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Advancement in brain computer interfaces (BCI) technology allows people to actively

interact in the world through surrogates. Controlling real humanoid robots using BCI

as intuitively as we control our body represents a challenge for current research in

robotics and neuroscience. In order to successfully interact with the environment the brain

integrates multiple sensory cues to form a coherent representation of the world. Cognitive

neuroscience studies demonstrate that multisensory integration may imply a gain with

respect to a single modality and ultimately improve the overall sensorimotor performance.

For example, reactivity to simultaneous visual and auditory stimuli may be higher than

to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet,

knowledge about whether audio-visual integration may improve the control of a surrogate

is meager. To explore this issue, we provided human footstep sounds as audio feedback

to BCI users while controlling a humanoid robot. Participants were asked to steer their

robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that

audio-visual synchrony between footsteps sound and actual humanoid’s walk reduces the

time required for steering the robot. Thus, auditory feedback congruent with the humanoid

actions may improve motor decisions of the BCI’s user and help in the feeling of control

over it. Our results shed light on the possibility to increase robot’s control through the

combination of multisensory feedback to a BCI user.

Keywords: brain computer interface, SSVEPs, sense of agency, humanoid, teleoperation, motor control

INTRODUCTION

Walking through an environment, avoiding possible obstacles and

stopping close to a desired place and act upon objects are motor

decisions that people without any physical impairment can easily

plan and quickly achieve in various environments.

Current research in Brain-Computer Interface (BCI) with elec-

troencephalogram (EEG) shows the successful use of mobile

robots to accomplish complex tasks (Bell et al., 2008; Millán et al.,

2010; Choi and Jo, 2013). Nonetheless the possibility to achieve

a natural control of a real size humanoid robot within a real

environment (Gergondet et al., 2013) still represents a great chal-

lenge for computer science, neuroscience, and BCI research. Such

challenge is well illustrated by walking tasks that are typically

considered comparatively simply. However, although seemingly

simple, walking behavior is the outcome of a long-lasting learning

process, involves motor and intellectual skills and generates sen-

sory consequences we give very little attention to. For example,

under normal circumstances we barely pay attention to the sound

generated by our footsteps, possibly due to their high predictabil-

ity. However, imagine hearing footsteps not directly related to

your own walk (i.e., a sound that does not match the instant of hit

of your foot with the ground). It is highly likely you start think-

ing something unusual is happening to you or that someone is

following you. Footsteps sounds are directly related to our walk-

ing behavior and represent a sensory feedback that also informs

about the agent of the action. The present study aims at assessing

the importance and benefits of accurate auditory feedback relative

to footsteps sounds during a BCI-based steering of a humanoid

robotic surrogate.

The feeling of being in control of one’s actions and/or its

consequences is called sense of agency (SoA, Gallagher, 2000;

Synofzik et al., 2008; David, 2012). Importantly SoA is a multifac-

torial feeling (David, 2012) and can be manipulated by altering

temporal predictability between an action and its effect (Sato

and Yasuda, 2005). In particular, increasing the temporal inter-

val between an action and its effect decreases the perceived SoA.

Relevant to this study is the SoA over footstep sounds. In a study

conducted by Menzer et al. (2010), participants were asked to

indicate whether a footstep’s sound was self-produced or not.

More specifically follow a path while hearing through headphones
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a footstep sound either synchronous or asynchronous with

their real steps. The results show that SoA was significantly

higher in the former than the latter condition indicating the

temporal mismatch between actions and hearing the footstep

sounds influences the feeling of being the cause of an action’s

consequence.

BCI systems typically need a time window to decode reliably

the intended action and actually implement it. Time segments for

data analysis change according to the type of EEG signals the BCI

relies on and the method that is used to process them. For exam-

ple, to correctly classify the user’s intention motor imagery- (MI),

steady-state visually evoked potentials- (SSVEPs), and P300-BCI

one needs 4 s (Guger et al., 2003), 7 s (Guger et al., 2012), and

45 s (Guger et al., 2009; see also Table 2 in Guger et al., 2012 for

comparative purposes), respectively.

MI-based BCI devices can have a maximum of four out-

puts (right and left arm, foot and tongue movement imagery,

Naeem et al., 2006; but see Friedrich et al., 2013 for different

mental strategies). Yet, a high level of accuracy is achieved only

after lengthy period of training (Pfurtscheller et al., 2006; Onose

et al., 2012). P300-based BCI systems can have a higher num-

ber of outputs (Guger et al., 2009) and require less training.

However, these systems implies large and variable time windows

(that range from 5 s for a 4-choice system (Bell et al., 2008) to

45 s for 15 choices (Guger et al., 2012). In the present study we

used a SSVEPs BCI interface as the best compromise between the

number of outputs, the training duration, and the required time

window to classify user’s intention (see Materials and Methods).

We assessed BCI users’ performance and subjective experience

during a continuous whole-body control of a humanoid robot

(HRP-2). In particular participants (located in Italy) remotely

controlled through BCI a humanoid robot (located in Japan).

A pick-and-place scenario (Gergondet et al., 2013) was adopted.

The video from robot’s cameras was fed back on a 2D screen.

During the task, participants could observe or not HRP-2’s body

through a mirror and could hear a footstep sound that matched

(synchronous) or not (asynchronous) the actual robot’s move-

ments (see Materials and Methods). In this way we tested the

role of audio-visual feedback in an ecological scenario measuring

the BCI users’ performance (expressed by the time to complete

the task) and their perceived quality of the interaction with the

robot by means of a questionnaire (see section Quality of the

Interaction).

We expected faster walking time when audio-visual feedback

is congruent (synchronous condition) relative to when is not

(asynchronous condition) and better precision in dropping the

object when the robot’s body was visible through a mirror (mirror

condition) relative to when it was not (no-mirror condition).

MATERIALS AND METHODS

PARTICIPANTS

A total of 28 healthy subjects took part in the study. Nine subjects

(3 women; age range, 20–26 years) participated in the main exper-

iment and 19 subjects (12 women; age range, 21–33 years) were

tested in one of the two pilot studies. All the subjects were right-

handed according to a standard handedness inventory (Briggs and

Nebes, 1975), had normal or corrected-to-normal visual acuity in

both eyes, and were naive as to the purposes of the experiments.

None of the participants had any contraindication for the BCI

study (Fisher et al., 2005). Participants provided written informed

consent and the procedures were approved by the ethics com-

mittee at the Fondazione Santa Lucia and were in accordance

with the ethical standards of the 1964 Declaration of Helsinki.

Participants received reimbursement for their participation and

were debriefed on the purpose of the study at the end of the exper-

imental procedure. In the SSVEPs-BCI experiment no discomfort

or adverse effects were reported or noticed.

PILOT STUDIES—FOOTSTEPS SOUNDS SELECTION

Two independent groups of subjects have been tested in differ-

ent pilot studies (Group 1, 12 subjects, 7 female, range 21–33

years; Group 2, 7 subjects, 5 female, range 20–23 years). In Pilot

1, eight different human footsteps audio files were interleaved by

a variable number (min 5, max 10) of pure tones to avoid habit-

uation and randomly heard by participants. Subjects were asked

to guess what the sound was and type the answer within a text

box. Participants listened to each sound only once. The sound

represented two “hits” with the ground (e.g., right-left foot). In

Pilot 2 participants rated on a 0–100 Visual Analog Scale (VAS)

how much the sound they heard was reproducible by the human

body. The sounds were the same as in Pilot 1 and interleaved by

pure tones. The selected sound was freely categorized as “foot-

step” by 91% of the sample from Pilot 1 and rated as reproducible

by the human body at the 93.7 ± 2.57 (mean ± s.e.m.) on the

0–100 VAS scale from Pilot 2. In this way we chose the most rec-

ognizable footstep sound that was judged as highly reproducible

by the human body.

MAIN EXPERIMENT—TASK DESCRIPTION

Participants located in Rome (Italy) controlled an HRP-2

humanoid robot located in Tsukuba (Japan, see Figure 1) by a

SSVEPs-BCI system. The task had four sub-goals (SGs). First the

BCI user had to steer the robot from a starting position to a

FIGURE 1 | Participants located in Rome (Italy) controlled an HRP-2

humanoid robot located in Tsukuba (Japan) by a SSVEPs-BCI system.

The subjects guided the robot from a starting position to a fist table

(marked in green as “1”) to grasp the bottle and then drop the bottle as

close as possible to a target location marked with two concentric circles on

a second table (marked in green as “2”).
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table (SG1) and command HRP-2 to grasp a bottle (SG2). Then,

the participant guided the robot as close as possible to a second

table (SG3) and tried to drop the bottle as close as possible to

a target location marked with two concentric circles (SG4, see

Figure 2A).

Participants were asked to complete the task as fast and accu-

rate as possible. An enforced- (for all SGs, see section Enforced

Selection) and a recursive-selection (SG4, see section Recursive

Selection) were adopted to allow the user to complete the task.

In half experimental conditions, we placed a mirror behind the

second table to provide additional information about the spa-

tial proximity between the table and the robot. During the task

the BCI user heard a footstep sound either synchronous or asyn-

chronous with the real footsteps of the robot (during SG1 and

SG3) and could see or not the robot’s body reflected in a mirror

placed behind the second table (SG3 and SG4). In this way we

had a 2 × 2 design with Footstep (Synchronous, Asynchronous)

and Mirror (Present, Absent) as within subjects factors for a total

of four experimental conditions. After each condition the sub-

ject answered questions concerning the experience they had (see

questionnaire section Quality of the Interaction). Importantly

auditory feedback was delivered in Italy. Data regarding robot’s

feet contact were streamed from Japan along with the video

stream. Hence when a foot touched the ground we could deliver

an auditory feedback to the user located in Italy synchronously or

asynchronously with the video feedback.

PROCEDURE

The user was comfortably sitting in an armchair about 75 cm

away from a 19′′ LCD screen operating at a refresh rate of 60 Hz

upon which the user interface was displayed. The SSVEP classifier

was trained on individual EEG data and a short video was pre-

sented to explain the goals to accomplish during the experiment.

A trial consisted of the execution of the entire demonstration:

from grasping to dropping the bottle on the second table. Two

concentric circles indicated the target position on the second

table. At the end of the trial, participants answered 4 ques-

tions to assess the quality of their interaction with the robot.

An initial practice trial was performed before the experimen-

tal conditions. Note that we have been able to set the classifier

error rate at 0% for all subjects. After training the error rate

was null after 7.52 ± 0.22 s (mean ± s.e.m.). All participants

completed successfully the training and were able to use the

SSVEP.

DATA ANALYSIS

The Total time to complete the task, Walking time (i.e., time to

steer the robot from the first table to the second one; SG3) and

Place Accuracy (i.e., displacement between the target location and

dropped bottle position; SG4) were used as measures of behav-

ioral performance. We discarded from the main analysis one

participant who did not follow task instructions and presented

a Walking time 202% higher relative to the other participants.

Thus, the final sample was of 8 subjects (2 female, 21.5 ± 1.06,

range 20–23 years). An ANOVA with Mirror (present, absent)

and Footstep sound (Synchronous, Asynchronous) as between

subjects’ factors was performed after checking for normality

distribution (using the Shapiro-Wilk test).

Subjective answers to the quality of the interaction were ana-

lyzed by means of non-parametric tests Friedman ANOVA and

Wilcoxon test for within-group comparisons.

HARDWARE AND SOFTWARE INTEGRATION

Brain computer interface

EEG signals were acquired at 256 Hz by means of a g.USBamp

(24 Bit biosignal amplification unit, g.tec Medical Engineering

GmbH, Austria). We applied a band-pass (0.5–30 Hz) and a notch

filter at 50 Hz. Eight Ag/AgCl active electrodes were placed on the

POz, PO3, PO4, PO7, PO8, O1, O2, and Oz positions of the inter-

national 10–20 system. Fpz was used as ground electrode and the

right earlobe as a reference.

Feature extraction

SSVEPs were extracted from the EEG signal using a minimum

energy classifier (Friman et al., 2007). The system categorized 6

different classes with 100% accuracy in all participants after a

short training (6 min). Five classes were implemented to steer the

robot (forward, 6 Hz; backward, 9 Hz; turn right, 8 Hz; turn left,

14 Hz; stop, 10 Hz) and an additional zero-class detected when

the user was not attending to any flashing stimuli. The frequencies

FIGURE 2 | (A) A sequence of images depicting the different sub-goals (SGs). (B) A state-flow diagram showing the Finite State Machine (FSM). Yellow arrows

represent transitions initiated by the user while green arrows represent transitions initiated by the robot.
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were selected to avoid first or second harmonics and to minimize

the risk of eliciting seizures in healthy subjects (Fisher et al., 2005).

Critical frequencies fall in the range of 15–25 Hz. It is worth

noting that some individuals may result sensitive also to higher

rapidity of the flashing stimuli (Fisher et al., 2005). Moreover,

frequencies higher than 25 Hz are difficult to render properly on

a 60 Hz monitor. Thus, the selected frequencies of the flashing

stimuli were 6, 8, 9, 10, and 14 Hz.

Graphical user interface

During walking phases, four flickering arrows allowed the partic-

ipant to send the robot instructions to move leftward, rightward,

backward, or forward. A fifth flashing square was added in the

bottom-left of the interface and was meant to stop the robot.

When the BCI recognized one of these possible commands, the

corresponding arrow or square’s border changed color (from

black to green, Figure 3).

From that moment, participants observed a change in robot’s

video feedback after nearly ∼800 ms (∼400 ms to send informa-

tion to Japan, ∼400 ms to receive robot’s cameras feedback in

Italy). Moreover, color-change signaled to the BCI users whether

the system was correctly or incorrectly categorizing their inten-

tions. This may be relevant for the experienced sense of control

over robot’s actions in addition to the audio-visual temporal

matching. It is also worth noting that distal intention increases

the sense of agency as measured by intentional binding (Haggard

et al., 2002; Vinding et al., 2013). Finally a simplified table-icon

changed color (from green to red) when the proximity of the

robot to the table was too close and potentially dangerous (see

Section HRP-2 Walking).

Enforced selection

Classification errors may interfere with robot’s control if noise is

introduced in the EEG data (e.g., the user gets distracted, makes

involuntarily moves or has lapses of attention). Since SSVEPs’

classification algorithm delivers a new output every 200 ms we

adopted an enforced selection procedure to avoid conveying sig-

nals to the robot when the user did not want to (“Midas Touch”

problem; Moore, 2003). This solution was meant for SG2 (grasp-

ing phase) and SG4 (dropping phase). Thus, with the enforced

selection, a command was sent to the robot if the user held

his selection for 2 s. This means that only after 10 equal and

consecutive outputs the robot grasped or dropped the bottle.

Based on our previous experience (in Gergondet et al., 2013 BCI-

users had to held the command for 3 s) we reasoned that this

solution could represent a good compromise between accuracy

and performance.

Recursive selection

In the SG4 the user had to drop the bottle as close as possible

to a target location. The dropping position was selected in two

steps. The user selected one of four quarters then, the selected

part was split again in 4 sub-parts. In this way the user had 16

alternatives to place the bottle. Importantly to reduce to num-

ber of errors (“Midas touch” problem, Moore, 2003) we coupled

this recursive selection with an enforced selection (see section

Enforced Selection; i.e., the user had to focus for 2 s on a stim-

ulus before triggering a level change). The process is shown in

Figure 4 and the four circles flashed at 6-8-14-10 Hz (upper-left

and -right, bottom-right and -left, respectively).

FIGURE 4 | Principle of the recursive and enforced selection during

SG4. For example the user first selects the “A” quarter which is then

zoomed in to allow the subject to select the “3” quarter. The resulting final

selection is “A.3.”

FIGURE 3 | Within the implemented graphical user interface whenever the BCI recognized a command (e.g., top arrow, forward-command), the

corresponding icon’s border changed color (from black to green).
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Sub-goals transition

Transitions between different phases of the SGs were achieved by

the implementation of a finite state machine (FSM, Figure 2B).

In this way we combined both user’ and robot’s auton-

omy. The BCI user freely decided for the robot’s walking

directions, the moment to grasp the bottle and the place

for dropping it. HRP-2 followed BCI-users’ intention and

autonomously implemented the correct movements for walk-

ing (SGs1-3, see section HRP-2 Walking), grasping (SG2, see

section Robot’s Grasping and Dropping Actions) and drop-

ping (SG4, see section Robot’s Grasping and Dropping Actions).

Therefore, transitions between different SGs were triggered

either by the user or the robot with a FSM as shown in

Figure 2.

HRP-2 walking

The robot’s head was slightly bent toward the ground (at a 25◦

angle) to allow the user to see upcoming obstacles. Participants

performed a continuous control over robot’s walking and the

steering was possible trough the flickering arrows (see Graphical

User Interface section). An Asus Xtion Pro Live was mounted on

top of HRP-2’s head. We adopted a Canny edge detection algo-

rithm and a Hough transformation on the image to locate the

corner of the tables in the depth map provided by the Xtion sen-

sor. Given the intrinsic and extrinsic parameters of the camera we

were then able to locate the position of the table within the robot’s

frame. As the robot approached the table it could be clearly seen

in the depth map of the robot’s camera and thus easily detected.

A simplified table icon changed color (green to red) according to

the proximity of the table (far or near). Overall we improved the

safety and stability of the robot’s walking by providing distance

information to the BCI user and restraining robot’s movements

when it was too close to the table (i.e., avoiding accidental

collision).

Robot’s grasping and dropping actions

During SG2 (grasping) steering commands were not visible and

the bottle, present within the field-of-view (FOV) of the robot,

started flickering at 6 Hz. The user focused her/his attention on

the bottle and instructed the robot to autonomously grasp it.

The robot automatically repositioned itself according to bot-

tle position and selected the arm to use. The arm followed a

checkpoint trajectory close to robot’s body. The robotic arm

stretched and HRP-2 grasped the bottle avoiding possible colli-

sions with the table. Then, after a small lift, the robot brought

the arm back to its body up to the initial position through a

checkpoint trajectory. During SG4 (dropping) we used an esti-

mation of the height of the drop spot through the image provided

by the RGBD camera mounted on the robot and implemented

a soft-drop strategy by controlling the arm’s speed using the

algorithm described in Table 1. Both solution for grasping and

dropping took advantage of HRP-2 capabilities to perform com-

plex tasks and motor actions and highlight the coupling of soft-

ware and hardware solution to combine both robot’s and user’s

autonomy.

Table 1 | z estim, is the estimated height from the vision.

Algorithm for soft dropping

if in force > force threshold or z current < z min

then Drop the object if a contact is detected or the

hand has reached a low position

Open the gripper

z speed = z speed

else. Lower the speed command as the hand approaches

the estimated contact height

if z current > z estimate + 0.1 then

z speed = z speed ref

else if z current > z estimate + 0.02 then

z speed = z speed ref / 2

else

z speed = z speed ref / 10

end if

end if

z current, is the current height of the robot’s hand. z min, is the minimum allowed

height, corresponding to the robot’s physical limitations. z speed, is the speed

command for the robot’s hand. z speed ref, is a reference speed given before-

hand. in force, is the force read from the wrist’s force sensor. force threshold,

is a force threshold defined before-hand obstacle detection during the phase

where the user steers the robot to ease the control.

RESULTS

PERFORMANCE ASSESSMENT

Total time

Data were normally distributed (Shapiro-Wilk test for all con-

ditions: p > 0.20). The ANOVA did not reveal any main effect

[all F(1, 7) < 0.62, p > 0.45, η
2

< 0.08] or interaction [F(1, 7) =

4.53, p = 0.07, η
2 = 0.39]. We performed an additional ANOVA

to check any learning effect with the Order of the conditions as

4 level factor (Trial1, Trial2, Trial3, Trial4). We did not observed

any learning effect [F(3, 21) = 1.38, p = 0.27, η2 = 0.16].

Walking time

Data were normally distributed (Shapiro-Wilk test for all condi-

tions: p > 0.15). The ANOVA revealed a main effect of Footstep

[F(1, 7) = 10.10, p = 0.01, η
2 = 0.59] with faster time in the

Synchronous (mean ± S.E., 60.00 s ± 2.62) relative to the

Asynchronous condition (68.36 s ± 3.42; Figure 5). No main

effect of Mirror [F(1, 7) = 3.96, p = 0.09, η
2 = 0.36] or interac-

tion [F(1, 7)z = 0.01, p = 0.97, η
2

< 0.01] was found. We addi-

tionally checked for any learning effect. The ANOVA performed

with Order as a 4 level factor (Trial1, Trial2, Trial3, Trial4) did not

reveal any effect [F(3, 21) = 0.86, p = 0.47, η
2 = 0.11]. To rule

out any role of distraction or drop of attention during the asyn-

chronous condition we checked the total commands sent to the

robot and the times the robot stopped (i.e., the BCI classifier cat-

egorized a “zero class”) as index of participants’ uncertainty that

may have explained the result.

Due to technical failure for one subject the number of com-

mands and stops sent to the robot were missing in the Sound

Asynchronous—Mirror Absent condition. The missing cell was
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substituted by the mean of commands and stops the subjects

(n = 7) sent to the robot in that condition. Neither the num-

ber of sent commands in the Synchronous (25.87 ± 4.00) and

Asynchronous (29.55 ± 3.00) condition [t(7) = −1.53, p = 0.16,

r = 0.06] nor the times the robot stopped in the Synchronous

(4.44 ± 0.89) and Asynchronous (4.29 ± 0.67) condition [t(7) =

0.27, p = 0.79, r = 0.28] did differ.

Place accuracy

Data were not normally distributed (Shapiro-Wilk test in two out

of four conditions: p < 0.05). Non-parametric Friedman ANOVA

did not reveal any differences in the Place accuracy (χ3 = 5.07,

p = 0.16).

QUALITY OF THE INTERACTION

We assessed the perceived quality of the interaction by means

of a questionnaire (Table 2). We assessed the felt agency (Q1)

over robot’s actions and no differences between experimental

conditions (Friedman ANOVA, χ3 = 3.08, p = 0.38) were found.

FIGURE 5 | Mean walking time to drive the robot from the first to the

second table and drop the bottle. Light-gray and dark-gray columns

represent Synchronous and Asynchronous footstep sound heard by

participants. Error bars represent s.e.m. Asterisk indicate significant

comparisons (p < 0.05).

Throughout all the experiment, participants did pay attention to

the images while they were controlling the robot (Q2, χ3 = 1.19,

p = 0.75) and found easy to steer HRP-2 (Q3, χ3 = 3.65, p =

0.30). Importantly, participants reported no discomfort due to

the flashing stimuli (Q4, χ3 = 1.26, p = 0.73) in any condition.

DISCUSSION

BCI systems based on MI, attentional selection (P300) or syn-

chronization of activity in the visual cortex (SSVEPs) can be

successfully used for walking and navigational purposes (for MI-

BCI see; Leeb and Pfurtscheller, 2004; Pfurtscheller et al., 2006;

Leeb et al., 2007a,b; for P300-BCI see Escolano et al., 2010; Curtin

et al., 2012; Escolano et al., 2012; Choi and Jo, 2013; for SSVEPs-

BCI see Bell et al., 2008; Prueckl and Guger, 2009; Diez et al., 2011;

Choi and Jo, 2013; Gergondet et al., 2013).

Since the SSVEPs BCI system is a rather stable one, we adopted

it to test the role of visual and auditory feedback during the

remote control of a humanoid robot (HRP-2). More specifically,

we explored whether temporal congruency of seen and heard

input can modify the ability to steer a robot and the perceived

quality of the human-robot interaction. We designed an easy way

to use graphical interface sending to participants information

about obstacles’ proximity. Participants continuously controlled

the walking directions of the robot by means of the SSVEPs flash-

ing commands. The manipulation of audio-visual feedback was

effective in modifying the participants’ performance. More specif-

ically, footstep auditory feedback delivered synchronously with

the seen robot’s steps allowed the participant to use less time for

correctly driving the robot from the first to the second table. This

effect was limited to the walking phase and did not generalize to

the total time required to complete the task. It is worth noting

that the overall time is composed of transitions autonomously

initiated by the robot and that only the walking phase required

an accurate control to turn and drive the robot to the second

table. These factors may have flattened the overall time required to

accomplish the task resulting in a non-statistical difference of the

total time between the experimental manipulations. Importantly

participants did not differ in the total number of commands and

stops sent to the robot. This indicates that participants were not

more imprecise or erroneous in sending commands to the robot

in the asynchronous relative to the synchronous condition. The

ability to efficiently decide when an action has to be performed

within a given environment may be affected by the reliabil-

ity of sensory information. Feedback uncertainty may indeed

affect this decision making process (Wolpert and Landy, 2012).

Table 2 | Participants answers to questions assessing the quality of the experience.

Sound Sync Sound Async

Mirror no-Mirror Mirror no-Mirror

Q1 I was in control of robot’s actions 66.88 ± 6.74 73.13 ± 5.08 67.50 ± 7.07 71.88 ± 5.50

Q2 I paid attention to the images displayed 71.88 ± 6.40 71.88 ± 6.54 74.38 ± 8.10 77.50 ± 7.91

Q3 It was easy to instruct the robot about the direction where to move 64.38 ± 7.99 68.75 ± 5.49 65.63 ± 10.41 62.50 ± 5.00

Q4 Looking at the flashing arrows was difficult 25.99 ± 8.02 27.50 ± 7.96 28.13 ± 9.54 28.13 ± 7.44

Numbers represent values comprised between 0 and 100 (mean ± s.e.m.)
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The sound of synchronous footsteps may have improved the

ability to decide “when” changing command. In other words, the

use of audio-visual synchrony may have helped BCI-controllers’

decisions to better coordinate the robot. This result is relevant for

current research in BCI the aim of which is to improve the human

control over artificial devices either physical (e.g., humanoids

robots) or virtual (e.g., avatars). Furthermore we showed that par-

ticipants could maximize the performance (faster walking) taking

advantage of audio-visual feedback. The observed advantage did

not parallel any change in the perceived effort as indicated by

the absence of differences in the questionnaire concerning the

synchronous vs. asynchronous experimental conditions.

Our data expand a previous study that showed that back-

ground noise did not affect the users’ BCI performance (Friedrich

et al., 2011). Indeed the overall performance (total time and place

accuracy) in the asynchronous conditions did not differ from syn-

chronous conditions. Importantly, the increased ability to move

the robot did not affect the dropping accuracy. Moreover the

mirror did influence neither the speed nor the drop accuracy sug-

gesting that spatial information from the mirror did not facilitate

dropping ability. It is worth noting, however, that participants

may need additional training or more time to actually learn to

use mirrored images for a better control of robot’s orientation

respect to the external environment. Related to this, we also note

that the relative narrow field-of-view (FOV) may indeed repre-

sent a limiting aspect of teleoperation (Gergondet et al., 2013).

FOV can affect the ability to discriminate distances and conse-

quently the ability of subjects to avoid obstacles and stop the robot

at the right distance to perform an action. Moreover we applied

recursive and enforced selection, a camera depth perception and

combined user and robot’s autonomy to facilitate the interaction

with the environment. All these advancements were implemented

in a graphical interface that allowed participants to pay attention

to the environment while controlling the robot.

Overall we obtained two main results: (i) maintaining a good

level of users’ experience and (ii) improving the navigational per-

formance. More specifically, the performance and quality of the

interaction were assessed in this study involving eight healthy

people who successfully teleoperated the robot through BCI.

Importantly it has been reported the automatic tendency of the

central nervous system to integrate tactile and auditory feedback

even when presented with a slight temporal asynchrony (Bresciani

et al., 2005). This may be in keeping with the result that in our

setup asynchronous auditory feedback did not affect the perceived

sense of agency. It is also worth noting that this result might also

have been positively influenced by the visual feedback provided

by coloring the selected command (see Graphical User Interface

section). The combination of these two factors may explain why

our participants maintained a good sense of agency throughout

the task and experimental conditions.

Finally we did not observe a learning effect as previously

reported (Gergondet et al., 2013) although the setups were differ-

ent. Participants were not faster in the last trials relative the initial

ones. This may indicate that the asynchronous auditory feed-

back may have disrupted a possible learning curve. Our results

are relevant for current BCI research in that they highlight how

congruent sensory information can improve human-machine

interaction without affecting the quality of the experience.

CONCLUSION

The continuous technological advancement in the field of

controlling external devices introduced several possibilities to

actually act on the environment through a surrogate. The

advancement of peripheral devices made possible the combina-

tion of BCI and eye tracking technologies (Zander et al., 2010;

Onose et al., 2012). Here we designed and tested an application

that used SSVEPs BCI system to decode user’s intentions. Future

works should combine EEG and eye tracker systems to integrate

robot’s navigation and action to interact in the world. An example

may be the use of eye gaze for navigation and object-integrated

SSVEPs for action. This would increase the options to perform

different actions on the same object. Eye tracker might indeed

perform a rough recognition of user’s navigational purposes and

SSVEPs, through recursive and enforced selections, might cate-

gorize the action to be executed on a specific object. This line of

improvement should also parallel the development of the same

application scenarios with more immersive systems like head

mounted displays and very immersive virtual reality experience

of the type one can experience in CAVE systems. Moreover, more

detailed questionnaire may shed new light about the feeling of

control and comfort that remote BCI users may experience during

similar human-robot interface. All in all, our data are important

for designing user-friendly interfaces that allow people who can-

not control their body anymore (e.g., spinal cord injured patients)

to re-enter to the world in the most efficient possible way.
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