is no difference between applying a reduction
such as a sum or forming a new bag. In the first case, one
uses addition to reduce the values, in the second case, one
uses a kind of merge function to aggreate the values. These
are two instances of bag homomorphism. However, a bag
is a particular value, a collection that can take any large
space, and therefore needs to be returned as a set of blobs.
It is built directly using blob operations. When returning a
bag, there is no need to create a bag ancestor, since the new
elt-blobs produced are directly computed by the elt-blob of
b.

Lastly, it is also possible that nothing is returned. For-in
action produces two kinds of side effects: they can mod-
ify the elements, as is the case of the for-in of the bmerge
function (next subsection); or generate communication as
in function input of program 4. Usually, accepting side ef-
fects in functions called asynchronously and remotely leads
to a form of non-determinism that makes it very difficult to
achieve confluence. But this is true only when side effects
apply to certain globally shared variables. The two kinds
of possible side effects created by elt-blobs are local to the
elt-blob’s internal memory and connecting channels.

Each for-in body is compiled into a function f whose
code is appended to the SDA of the elt-blob of S. The
for-in itself is replaced by remote call f in the elt-blob of
S. For example, the card function is compiled into: let
SDA card X = broadcast[X,f1];flip down;reduce SUM;;

where let f1 () = send 1;;. The for-in of qsort changes
the id of the elements of X which are smaller than a pivot.
It is compiled into broadcast[X,f2,Y,pivot] where let

f2 S v = if !elt < v then id := S;;.
Blob arrays. The parameter of a quicksort call A <-

qsort(X,n,i) includes the cardinal n of the bag X of
values to be sorted (to avoid recomputing it twice), and
the starting index i to give to the smallest element. It
returns array A, called a blob array, encoded as a bag of
pairs, where the first element of the pair is the array index,
and the second element is the array value. Thus if X is
a singleton, qsort({x},1,i) returns A = {(i, x)}. In the
Von Neumann style, array indices are not explicitly stored
in memory because array elements are implicitly stored
in contiguous memory cells. In contrast, implementing an
array as a blob array requires that each element be stored
with its explicit index. While using more memory, this

gives hardware freedom: the actual location of each ele-
ment with respect to the other ones does not matter. The
following three functions illustrate simple computations on
blob arrays that are used in the next section: computing
the minimum index, dividing an array into two sub-arrays
of equal size (up to one element if size is an odd number),
and inverting the indices.

let Amin var X = min of for x in X do let (i,v)=!x in return i done;;

val Amin: var (int*int) bag -> int

let Adivide var X = let c = card X and m = Amin X in for x in X do;;

let (i,v)=!x in if i< m + c/2 then return(consume x) done;;

val Adivide: var (int*int) bag -> (int*int) bag

let Ainvert X = let c = card X and m = Amin X in

for x in X do let (i,v)=!x in return (c+2*m-i,v) done;;

val Ainvert: (int*int) bag -> (int*int) bag

The quicksort algorithm. The qsort function uses a
DiVide-and-Conquer (DVC) method. A pivot is computed
as the average value of X, the for-in renames as Y any
elements of X smaller than the pivot. The result is de-
fined as the union of bags produced by a recursive call
performed on Y and X, with new parameters for the start-
ing index and cardinals. Recursive bag division continues
until singletons are obtained, which can be directly sorted
by assigning the starting index as the array index. In the
sequential version quicksort cannot be terminally recur-
sive: there are two recursive calls (one on each sub-array)
and this does not allow any of the calls to be terminally
recursive. The blob framework allows a generalized con-
cept of terminality: the quicksort algorithm shown here is
terminal because the bag elements “compute themselves”
starting from the bag ancestor, and “return themselves”
directly. When the two recursive calls terminate, there is
no need for any additional processing to concatenate two
sub-arrays, for example. Being terminal, recursion can be
compiled with a bounded stack (independently from the
data). This secures the finite state constraint. The blob
stack that carries out recursion does not even store the ele-
ment to be sorted, but only the three quicksort parameters
X, nX, i that are scalars.

dDcomplexity. If all goes well, the pivot always splits X
into two bags of equal size. This results in uniformly divid-
ing development, optimal time complexity in O(n1/d) and
optimal space complexity inO(n). The work in [26] presents
a blob machine emulation using dDcomplexity. The average
time and space needed on a 2D grid was measured, where
elements to be sorted are chosen randomly, and results gave
the same time complexity, i.e., O(n1/2).

Technical notes on bag functions: 1) Bag X can be passed
as a variable to function f using the keyword var. If X is
modified by f , the modification will remain when f termi-
nates, and this creates a side effect. For example, the side
effect of the Adivide function is to consume the lower half
of X, whereas qsort has no side effect on the bag being
sorted. Passing a bag as a variable is also useful for avoid-
ing bag duplication, which is why it is used in the card

function. 2) Setting the id of bag parameters. Function f
can also return a bag. In the assignment X<-qsort(...),

15

the caller must generate the bag ancestor b of X. The id
X must be passed to f as a supplementary parameter, so
that b can directly set the id of X’s elt-blobs.

3.3. Computation that combines bags (data parallelism)

let bmerge X = if card X = 1 then X else let Y = newbag () in
Y <- Adivide X; for x in X dot y in Y do
let (i,vy) = !y and (j,vx) = !x in
if vx < vy then begin y:= (i,vx); x:= (j,vy) end

done; union of { bmerge Y || bmerge X }
val bmerge: (int*int) bag -> (int*int) bag
let bsort X = if card X = 1 then X else let Y = newbag () in

Y <- Adivide X; bmerge union of { bsort Y || Ainvert (bsort X) }
val bsort:(int*int) bag -> (int*int) bag

Prog. 3. Bitonic sort program. (a)-(d) illustrate uniformly dividing
development caused by the for-in with dot products of the bmerge

function. The master particle is omitted and the slaves are repre-
sented by the index of their array elements. These indices range from

-8 to 7. In (d) the element of index i, 0 ≤ i ≤ 7, is paired with the
element of index i − 8. (e) shows how the tree of recursive calls for
sorting eight integers is laid out. The letter S stands for bsort, and

M for bmerge.

For-in using dot product of ranges

Consider a blob b containing two blob arrays, X and Y ,
with n elements (xi, i), (yi, i), i = 1 . . . n. The purpose of
data parallellism is to combine values from different arrays
in parallel. For example, vector sum or scalar product com-
putation (xi, i) must be combined with (yi, i), i = 1 . . . n.
This is usually specified using sequential loops to access the
values of X and Y . In a grid with d dimensions, the diame-
ter of a blob array with n elements is n1/d, hence the time
required to read a value is also n1/d. Such an expensive
read precludes the use of sequential loops. The alternative
solution is to use iterative division similar to that used for
quicksort through the following process: 1) Create an ini-
tial blob b1 called the for-in ancestor, containing both X
and Y . 2) Let b1 divide the blob arrays X and Y , using the
Adivide function. 3) Let b1 divide itself: the first (or sec-
ond) offspring contains the first (or second) half of X and
Y . 4) Let both offspring recursively divide in this way until
the cardinal of the remaining local parts of X becomes one.
5) This will generate n offspring, b1 . . . bn, where bi contains
(xi, i) and (yi, i) and can combine them. The iterative di-
vision is uniformly dividing and has a time complexity of
O(n1/d). It is compiled from a language construct inspired
by Sisal that uses a for-in with a dot product of range: for
x in X dot y in Y do exp done where the body exp is eval-
uated in parallel by each of the bi. The range index x (or
y) refers to (xi, i) (or (yi, i)). The “vector sum” and scalar
product are programmed as follows:

let vectorsum X Y = for x in X dot y in Y do

let (vx,i)=!x and (vy,j) =!y in return (vx+vy,i) done;;

val vectorsum: (int*int) bag * (int*int) bag -> (int*int) bag

let scalarprod X Y = sum of for x in X dot y in Y do

let (vx,i)=!x and (vy,j)=!y in return (vx*vy) done;;

val scalarprod: (int*int) bag * (int*int) bag -> int

As for for-in with a single range, modifying the range
index x or y results in modifying X (or Y), which is what
the for-in of bitonic merge in program 3 does: it exchanges
xi with yi if xi < yi. The first range X is called the master
range, i.e. it is the range on which the stop condition is
applied. It is necessary to define what happens if X and Y
do not have the same number of elements. 1) If X has less
elements than Y , then at the end of recursive division, each
of the bi contains one element of X called x, but still has
several elements of Y . The solution is simply to keep this
set with the same name Y and to skip the range index y.
The for-in must be written for x in X dot Y do exp done

where Y is called a non-terminal range. 2) If X has more
elements than Y , then y takes a predefined value called ⊥,
meaning “undefined”. By convention x >⊥ is always true,
and {⊥} = {}. These conventions work nicely in the case of
bitonic merge: they allow the sorting of arrays of arbitrary
size, not just sizes which are exact powers of two.

The bitonic sort algorithm. Program 3 implements the
bitonic sort. A bitonic sequence is composed of two subse-
quences, one ascending and the other descending. A bitonic
sequence [0, 2n) has the following property: it can be di-
vided into two halves, [0, n) and [n, 2n), such that 1) each
half is a bitonic sequence, and 2) each element in half
[0, n) is less than or equal to each element in [n, 2n). The
elements in the corresponding positions are simply com-
pared in both halves and exchanged if they are out of or-
der, where the sequential loop is: for (i=0;i<n;i++) { if
(get(i)>get(i+n)) exchange(i,i+n); }. The bitonic

merge for-in processes the sequence in exactly this manner.
The bitonic sort works by using a double DVC mech-
anism. 1) It sorts the lower half in ascending order and
the upper half in descending order. This gives a bitonic
sequence. 2) It performs a bitonic merge of the sequence,
resulting in a bitonic sequence in each half, with all the
larger elements in the upper half. 3) It performs recursive
bitonic merges on each half until all the elements have been
sorted. A bitonic merge is a terminal recursive function, but
a bitonic sort is not. As shown in Figure (e) of program 3,
however, the two recursive calls are remotely called on two
inner blobs, hence the stack’s size remains constant and the
finite state constraint is true.

dDcomplexity Unlike quicksort, bitonic sort and bitonic
merge of n elements always divide the problem size exactly
in two. Time complexity in both instances is t(n) = O(n1/d)
and space complexity is O(n). A demonstration of this re-
sult is given in [38]. O(n1/d) is an optimal VLSI complexity
as proven in [39] for 2D grids and [40] for 3D grids. A sort-
ing algorithm on a 2D grid reaching optimal complexity
has already been given in [40], but it is much more com-
plex than the one presented here: for example, it requires

16

tiling a 2D grid of PEs, with a tile length of n1/4. Another
algorithm, optimal for 3D grids, is also shown in [40]. The
elegance of the present model lies in the fact that the same
simple algorithm is ideal both for 2D and 3D grids.

3.4. Developing non-hierarchical networks using channels
(pipelined parallelism)

The channel master. An arbitrary graph is not a pure hi-
erarchical structure and cannot be coded using only blobs.
For example, a graph link is represented by using a chan-
nel c. The channel is owned by a unique blob bc called the
channel master of c. The outer blob of bc is called the source
end and the blob at the other end of channel c the target
end. In this way, the channel master can be commanded by
a straight move that transfers the master bc from its outer
blob (source of c) to the target blob. The target blob con-
sequently becomes the source end of c. The functions put
and get are added to the catalog of predefined functions
for channel masters. Communication across the link from
source to target is performed using the elt-register of the
bc master channel: let put x = elt:= x; move ;; let get

() = send !elt; move ;;. When a value is written from
the source end, it can be read from the target end and is
then available for another write from the source. The prede-
fined duplicate function is redefined for channel masters:
let duplicate () = move; flip up; if rec()=duplicate

then begin divide; flip up; move end else merge;;. It
performs two move instructions, back and forth. Division
for duplication is only performed if the duplicate command
is given from both ends. This synchronizes the two ends of
a link when they want to duplicate the link.

Xblobs polarize ends. The channel master does not have
an id, but both the source and target ends of the chan-
nel (called Xblobs) have one. Each link is therefore rep-
resented by three blobs: a channel master, a source and a
target Xblob. Xblobs are used to polarize the link ends sep-
arately. This is required when polarization for routing is
commanded from the outer blob. For the rest, when Xblobs
receive a command [S, f, p1, .., pk] where f is move, put, get
or duplicate, they check if their id matches S as usual,
and if so, forward the raw command to their channel mas-
ter using the instruction broadcast [f,p 1,..,p k]; flip

down.
Xpairs handle a target and source coherently. A bag of

Xblobs belongs to the special type “Xbag”. It is practical
to manipulate Xbags using a pair of singletons ({i}, {o})
with type Xpair = Xbag*Xbag, where i (or o) is a target (or
source) end of an incoming link (or an outgoing link), and
can receive (or send) data from (to) the blob at the other
end of the link. First, when a link is created by the pre-
defined new link function, it returns an Xpair, the pair of
ends of the newly created link. Second, communication and
link creation are easily programmed using two functions on
Xpairs: Xshift(i,o) receives a value v from i, forwards
it to o, and returns v, and Xdivide(i,o), which creates a

new Xpair and inserts it between i and o.

let Xshift var xx = let(i,o) = xx in let v=get i in put o v; v ;;

val Xshift: var Xpair -> float

let Xdivide(var xx)= let(i,o)=xx and (i’,o’)=new Link() in

let r=(i,o’)in i<-i’;r

val Xdivide: var Xpair -> Xpair

Ports. Xblobs are also used to control ports. Each port
edge is assigned a dedicated Xblob. The ports are indexed
by arranging their Xblobs into a blob array with type

ports= (int*Xbag) bag. The put (or get) function is re-
defined for those Xblobs that control ports so that they
can output (input) data through the port. let put x =

broadcast x ;; let get () = sum ;;. The sum reduction
function is coherent because port edges are handled like
vertical edges. It sums a single value since the Xblob has a
single port. The function input(var P:ports,x:Xbag,n)

of program 4 gives an example of port usage: a for-in spec-
ifies a function that inputs n values, one by one, on each of
the port edges, and forwards them through another Xblob
x also passed as a parameter. The body of this for-in uses
blob x. This deserves explanation because until now, this
discussion has only shown for-in bodies using scalars. Un-
like scalars, Xblob x cannot be packed into a message and
broadcast to inner blobs. So how is this for-in compiled?
Using iterative division of for-in ancestor b, in exactly the
same way a for-in with a dot product is compiled. The range
must therefore be a master range. A copy of x is placed
in b, and before each division, b commands x to duplicate
so that each offspring gets its own copy of x. A distinct
copy of x is then available for each parallel evaluation of
the for-in body. More generally, when compiling a for-in,
a liveness analysis must determine whether certain blobs
b1, . . . bk are used in the body. If this is the case, a copy of
b1, . . . bk is placed in a for-in ancestor that repeatedly du-
plicates b1, . . . bk while dividing.

Using integer intervals and Xpairs as range. For-in can be
generalized to make dot products on other types of range
than just blob arrays. For a variable v to be eligible as a
range, a divide function must be defined on v. 1) For blob ar-
rays, the Adivide function, introduced previously, divides
an array. 2) For integer intervals, division just splits the in-
terval in the middle. 3) For Xpairs, the Xdivide function
is used. This case is a bit unusual, since Xdivide separates
the input from the output, but also adds a new input and
a new output, and the size of the Xpair does not decrease.
Therefore an Xpair cannot be used as a master range, i.e.
the first range of the for-in on which the stopping condi-
tion is applied. In addition, Xpair h is always used as a
non-terminal range, so the range index must be skipped as
stated earlier. A for-in for i in 1..n dot h develops a 1D
grid: it generates n blobs b1 . . . bn where the Xpair h = (i, o)
available in blob bi is such that i can receive values from
bi−1, and o can send values to bi+1. A nested for-in using
two Xpairs, h and v, for i in 1..n dot h for j in 1 .. n

dot v develops a 2D grid. In the outer (or inner) for-in on i
(or j), h (v) is divided, while v (h) is duplicated. The Xpair

17

h (or v) implements communication on the horizontal (or
vertical) axis.

let input (var P,x,n) = for ip in P do let (,p)= !ip in
let xx = (p,x) in for i=1 to n do shift xx done done;;

val input: var ports*Xbag*int -> unit
let prodmat (left,up,n)=

let h = (newbag (), newbag ()) and v = (newbag (), newbag()) in
let (,h’)= Xdivide h and (,v’) = Xdivide v in union of {

for i in 1..n dot h do for j in 1..n dot v do let C = ref 0 in
for k = 1 to n do C := C + prod of { shift h||shift v } done;
return ((i,j),C)

|| input(left,h’,n)
|| input(up,v’,n)

done done }
val prodmat: ports * ports ->((int*int)*float)bag

Prog. 4. Program for matrix multiplication. (a) to (e) illustrate the
development induced by the nested for-in. (f) replaces (c) when
horizontal and vertical development are interleaved. To save PEs,

Xblobs do not have membranes: they are mapped as particles at
the ends of the filament representing the channel, and the channel
master is mapped as a particle inside the channel. In (c)-(f), particles
representing the blob and channel master are omitted to simplify the

illustration. (a) and (b) also show Xblob id: the input (or output) id
of Xpair h is named hi (or ho), as is the case for v, v′, h′. Space is
allocated before development starts. This causes a temporarily low

density in (a), which gradually increases from (a) to (e).

The Kung and Leiserson algorithm [40] for multiply-
ing 2D n ∗ n matrices is implemented using the function
prodmat(left,up,n) in Program 4. To simplify the discus-
sion, the two matrices to be multiplied are input directly
from two blob arrays of n ports called left and up. The
program not only specifies the Kung and Leiserson circuit,
but also how to develop it. In Phase 1 it develops the cir-
cuit, while in Phase 2 the nodes of the circuit iterate a cycle
of n systolic computations. In Phase 1 three developments
are launched in parallel. The main nested for-in for i in

1..n dot h for j in 1 .. n dot v generates a 2D grid, and
the two calls to the input function connect the left and up
ports to the 2D grid using Xblobs h′ (or v′) connected to
h (v). Because of the specific redefinition of duplicate for
channel masters, h and h′ (v and v′) are synchronized when
they duplicate, thereby synchronizing the three parallel de-
velopments of Phase 1. In Phase 2, the body of the nested
for-in implements the Kung and Leiserson algorithm. It to-
tals the sum of the product of values input from the left (or
up) link, and forwards those values to the right (or down)

link, in a pipelined way. The bodies of the input for-in feed
the 2D grid with rows of A from the left, and columns of B
from the up direction, where A and B are the matrices to
be multiplied that must be sent by the host. The resulting
matrix is returned as a blob array indexed using pairs of
integers.

dDcomplexity. Setting up the circuit generates many par-
ticles. As a result, the allocate instruction must be inserted
to produce a size-preserving development by assigning a
virtual size to blobs. Each iteration of the nested for-in di-
vides the virtual size by two, as for uniformly dividing de-
velopment. Diameter does not decrease with size, however,
because of the channels. The nested for-in for i in 1..n

dot h for j in 1 .. n dot v has two phases: the outer for-
in divides first horizontally and then the inner for-in ver-
tically. Because of the tension induced by the channel, the
dividing blobs remain on a horizontal line throughout the
entire horizontal phase. Width is divided by two, but height
remains constant, as is the case for diameter (see fig (c) of
Program 4). To produce a development that alternates be-
tween a horizontal and vertical orientation, it is necessary
to program the division of an object (h, v) by combining a
vertical and a horizontal link so that it alternates between
horizontal and vertical division, let hvdivide var (h,v)

= (Xdivide v,h), and then do the same using a pair of in-
dices. The for-in must be written for (i,j) in (1..n,1

.. n) dot (h,v). Using this refined program, both the di-
ameter and size of the blobs are divided, and the complex-
ity of O((n2)1/2) is reached for Phase 1. Channel length
remains O(1). Channels can be moved like particles and do
not augment complexity. Their influence is limited to de-
termining whether the direction of division is horizontal or
vertical, and which half is the plus or minus half. In Phase 2
data are sent from the ports, completely crossing the grid.
This takes an amount of time equal to the diameter of the
grid, which is also O(n). For a 2D grid of PEs, this pro-
vides the best performance with respect to VLSI complex-
ity (see [1]), but is not the best solution for a 3D grid of
PEs. Consequently, unlike bitonic sort, the algorithm must
be rewritten to improve processing in three dimensions by
developing a 3D grid instead of a 2D grid. This shows that
for some problems, the best algorithm depends on dimen-
sionality in the computing medium.

4. Conclusion and perspectives

The purpose of this article is to give a detailed formal pre-
sentation of a virtual machine — the blob machine — whose
primitives are sufficiently simple to be implemented on an
arbitrary computing medium. The discussion shows that it
is feasible to program the machine using a variety of differ-
ent parallel styles, while achieving optimal complexity. The
program specifies how “self-development” of a network of
automata takes place through widespread use of parallel
semantics. While parallel semantics introduce a particular
twist to programming in this context, they also describe

18

spatial features and can therefore be reused for different
hardware platforms based on the same type of computing
medium. For example, although the present paper focuses
on a fine-grain context for the sake of simplicity, granular-
ity can range from FPGAs (reconfigurable architectures)
to distributed memory multiprocessor machines with local
connections. This work also targets irregular architectures
encountered in amorphous computing. The only property
of the computing medium that must be known to the pro-
grammer is dimensionality, since it restricts the set of feasi-
ble self-developing graphs. For example, since it is not easy
to efficiently map a 3D grid to a 2D computing medium,
the programmer may have to “collapse” one of the dimen-
sions into memory. Nevertheless, there are algorithms that
perform well on both 2D and 3D computing media, such as
the bitonic merge sort in Program 3 in Section 3.3.

This article has chosen to program a catalog of classic
parallel algorithms in order to compare expressiveness and
performance with existing models of parallelism and pro-
mote our approach in the parallel computing community.
As for expressiveness, the programs described rarely con-
sist of more than four lines, and can often represent just a
single line. The aim here is also to demonstrate the ability
to go beyond the spectrum of purely spatial algorithms and
program algorithms that “compute something” in the or-
dinary sense, such as quicksort or matrix multiplication, as
opposed to spatial-specific algorithms. Performance is ana-
lyzed in terms of asymptotic complexity and shows optimal-
ity in the context of the VLSI complexity model, i.e., results
are comparable to the performance of parallel algorithms
running on a 2D or 3D grid of processing elements. Us-
ing architectures with greater connectivity, such as hyper-
cubes, or a parallelism model with looser constraints, such
as the BSP (Bulk Synchronous Parallel) or logP model,
better time performance can be achieved, but at the cost of
arbitrary hardware scalability. BSP, LogP and many other
models of parallelism are compared in [41].

The blob machine is more appropriate for unconventional
parallel algorithms that feature decentralization, structure,
dynamicity, and persistence, which actually characterize
many complex systems. Decentralization implies an algo-
rithm describing a type of parallelism that is explicit, with a
potentially arbitrary size. Complex systems consist of many
parts operating simultaneously. Structure implies that the
architecture (the set of communication pathways between
the parts) matches the function it must perform. Dynamic-
ity characterizes systems whose architecture can change at
runtime, depending on input and the type of computation
being performed. The system parts can move, delete exist-
ing connections and establish new ones. Persistence occurs
when the rate at which the structure evolves is slow com-
pared to the rate at which it computes. These four criteria,
typical of a specific application niche, can be met by the
blob machine’s properties. Decentralization: the blob ma-
chine can manage arbitrarily large parallel resources. Struc-
ture: a unique feature of the blob machine is the ability
to program network structure itself. This network develop-

ment capability does not restrict the shape of the devel-
oped circuits to the lattice structure of the associated task
graphs used to refine nested loops. Dynamicity : the weak
point of parallelizing compilers, which are more special-
ized in static (compile-time) analysis. Dynamicity is a basic
property of blob machines, achieved through hardware-free
structuring and run-time self-placement. A classic exam-
ple of a problem with a dynamic task graph is quicksort,
presented in this paper. Persistence: necessary to absorb
the time cost induced by self-placement. If the structure is
modified too often, then the time spent re-placing it may
exceed the time spent on computation. A recognized ex-
ample of an application in the niche defined by those four
features is Artificial Neural Networks (ANNs): they are ob-
viously decentralized; the match between architecture and
function characterizes brain circuits [42]; many ANN algo-
rithms include a dynamic feature, adding or deleting neu-
rons or synapses according to under-fitting or over-fitting
of the task to be learned; and the architecture is persistent
because modifications are applied only when learning new
tasks.

“Blob computing” is a long-term project and still re-
quires extensive work. The demonstration of complexity
stipulates certain assumptions regarding blob machine im-
plementation, and while the current implementation com-
plies with these assumptions, it is not yet complete. This
requires the development and articulation of many spatial
algorithms. Furthermore, the programs developed thus far
assume that there are always enough Processing Elements
to allow each automaton of the virtual machine’s configu-
ration to be hosted on a distinct PE. If there are not enough
PEs, then creating more blobs does not extend parallelism.
It would then be more efficient to dynamically develop the
blob system until all available resources are exploited, then
stop self-development and deploy computation in time in-
stead of space. Finally, the runtime system that implements
a blob machine can be seen as an operating system re-
sponsible for updating the placement of many threads. It
performs thread forking, computing, dying, and message
exchange. This system itself is distributed and occupies a
fixed bounded percentage of the hardware resources. De-
voting hardware resources to self-placement will only be
regarded as profitable when available hardware resources
reach a critical size that remains to be determined by ex-
perimentation.

Acknowledgment. We thank rewiewers for their quite
significant work and encouragements, and Donald Weston
for his careful proofreading. We acknowledge support from
EPRC grant EP/F003811/1 on general purpose spatial
computation.

References

[1] T. Lengauer, Vlsi theory, in: Handbook of theoretical computer
science (vol. A): algorithms and complexity, MIT Press,

Cambridge, MA, USA, 1990, pp. 835–866.

19

[2] H. Abelson, D.Allen, D. Coore, C. Hanson, G. Homsy,

J. T. F. Knight, R. Nagpal, E. Rauch, G.J.Sussman, R. Weiss,
Amorphous computing, Commun. ACM 43 (5) (2000) 74–82.

[3] F. G. A. Dehon, J.-L. Giavitto (Ed.), Computing Media and

Languages for Space-Oriented Computation 2006, Dagstuhl
international workshop 06361, 2006.
URL
http://drops.dagstuhl.de/portals/index.php?semnr=06361

[4] Y. Feldman, E. Shapiro, Spatial machines: a more realistic
approach to parallel computation, Commun. ACM 35 (10) (1992)

60–73.

[5] J.-P. Patwardhan, C. Dwyer, A. R. Lebeck, D. J. Sorin,

Circuit and system architecture for dna-guided self-assembly of
nanoelectronics, in: Foundations of Nanoscience: Self-Assembled
Architectures and Devices (FNANO), 2004.

[6] B. Gojman, E. Rachlin, J. E. Savage, Evaluation of design
strategies for stochastically assembled nanoarray memories, J.
Emerg. Technol. Comput. Syst. 1 (2) (2005) 73–108.

[7] E. Winfree, Self-healing tile sets, architecture for dna-guided
self-assembly of nanoelectronics, Nanotechnology: Science and

Computation.
URL http://www.dna.caltech.edu/DNAresearch publication

[8] L. Adleman, Computing with dna, Scientific american.

[9] S. Goldstein, P. Lee, J. Campbell, P. Pillai, Scalable shape

sculpting via hole motion, International Conference on Robotics.

[10] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, A. DeHon,

Stream computations organized for reconfigurable execution
(SCORE), in: FPL, 2000, pp. 605–614.

[11] A. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. Mange,

J. Moreno, J. Rosenberg, A. Villa, Poetic tissue: An integrated
architecture for bio-inspired hardware, in: Evolvable Systems:
From Biology to Hardware 5th ICES conference, Vol. 2606 of
Lecture Notes in Computer Science, Springer, 2003.

[12] E. Rauch, Discrete, amorphous physical models, International
Journal of Theoretical Physics 42 (2) (2003) 329–348.

[13] A. Adamatzky, B. D. L. Costello, T. Asai, Reaction-Diffusion
Computers, Elsevier Science Inc., New York, NY, USA, 2005.

[14] J. Giavitto, O. Michel, Mgs: a programming language for the
transformations of collections, LaMI technical report No 61-

2001.
URL http://mgs.lami.univ-evry.fr/PUBLICATIONS/publicat

[15] J. Giavitto, Topological collections, transformations and their
application to the modeling and the simulation of dynamical
systems, 14th Int. Conf. on Rewriting Technics and Applications.

[16] J. Banatre, D. L. Metayer, Programming by multiset
transformation, Commun. ACM 36 (1) (1993) 98–111.

[17] G. Paun, Membrane Computing. An Introduction, Springer-
Verlag, 2002.

[18] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro,
Bioambients: an abstraction for biological compartments, Theor.
Comput. Sci. 325 (1) (2004) 141–167.

[19] R.Nagpal, Programmable self-assembly: constructing global
shape using biologically-inspired local interactions and origami
mathematics, Ph.D. thesis, MIT (2001).

[20] D. Coore, Botanical computing: a developmental approach to
generating interconnect topologies on an amorphous computer,

Ph.D. thesis, MIT (1999).

[21] T. Toffoli, Programmable matter methods, Future Gener.

Comput. Syst. 16 (2-3) (1999) 187–201.

[22] F. Gruau, Self-developing machines and parallel universality of

the blob machine, submited to computational complexity.

[23] S. M. K. Tomita, H. Kurokawa, Graph automata:
natural expression of self-reproduction, Physica D: Nonlinear

Phenomena 171 (4) (2002) 197–210.

[24] K. Shahookar, P. Mazumder, Vlsi cell placement techniques,

ACM Comput. Surv. 23 (2) (1991) 143–220.

[25] A. Contessa, E. Cousin, C. Coustet, M. Cubero-Castan,

G. Durrieu, B. Lecussan, M. Lemâıtre, P. Ng, Mars, a combinator

graph reduction multiprocessor, in: PARLE ’89: Proceedings of

the Parallel Architectures and Languages Europe, Volume I:
Parallel Architectures, Springer-Verlag, 1989, pp. 176–192.

[26] F. Gruau, Y. Lhuillier, P. Reitz, O. Temam, Blob computing,
in: CF ’04: Proceedings of the 1st conference on Computing

frontiers, ACM, 2004, pp. 125–139.
[27] F. Gruau, P. Malbos, The blob: A basic topological concept

for hardware-free distributed computation, in: C. Calude,

M. J. Dinneen, F. Peper (Eds.), Unconventional Models of

Computation, Third International Conference, UMC 2002,

Kobe, Japan, October 15-19, 2002, Proceedings, Vol. 2509 of

Lecture Notes in Computer Science, Springer, 2002, pp. 151–163.

[28] G. E. Blelloch, Nesl: A nested data-parallel language (version
3.1), Tech. Rep. CMU-CS-95-170 (1995).

[29] F. Gruau, G. Moszkowski, The blob division a ”hardware-
free”, time efficient, self-reproduction on 2d cellular automaton,

in: I. A. Jan, M. Masayuki, W. Naoki (Eds.), Biologically

Inspired Approaches to Advanced Information Technology: First
International Workshop, BioADIT 2004, Lausanne, Switzerland,

Vol. 3141 of Lecture Notes in Computer Science, Springer, 2004,
pp. 317–337.

[30] T. Toffoli, N. Margolus, Cellular automata machines: a new
environment for modeling, MIT Press, 1987.

[31] F. Gruau, J. Tromp, Cellular gravity, Parallel Processing Letters
10 (4).

[32] The home site of blob computing.
URL http://blob.lri.fr

[33] P. Buneman, S. Naqvi, V. Tannen, L. Wong, Principles of
programming with complex objects and collection types, in:

ICDT ’92: Selected papers of the fourth international conference

on Database theory, Elsevier Science Publishers B. V., 1995, pp.
3–48.

[34] J. T. Schwartz, R. B. Dewar, E. Schonberg, E. Dubinsky,
Programming with sets; an introduction to SETL, Springer-

Verlag New York, Inc., 1986.
[35] P. Hammarlund, B. Lisper, On the relation between functional

and data parallel programming languages, in: FPCA ’93:

Proceedings of the conference on Functional programming

languages and computer architecture, ACM, 1993, pp. 210–219.
[36] R. Bagrodia, M. Chandy, M. Dhagat, UC: A set-based

language for data-parallel programming, Journal of Parallel and

Distributed Computing 28 (2) (1995) 186–201.
[37] X. Leroy, The objective caml system release 3.08, Tech. rep.

(2005).
[38] F. Gruau, C. Eisenbeis, L. Maignan, Self-developing blob

machines for spatial computing: the foundations, Research

report, Inria (February 2008).

URL http://hal.inria.fr/inria-00258845/en/

[39] C. D. Thomson, The vlsi complexity of sorting, IEEE transaction
on Computers.

[40] F. . Leighton, An Introduction to Parallel Algorithms and
Architectures, Morgan Kaufmann, 1992.

[41] D. B. Skillicorn, D. Talia, Models and languages for parallel
computation, ACM Computing Surveys 30 (2) (1998) 123–169.

[42] J. S. M. Arbib, P.Erdi, Neural Organization - structure, function,
and dynamics, The MIT Press, 1998.

20

