Integration of Human Walking Gyroscopic Data Using Empirical Mode Decomposition - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Sensors Année : 2014

Integration of Human Walking Gyroscopic Data Using Empirical Mode Decomposition

Résumé

The present study was aimed at evaluating the Empirical Mode Decomposition (EMD) method to estimate the 3D orientation of the lower trunk during walking using the angular velocity signals generated by a wearable inertial measurement unit (IMU) and notably flawed by drift. The IMU was mounted on the lower trunk (L4-L5) with its active axes aligned with the relevant anatomical axes. The proposed method performs an offline analysis, but has the advantage of not requiring any parameter tuning. The method was validated in two groups of 15 subjects, one during overground walking, with 180°turns, and the other during treadmill walking, both for steady-state and transient speeds, using stereophotogrammetric data. Comparative analysis of the results showed that the IMU/EMD method is able to successfully detrend the integrated angular velocities and estimate lateral bending, flexion-extension as well as axial rotations of the lower trunk during walking with RMS errors of 1 deg for straight walking and lower than 2.5 deg for walking with turns.
Fichier principal
Vignette du fichier
sensors-14-00370-v2_1_.pdf (1.94 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

lirmm-00922705 , version 1 (07-03-2014)

Identifiants

Citer

Vincent Bonnet, Sofiane Ramdani, Christine Azevedo Coste, Philippe Fraisse, Claudia Mazza, et al.. Integration of Human Walking Gyroscopic Data Using Empirical Mode Decomposition. Sensors, 2014, 14 (1), pp.370-381. ⟨10.3390/s140100370⟩. ⟨lirmm-00922705⟩
426 Consultations
566 Téléchargements

Altmetric

Partager

More