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An integrated framework for humanoid embodiment with a BCI

Damien Petit1,2 Pierre Gergondet1,2 Andrea Cherubini2 Abderrahmane Kheddar1,2

Abstract— This paper presents a framework for assisting
a disabled user to control a humanoid robot with a brain-
computer interface (BCI). With our framework, the robot
can interact with the environment, or assist its user. The low
frequency and accuracy of the BCI commands is compensated
by vision tools, such as objects recognition and mapping
technics, as well as shared-control approaches. As a result, the
proposed framework offers intuitive, safe, and accurate robot
navigation towards an object or a person. The generic aspect of
the framework is demonstrated by two complex experiments,
where the user controls the robot to serve him a drink, and to
raise his arm.

I. INTRODUCTION

Assistive robotics aims at improving the life of elder
or physically disabled people in rehabilitation therapy. A
wide variety of applications involve robots aiding persons in
domestic tasks. For example, a mobile robot can be used to
socially interact with elderly people [1], or, a humanoid robot
can autonomously retrieve an object in a smart environment
on demand [2].

Brain Computer Interfaces (BCI) allow to bypass the usual
motor pathways of communication between user and assis-
tive devices, including robots [3]. Humanoid robot surrogates
controlled by such technology [4] can help users with severe
motor disabilities to regain a certain level of autonomy, by
being able to interact with the environment and other people.
Being able to control a robotic avatar and perceive the world
through and as this avatar covers the are of embodiment,
a topic which is actively studied within the FP7 European
Project VEREa within which this work takes place.

Decoding human motor intentions, in order to use them
as an input signal for the control of a robot, is a chal-
lenging and open issue. In assistive robotics, electromyog-
raphy (EMG) signals, which result from the activation of
muscles, are often used since the interpretation of motor
intention is rather accurate [5]. However, in the case of
patients with severe motor disability, EMG is not available,
thus, electroencephalography-based (EEG-based) BCI are
preferable. However the decoding of motor intentions in
EEG activity has not been achieved yet. Therefore it is
better to perform a goal-oriented control [6] using high-level
intentions recognition.

Many assistive applications have been developed using a
BCI [7]. For example, a complex gripper can be controlled
via BCI with an specifically designed user interface to realize
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a grasp [8]. Many vehicles, such as a wheelchair [9] or a
virtual plane [10], have also been controlled with a BCI.
These different works are either specialised in navigation or
interaction with objects. Instead, in our work, we propose a
vision-based semi-autonomous control framework, for real-
izing both navigation and interaction, with a BCI-controlled
humanoid robot.

Recently, we proposed a BCI-based controller enabling the
user to drive a humanoid robot to grasp a can from a desk,
and move to a table to drop the can on it [11]. With that
controller, precise positioning of the robot was impossible,
due on one hand, to the coarse control interface provided
by the BCI, and on the other, to the poor perception of
the environment that the user had through the robot camera.
Besides, the robot could only operate on rigid objects, and
did not take into account the presence of the human. In [12],
we introduced a novel navigation assistance scheme that
addressed these issues.

In this work, we present a more general framework, for
BCI-controlled task execution and human-robot interaction.
The main novelties are the generality of the framework,
that can now be used for both navigation and interaction,
and the improvement in the positioning accuracy with re-
spect to our previous work. A versatile vision system has
been developed, to generalize object recognition and pose
detection, and include human detection and segmentation.
The addition of accurate navigation, based on SLAM and
on a pose regulation controller, offers the user the choice
of a semi-autonomous control mode that guarantees precise
positioning. Finally, the immersivity of the system has been
greatly enhanced thanks to a head mounted display (HMD)
where the user can see through the robot’s “eyes” and
receive information given by the vision system. With these
fundamental contributions, it is possible to perform complex
tasks such as allowing the user to control the robot to perform
interacton with himself/herself.

The paper is organised as follows. In Sect. II, the com-
ponents of the framework and their mutual interaction are
presented. In Sect. III and IV respectively, the vision and
control methods used in this work are detailed. The experi-
ments are presented in Sect. V, and we conclude in Sect. VI.

II. FRAMEWORK PRESENTATION

In this section, we outline our framework with all the
reference frames that are used.

A. Framework

Our framework is outlined in Fig. 1. In our work, we use
the human-size humanoid robot HRP-2, remotely controlled



Fig. 1: Data flow of the complete framework.

by a user equipped with a BCI cap and with an HMD. HRP-
2 is a 32 degrees of freedom platform, equipped with four
6-axis force/torque sensors (one in each wrist and ankle),
and with an RGB-D camera (Asus Xtion) in the head. The
RGB-D images acquired by the robot are processed by the
Vision modules to localize the robot in the environment,
and to recognize and localize relevant objects (including hu-
man body parts) in the sceneb. Since the Xtion and HMD in-
trinsic parameters are known, it is straightforward to project
both the robot camera view and the recognized object models
in the HMD. The objects are displayed in the form of stimuli,
flickering at different frequencies, and related to tasks to
be realized by the robot. The User Interface display
changes according to the current state, which can be selected
by the user, or automatically triggered, e.g., by the detection
of certain objects, as will explained in the experiments.
For instance, recognized objects or directional arrows will
flicker, respectively, in object manipulation, and directional
navigation states. When the user focuses his/her attention
on a flickering stimulus, a peak of energy is observed in
the EEG power spectrum, at the corresponding frequency.
This peak is detected with an electrode cap (BCI) on the
user head, through steady state visually evoked potential
(SSVEP). The user intention output by the BCI is sent to
the Control modules, to realize the corresponding tasks
(Navigation or Interaction) with the robot. Details
on the Vision and Control modules, which represent the
major contributions of this work, will be given respectively
in Sections III and IV.

bThroughout this paper, human body parts are categorized as objects

B. Reference Frame Definitions

The reference frames used in this work are shown in
Figure 2. On the robot we consider: the RGB-D camera
frame C, the robot center of mass (CoM) frame M (with
X and Y parallel to the ground), and the robot operating
hand (left or right) frame H. In the environment, O represents
the frame linked to the target object. In the figure, we
show three possible instances for this frame: an aluminium
can B, the user forehead F, or his/her arm A. Throughout
this work, points are represented using the homogeneous
representation. Coordinate frames are defined in superscript,
such as AP, and the homogeneous transformation matrix
BTA ∈ SE (3) transforms points from frame A to B. The
transformation BTA is characterized by translation BPA =
(BXA,

BYA,
BZA) and rotation matrix BRA.

III. VISION

Several image processing modules have been integrated in
our framework to realize the different computer vision tasks
required for semi-autonomous control. Here, vision is used
to recognize and localize objects, and to localize the robot
in the environment. All the image processing modules are
detailed hereby.

A. Object recognition and localization

The Object recognition and localization
module gathers the different algorithms for identifying,
tracking and localizing objects seen by the RGB-D camera.
This module outputs the object identity

O = {B,F,A, . . . } , (1)



Fig. 2: Reference frames used in this work

and its pose in the camera frame, CTO.
Depending on the object category, three object recognition

modules have been integrated: an augmented reality tracker
for markable objects, an RGB-D tracker for 3D and texture
modelled bodies, and a cloud-based tracker for human body
parts. In the following, we detail these three algorithms.

1) Marked objects: Augmented reality (AR) markers are
used to tag certain objects in the environment. To identify
and localize the markers in RGB images, we use the ArUco
libraryc. ArUco relies on printed black and white square
fiducial markers, instead of natural textures or key points
(as in [13]), to provide a very fast, robust and accurate
pose estimate. The algorithm consists in detecting the square
contour, finding the optimal threshold in the bimodal image,
extracting the binary code, and comparing it to the known
dictionary, to infer the marker identity O. Finally, the marker
pose CTO is estimated by iteratively minimising the image
plane projection error of the four square corners, with the
Levenberg-Marquardt method. Within our framework, ArUco
is indispensable for all tasks that require precise localization
of objects that can be tagged, without excessive environment
structuring. For example, we use it to derive the human user
head position, thanks to an AR marker placed on the HMD
(see Fig. 1).

2) 3D and texture modelled objects: For all objects that
cannot be tagged, and that must be recognized by relying
only on their natural aspect, we use the Blocks World
Robotic Vision Toolbox, BLORT [14]. This provides tools
to recognize and track objects using RGB images. The
recognition is done using a priori learned Scale-Invariant
Feature Transforms along with a 3D CAD model of the
object. At run time, the object is tracked and localized
using a bootstrap filter to compare the current images with
the learned model. In our framework, we use BLORT to

cwww.uco.es/investiga/grupos/ava/node/26

recognize and localize everyday life objects (e.g. a tool or a
bottle), that must be manipulated by the robot.

3) Human body parts: Another fundamental requirement
of our framework is physical interaction between user and
robot. To this end, a body part tracker is necessary. We cannot
rely on the above approaches, since neither AR markers nor
special textures (i.e., clothes) can be applied on parts of
the user body. Moreover, skeleton trackers such as NITEd,
which require the user to be standing fully in the camera
field of view, cannot be used in our scenario, where these
assumptions may be broken, and images are shaky, due to
the camera motion.

Thus, we decided to use the PCL library [15] to recognize
body parts (e.g., the forearm, as in Fig. 1) based on a
pre-recorded template. First, we compute the normal to the
template point cloud with the Fast Library for Approximate
Nearest Neighbourse, and then the surface curvature vari-
ations with a Fast Point Feature Histogram (FPFH) [16].
Then, the body part pose is estimated by the Sample Consen-
sus Initial Alignment (SAC-IA) algorithm (also from [16]):
subsets of points are randomly selected from the currently
seen point cloud and from the pre-recorded template, and
the closest match between the two point sets is computed
via FPFH. The transformation between the two point clouds
is iteratively refined until convergence, and then used as
initial guess for an iterative closest point algorithm, that is
more accurate for estimating CTO, since there is no point
selection. SAC-IA is useful for the first step, since it is robust
to large transformations and does not need an initial guess.

B. Robot Simultaneous Localization and Mapping

To develop a semi-autonomous control strategy, that light-
ens the burden of frequent user control, precise robot lo-
calization is required. Although the navigation we seek is
target-oriented (it should drive the robot to a pose relative
to the desired object), we do not want to force the robot to
observe the target at all times. Removing this constraint will
benefit the control, since then the head and/or torso need not
be permanently servoed towards the target, and even the walk
can locally deviate, e.g., for obstacle avoidance. Therefore,
the approaches mentioned in Sect. III-A cannot be applied,
since they all require the target to stay in the camera field
of view throughout operation.

To this end, we apply the Visual Simultaneous Localiza-
tion and Mapping algorithm D6DSLAM [17] to the RGB-D
images from the on-board camera. This library unifies voxel-
based and key-frame representations, to provide real-time
mapping of the environment, along with the camera pose
in the map. As soon as the target object is recognized and
localized with any of the approaches in Sect. III-A, its pose
in the D6DSLAM map is memorized, so that CTO can be
estimated, via the camera pose, even when the object is not
visible. Currently, only this information, in the form CTO,
is input to the navigation module, although in the future,

dhttps://wiki.debian.org/PrimeSenseNite
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we plan to exploit the map, as well. The use of CTO for
Navigation is explained in the next section.

IV. CONTROL

The Control module receives the user intention and the
target object pose from the other modules, and generates the
motor commands necessary to move the robot in order to
realize the desired tasks. The module covers three aspects,
Navigation, Interaction and Task execution,
that are detailed below.

A. Navigation

The goal of the Navigation module is to drive the
robot in the environment according to the user intention
from the User Interface, and to the object pose from
Vision. The output is the robot CoM desired velocity, VM .
As is commonly done in the literature [18], we consider the
humanoid robot as a nonholonomic system, so that only its
forward linear velocity along XM , v, and angular velocity
around ZM , ω, are controlled within known bounds:

VM = [v, ω]
> ∈ [0, vm]× [−ωm, ωm] ⊂ R2. (2)

In our framework, two alternative navigation modes have
been devised: a directional mode, where the user main-
tains full control of the robot motion, and a targeted
mode, where control is shared with the robot. This second
mode is proposed to the user only if a target object has
been detected in the scene by Vision. To seamlessly switch
between the two modes, a new user command is taken into
account only when a walking step (of period dt = 0.7s) is
completed. To ensure the stability of the walk vm and ωm
are fixed respectively at 0.1 m/s and 0.15 rad/s.

1) Directional Navigation: In this mode, the user can
drive the robot forward, and turn left, right or stop, without
any assistance. This mode is particularly useful when the
user wants to explore his/her surrounding with the robot.
Four fixed directional commands can be selected in the User
Interface, via the BCI. These are:{

[v∗, 0]
>
, [0, ω∗]

>
, [0,−ω∗]> , [0, 0]

>
}
, (3)

with v∗ and ω∗ fixed hand-tuned velocities.
2) Targeted navigation: In this mode, the user indicates a

target, detected with the vision system, that he/she wants the
robot to interact with. The robot then autonomously drives
to the target. The input to this mode is the target object,
selected by the user with the BCI, and the object pose in the
camera frame, CTO, from any of the Vision algorithms.
This pose is transformed to the CoM frame, by applying
the known (via the joint values q, measured by the robot
encoders) transformation CTM :

OTM =
(
CTO

)−1 CTM . (4)

For each object, we define a desired robot pose for inter-
action, noted M∗, and characterized by OT∗M . The goal of
Targeted navigation is to drive the robot there: OTM =
OT∗M . For instance, to interact with the human left arm,
we choose the pose M∗ shown in Fig.3, with robot facing

the human left side, at a distance of 1 m. We also impose
the robot to always stay at least 1 m away from the user,
i.e., outside circle Γ of radius R = 1 m, to make him/her
comfortable. The choice R = 1 is driven by the human-
robotics proxemics research in [19].

In our previous work [12], this mode relied on several
waypoints, causing a piecewise linear trajectory, uncomfort-
able for the user. To solve this problem, a new navigation
scheme has been devised, allowing a trajectory closer to what
the user expected. This is one of the contributions of this
paper.

Fig. 3: Relevant variables used for targeted navigation.

The targeted navigation controller is composed of three
phases, listed below (all variables are shown in Fig. 3).

1) The robot pivots to face the direction towards M∗, i.e.,
to nullify error α = atan2

(
MYM∗ ,MXM∗

)
. We apply:

v1 = 0, ω1 =

{
sign(α)ωm if |α| > ωmdt,
α
dt otherwise.

(5)

2) The robot walks forward towards M∗, to nullify position
error δ = ||MPM∗ ||, while still servoing α:

v2 =

{
vm if δ > vmdt,
δ
dt otherwise,

ω2 = ω1. (6)

If the targeted object is a body part, the trajectory
obtained with controller (6) must stay outside circle
Γ. If Γ is intersected before reaching M∗, the robot
should follows it towards M∗ with ω, while maintaining
the same linear velocity v2. Naming eθ and en the
signed errors in orientation and normal with respect
to Γ (shown in Fig. 3), and κ = sign(M

∗
YM )

R the
signed desired path curvature, we apply the classical
noholonomic circle following controller from [20]:

w2 =

(
λ1en sin eθ

eθ
− λ2eθ +

κ cos eθ
1 + κen

)
v2. (7)

This controller, with properly tuned positive gains λ1,2,
guarantees local stability to the circular path. In all
experiments, we used λ1 = 10 and λ2 = 5.



Fig. 4: Consecutive phases of the first experiment: The user controls the robot to serve himself a drink.

3) Once the robot has reached the position M∗, it pivots
to align axes XM and X∗M , i.e., to nullify their relative
angle β. We apply:

v3 = 0, ω3 =

{
sign(β)ωm if |β| > ωmdt,
β
dt otherwise.

. (8)

The transition between phases are triggered when the error
norms are below given positive thresholds (e.g., |α| < τα to
go from phase 1 to phase 2).

B. Interaction

Various actions can be realized by the robot for
Interaction with the environment, and/or with the
user. We distinguish between two categories: actions
for touching/grasping objects in the environment
(e.g., touching a body part or grasping a can), and actions for
handing over objects to the user (e.g., giving
a tool). The chosen action depends on the user intention
output of the User Interface. The object pose CTO,
output by Vision, is also necessary to provide feedback
to the controller. For Interaction, we use the output of
Object Localization, since it is more accurate than
the one from Robot Localization. This requires the
object to be in the field of view of the camera. However,
this is not an issue since, when interacting with an object,
the robot is close enough to it, to have it in the camera field
of view. All Interaction actions in our framework are
realized by setting desired poses of the robot hands in the
CoM frame, MT∗H , and these are realized with the Inverse
kinematic joint controller that will be explained
just below.

The control objective, for both Object touching and
grasping, consists in regulating the robot hand on the
object, so that the two reference frames coincide, i.e.,
OT∗H = I. This is equivalent to servoing the hand so that:

MT∗H = MTC
CTO

OT∗H = MTC
CTO, (9)

with MTC derived from the encoders, as mentioned in
Sect. IV-A.2. For implementation reasons, in some cases
(shown in Sect. V), we use N intermediate way points
MT∗Hi, i = 1, . . . , N , to reach MT∗H . In the case of
grasping, the convergence to MT∗H is followed by the
hand gripper closure. Also, in some cases, the force/torque

sensor data (external wrench on the hand, expressed in
H, HFH ) is compared to a threshold τF to interrupt the
grasping/touching motion:

||HFH || > τF . (10)

Typically, when interacting with body parts, this is necessary
to realize a pleasant touch [21]. In future work, we plan to
device force feedback controllers to realize more human-like
actions.

C. Task execution

A task executor, is used to realize the operations requested
by the Navigation and Interaction modules. This
includes both making the robot walk, and controlling the
motion of its hands. To make the humanoid walk, we use
the walking pattern generator from [22], which receives the
desired speed VM , and computes the corresponding desired
foot positions. These foot positions, just like the desired hand
positions MT∗H from (9), correspond to tasks to be realized
by our inverse kinematic joint controller, the stack of tasks
(SoT, [23]). In the SoT, the tasks are defined as state error
vectors in the sensory space, and projected in the robot joint
space via the robot kinematic jacobian. The SoT ouputs the
desired joint values, q∗. This tasks function control paradigm
is well adapted here, since the explicit trajectories of the
interaction motions are unknown beforehand.

V. EXPERIMENTS

In this section, we present the experiments devised to
assess our semi-autonomous control framework in assistive
robotics scenarios. In both experiments, we rely on SSVEP
to extract the user intention from the EEG signal (measured
by eight electrodes), with up to four stimuli at frequencies
of 6 Hz, 8 Hz, 9 Hz, and 10 Hz. To validate our framework,
two challenging tasks are tackled. In a first experiment, the
user controls the robot to take a drink from a desk, carry it
through the room, and hand it to his mouth. In the second
experiment, the user steers the humanoid near himself, in
order to raise his arm. Both experiments are shown in the
video attached to this paper.

In the first experiment, shown in Fig. 4, the user controls
the robot to take a can from a desk, and carry it to his
mouth, so that he can take a sip. In this experiment, all the



computer vision algorithm are used. First, we use BLORT
to recognize the can B, and estimate its pose CTB . Once
the can is recognized and localized, a stimulus shaped as the
can model is projected on the HMD perceived by the user
(see Fig. 4.a). When the user focuses on this stimulus, and
his intention is detected by the BCI, the robot grasps the
can. Then, the user controls the robot with the directional
navigation mode described in IV-A.1, to ’look for himself’
in the environment, while the AruCo algorithm is running to
detect the marker located on the HMD he wears. To keep
the walk safe and reactive, we have set v∗ = 0.1 m/s, and
ω∗ = 0.15 rad/s. As soon as the marker is localized, the
display changes, to propose the user the various body parts
he can interact with. In this experiment, the user selects his
head F, to make the robot serve him the drink (see Fig. 4.b).
Then, targeted navigation is activated, to assist the
user in driving the robot near himself. This relies on the pose
FTM , given by D6DSLAM (see Fig. 4.c). The localization
provided by D6DSLAM proved accurate and robust enough,
in spite of the camera sway during robot walk. This is shown
by the CoM trajectory, plotted in Fig. 5, that leads to the
desired pose, while avoiding the safety circle Γ. At the end
of this phase, the robot is well placed near the user, and
the interaction phase is triggered. Precise can positioning
requires an accurate estimate of the user head. To this end,
the ArUco algorithm is used to determine, once again via
the marker on the HMD, the pose of the forehead, CTF .
Then, the hand control starts, to drive the can close to the
forehead, while accounting for the mouth and straw length
offsets. Finally, the user can drink from the can (see Fig. 4.d).

Fig. 5: Trajectory of the robot CoM in the user forehead
frame F, obtained from the encoder measures.

In the second experiment, shown in Figure 6, the user
controls the robot toward himself and uses it to raise his
forearm. The robot is driven towards the forearm using,
again, targeted navigation. The accurate forearm pose CTA

is given by the algorithm presented in III-A.3. In this case,
the robot hand motion passes through three waypoints. The
first waypoints is used to raise and orient the hand of the

Fig. 6: The user arm is grabbed and raised by himself using
the humanoid robot surrogate.

gripper without approaching the forearm. To reach the second
waypoint, the robot hand translates along the XM axis and
stops when it encounters the user forearm (i.e., when the
external wrench is above a threshold, as indicated in (10)).
Once touched, the hand gripper is closed and the robot hand
is translated upward along the ZM axis, towards the third
waypoint. After 5 seconds, the robot hand goes downward
along the ZM to the second waypoint, and the robot hand
finally returns to the first waypoint.

VI. CONCLUSION

In this paper, we have presented an integrated framework,
enabling a user to remotely control a humanoid robot with
a BCI, to assist him/her in domestic tasks. The feeling
of embodiment is given to the user via a HMD. To by-
pass the BCI bandwidth limitations, we have made the
framework semi-autonomous, by integrating various visual
object recognition and localization algorithms, and a targeted
navigation mode. To our knowledge, this is the first time
that navigation and interaction (both with the environment
objects and with the user) have been concurrently integrated
in a BCI-based framework. Future research will focus on
assessing the framework from the disabled users viewpoint,
and exploiting the environment map to improve navigation.
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