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Abstract

Background: Branch lengths are an important attribute of phylogenetic trees,
providing essential information for many studies in evolutionary biology. Yet, part
of the current methodology to reconstruct a phylogeny from genomic information
— namely supertree methods — focuses on the topology or structure of the
phylogenetic tree, rather than the evolutionary divergences associated to it.
Moreover, accurate methods to estimate branch lengths — typically based on
probabilistic analysis of a concatenated alignment — are limited by large
demands in memory and computing time, and may become impractical when the
data sets are too large.

Results: Here, we present a novel phylogenomic distance-based method, named
ERaBLE (Evolutionary Rates and Branch Length Estimation), to estimate the
branch lengths of a given reference topology, and the relative evolutionary rates
of the genes employed in the analysis. ERaBLE uses as input data a potentially
very large collection of distance matrices, where each matrix is obtained from a
different genomic region — either directly from its sequence alignment, or
indirectly from a gene tree inferred from the alignment. Our experiments show
that ERaBLE is very fast and fairly accurate when compared to other possible
approaches for the same tasks. Specifically, it efficiently and accurately deals with
large data sets, such as the OrthoMaM v8 database, composed of 6,953 exons
from up to 40 mammals.

Conclusions: ERaBLE may be used as a complement to supertree methods — or
it may provide an efficient alternative to maximum likelihood analysis of
concatenated alignments — to estimate branch lengths from phylogenomic data
sets.

Keywords: phylogenomics; supertree; branch lengths; gene rates; distance-based;
least-squares

Background

With the continuous growth of genome sequencing capabilities, phylogenetic in-
ference is increasingly based on large collections of genomic regions, if not entire
genomes [1-3]. We have entered the era of phylogenomics — the study of evolution
at a genomic scale.

New methodological challenges arise in this field. Clearly, the large amount of data
— sequences from several taxa and large collections of genes — makes computational
efficiency essential. Besides quantity, the nature of the data is also a concern, and it
is extremely important to correctly account for the distinctive features of a typical

phylogenomic data set: for example the heterogeneity in the evolution of genomic
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regions [4-9], and the fact that each region is typically sequenced in a subset of the
taxa under analysis, with only partial overlap between different subsets [10, 11].

In this paper, we focus on the problem of how to efficiently and accurately estimate
the branch lengths of a tree in a phylogenomic context, a problem for which, to date,
only computationally-intensive techniques appear to be available. Yet, evolutionary
distance information is essential to answer several important biological questions,
from molecular dating [12, 13] of events such as speciations, to the reconciliation of
gene trees with a species tree [14], or to the measure of biodiversity in conservation
biology [15]. Another goal here is the efficient estimation of the relative rates of
evolution of different genomic regions. This information — strictly linked to branch
lengths — is also very useful, for example to recognize the diverse selective pressures
acting on different parts of the genome [16, 17]. Tree inferences in a phylogenomic
context fall roughly into three frameworks: the supertree, the superalignment and
the medium-level framework. We consider them in relation to our goals of branch
length and gene rate estimation.

Supertree approaches [18, 19] combine the information from several phylogenetic
trees into a larger phylogeny. A strength of these methods is that the source trees
can come from different types of data, such as DNA or protein sequences, or even
morphological data. In a phylogenomic context, each source phylogeny is inferred
from a different locus, with standard methods such as maximum likelihood, maxi-
mum parsimony or distance-based approaches. Within this category, MRP (Matrix
Representation with Parsimony) [20, 21] and its derived methods (e.g., SuperFine
[22]) are to date the most widely used approaches. In its standard form, MRP
does not use branch length information in the source trees (if present), a limita-
tion that is shared by most supertree methods — with very few exceptions, such
as BWD (Build with Distances) [23], ACS (Average Consensus Supertree) [24] and
SDM (Super Distance Matrix) [25]. As a consequence, virtually all supertree ap-
proaches are unable to provide meaningful estimates for branch lengths (MRP may
provide branch weights, but these should be interpreted as a measure of evidence,
not evolutionary change), or any estimate at all for gene rates.

Superalignment methods are the other classical approach for phylogenomic tree
inference. They concatenate all available genomic sequence alignments into a unique
alignment (often called a character supermatriz), which is then analyzed with stan-
dard or specially-tailored phylogenetic reconstruction algorithms [26]. These meth-
ods — whose accuracy relies on the use of state-of-the-art statistical inference tech-
niques (typically maximum likelihood or Bayesian methods) — naturally model
branch lengths and across-site rate heterogeneity. However they are computation-
ally demanding, and may become impractical if computing time or memory are
limited, or when the concatenated alignment is very large. Moreover, heterogene-
ity in the evolutionary processes at different genomic regions — which is readily
handled in a supertree context — may require the use of models such as partition
models [8, 9] or mixture models [6, 7]. These models, however, further increase the
number of parameters to estimate, and consequently computational costs.

Lastly, the medium-level [25, 27, 28] framework combines the information orig-
inating from the different loci at a level that is intermediate between sequence
alignments and complete gene trees. For example, this intermediate level may con-
sist of partial trees — such as quartets [29, 30] — or pairwise distances between gene
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sequences [24, 25]. Specifically, distance-based methods naturally account for and
can estimate branch lengths, and in some cases they can even estimate gene rates
[5, 25]. Moreover, they are relatively light computationally. The method we present
here, ERaBLE (Evolutionary Rates and Branch Length Estimation), falls within
this category. Unlike other phylogenomic methods, however, its goal is not tree es-
timation, and ERaBLE should be used to complement existing approaches that do
not estimate branch lengths and/or gene rates. Alternatively, it can be used on its
own when the evolutionary relationships among the species under consideration are
largely known.

Note that distance-based phylogenomic methods such as ERaBLE, ACS [24] and
SDM [25] can be used both in the medium-level framework — when the input dis-
tances are directly estimated from genomic alignments — but also in the supertree
framework — when the input distances require prior inference of a collection of
gene trees. We will see examples of this in our experiments (Results and discussion
section).

The methodology we propose here can be seen as a generalization of classical
weighted least squares (WLS) branch length estimation, to the case where multiple
distance matrices are estimated from different genomic regions. In fact if only one
matrix is given, ERaBLE behaves exactly like WLS. WLS fits the branch lengths
of a tree T so as to make the distances between its leaves as close as possible to
i< j Wig (035 —dJ
the d;; denote the input distances, the diTj are the distances between the leaves of

the input distances. Formally, it minimises the criterion )2, where
T (determined by the lengths assigned to its branches), and the weights w;; > 0
express the confidence in the estimate d;;. When multiple distance matrices are
provided, we face the problem that, due to rate heterogeneity among the alignments,
their distances cannot readily be compared to dz; ERaBLE thus applies a rescaling
of the input distances, in order to use them for branch length estimation. Compared
to WLS, this entails surprisingly little computational overhead.

In the following, we first describe our new method and the data sets on which we
compared its performance to that of other possible approaches for the same task
(Methods section). Then, we present the results of our experiments on these data

sets (Results and discussion section).

Methods

In this paper, we assume that the analysis focuses on a collection of orthologous
genomic regions, or genes, G1,Go,. .., Gy, whose evolution mostly differs because
of rate heterogeneity. In other words, the trees describing their evolution are topo-
logically compatible [31]. This is an optimal scenario for the methods we describe
here, but it does not preclude their application to real-world datasets where this
assumption will be necessarily violated to some degree. Gene tree topological in-
compatibilities may in fact arise due to incomplete lineage sorting [32, 33|, gene
duplication and loss [34], or even lateral gene transfer (see [35] for an excellent re-
view of these phenomena). An even stronger assumption, which is useful to clarify
the meaning of branch lengths and rates at a genomic level, is that of the propor-

tional model [4, 36], which we describe further below.
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Defining phylogenomic branch lengths

The length of branch e in the gene tree for Gy, denoted here b.(gk), generally represents
the average (or expected) number of substitutions per site, occurred between the
endpoints of e. If we let x and y denote these endpoints, we can rewrite this as:

(k)

p(k) — Szy 1
e Nk I ( )

where si’j) is the (expected) number of substitutions in G} occurred between = and
y, and Ny, is the sequence length of gene Gj.

We wish to give the same meaning to the branch lengths of the phylogenomic (or
species) tree representing the evolution of genes G1,Ga,..., Gy, If we define the
length of branch e in this tree as the average (or expected) number of substitutions
per site between its endpoints = and y, we then have:

>y
b= (2)
> N

k=1

This definition determines the relationship between the branch lengths in the species
tree and those in the gene trees. If we let N = "7 | Nj, and use equation (1), then
equation (2) can be rewritten as:

1 «— ,
be = > N (3)
k=1

In other words, branch length b. in the species tree is equal to an average of the
corresponding branch lengths bék) in the gene trees, weighted by the lengths of the
gene sequences.

Note that in this paper we assume that genes are sampled in different, partially
overlapping sets of taxa, meaning that a branch in a gene tree will in general corre-
spond to a path in the species tree. Thus, in equation (3), and in the equations that

)

follow, it is more accurate to interpret b, and bgk as lengths of paths connecting

the same nodes across all trees, depending on the taxa sampled for each gene.

The proportional model

In order to provide a stronger link among branch lengths in gene trees and in the
species tree, and to set a meaningful scale for the gene rate estimates, we now intro-
duce the proportional model [4, 36], an implicit assumption of many phylogenomics
methods [4, 5, 36], including ours. This model assumes that each gene G}, induces
the same tree up to a multiplicative constant for branch lengths, ry, representing
its evolutionary rate (and up to removal of branches leading to taxa for which Gy,
is not sampled). In other words, if we let bgk) denote the length of a branch e (or a
path, see above) in the gene tree for Gy, then

o)

—~ is constant for all k = 1,...,m. (4)
Tk
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This model is a rough approximation of biological reality, as typically the relative
values of the gene rates r1,79,...,7, may vary over time — a phenomenon known
as heterotachy [37]. Nevertheless, this simple model greatly restricts the number of
parameters to estimate and leads to robust analyses.

The proportional model, as specified by equation (4), defines relative rates, that
is, it determines r; up to a multiplicative constant. Here, we take rp as the rate of
Gy, relative to the “phylogenomic rate”, that is, we require r = bgk) /be. Equation
(3) then implies that the weighted average of gene rates must be 1. In fact, by
substituting b with r1b. into equation (3), and dividing both sides by b., we
obtain:

1 m
NZNkrk =1. (5)
k=1

We will use this equation later on, to set a meaningful scale for the gene rates
output by our method (and others). The same rescaling will be applied to the
returned branch lengths, as they are strictly linked to the rates.

The ERaBLE method

The new method presented here, ERaBLE ( Evolutionary Rates and Branch Length
Estimation), simultaneously estimates gene rates and the branch lengths of a phy-
logenomic tree of given topology, using a collection of distance matrices — one
distance matrix per gene Gy. As we illustrate in our experiments (Results section),
these distance matrices can either be directly estimated from pairwise alignments of
the gene sequences, or they can be calculated from gene trees inferred for each Gy.
A C++ implementation of ERaBLE is available on the web at http://www.atgc-
montpellier.fr/erable/.

Let Ly designate the set of taxa for which the sequence of G is available. For
i,j € Ly, let then 55;?) denote the input distance for gene Gy between taxa ¢ and
j. Given a tree topology 7 with leaves labelled by the taxa in L = (J;-, L, the
goal is to estimate the branch lengths of 7 and the evolutionary rates of the m
genes under consideration. 7 can either reflect a well-known phylogeny for the taxa
in L, or it can be inferred prior to ERaBLE’s execution, for example using MRP
or other supertree methods. We do not make any assumption on the degree of
overlap between the taxon sets Lj. Extremely sparse data sets may not determine
a unique optimal solution to our estimation problem, but this does not prevent the
application of ERaBLE.

Now let b. denote the estimated length for branch e. This determines the additive
distance a?ij between any two taxa i and j, simply defined as the sum of the be for
all e in the path between i and j in 7. For mathematical convenience, we choose
to estimate the inverses of gene rates: we refer to &y, the estimate for 1/ry, as the
scale factor of gene Gi. ERaBLE thus seeks the values of be, for all branches in 7T,
and of &y, for k =1,2,...,m, that solve the following optimization problem:

minimize dlA) Z Z (k) aké(k) Aij)27
k=1{i,j}CLy (6)

m

subject to Z Zrp = Z Zy,.
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ERaBLE can efficiently solve this problem for any choice of positive values for wz(jk)
and Zj. Below, we explain the rationale behind the objective function Q(&,b) and
the constraint in problem (6), and provide practical choices for wZ(Jk) and Zj. Then,
we briefly describe the algorithm that allows ERaBLE to efficiently solve problem
(6). Details are provided in Additional file 1. Lastly, we show how to rescale the
optimal values for be and A, so that they comply with their definitions in equations
(3) and (5).

The objective function. As predicted by the proportional model, we would
like the distances in the phylogenomic tree to be approximately equal to the gene-
specific distances, up to the multiplicative factor 7. Thus, we would like to set the

l;e and &y, so that:

5(’“)

dij ~ ;2 ~ dkéz(f) forall k € {1,2,...,m} and i,j € Ly.

The optimisation criterion Q(&, 3) provides a score for the discrepancy between the

dAij and the scaled distances dkél(f). It is a WLS criterion, where wl(]?) is a strictly

J
positive weight indicating the confidence given to the distance estimate (53?), and
which ideally is inversely proportional to its variance. In our experiments, we have
(k)
ij
for gene Gy), but ERaBLE is capable of using more sophisticated weightings (e.g.,
[5, 38]).

WLS is a special case of GLS, a class of criteria that account for the covariances

chosen the simple approach of setting w,;;’ = N (i.e., the length of the alignment

between the 51(5 ), However, GLS criteria are rarely used for phylogenetic inference,
because of the computational complexity of optimizing them, and because of the
difficulty of evaluating the covariances. WLS is a good compromise, and it is notably
used in the well-known algorithm of Fitch and Margoliash [39] and in FastME [40].

Criterion Q(, b) is similar to those by Bevan et al. [5] and Criscuolo et al. [25]. The
optimisation problems in these papers, however, seek optimal values for ciij directly,
without assuming any relationship between these distances and a tree (namely
without assuming additivity). ERaBLE, instead, assumes a particular topology T,
and constrains the distances a@-j to be additive with respect to 7, meaning that its
problem unknowns are the branch lengths in 7.

The constraint. Q(&,B) is trivially minimized by setting all &; = 0, and all
be = 0. In order to obtain more meaningful solutions, while ensuring mathematical
tractability, we adopt a linear constraint over the dy: the constraint in (6) is in
fact the most general form for such a linear constraint. In Additional file 1, we
show that the right-hand side in this constraint is irrelevant to the end results, as
it only determines their scale, which is subsequently reset by the step described in
Rescaling the outputs below.

As to the choice for Z, the two simplest approaches are to set Z =1 [4, 25] or
Z), = Nj. The latter results in a constraint that is similar in spirit to equation (5)
above, as it constrains more strongly the rates (or more precisely their inverses) of
long genes. However, our experiments have shown that both these approaches can
incur in significant over-estimation of the scale factors &; for genes appearing in a
small subset Ly, of closely related taxa. In Additional file 2, we show a small example

Page 6 of 25



Binet et al.

where the reasons for this are evident. In order to deal with this problem, we have
chosen to set Z, = N >, jeLn

the same time puts a stronger constraint on the scale factors of long genes — like (5)

5£f) in all the experiments below, an approach that at

above — and that we have experimentally verified to largely fix the over-estimation
problem for the d;.

Solving the problem. The one in (6) is a classic quadratic programming problem,
which can be solved using Lagrange multipliers [41]. As we show in Additional file
1, this yields a system of O(n + m) linear equations in O(n + m) unknowns (all
the b, and the &y ), where n is the number of taxa in L, and m is the number of
genes. Calculating naively the coefficients of this system and solving it would require
O(mn*+ (n+m)3) time and O((n +m)?) auxiliary memory (i.e., not including the
memory to store the input), but careful adaptation of techniques for WLS branch
length calculation [5, 42, 43] leads to a reduction of the algorithm’s complexity
to O(mn? + n3) time and O(mn + n?) auxiliary memory. In Additional file 1, we
describe this algorithm in detail.

Given that problem (6) can be seen as a generalization, for several distance ma-
trices, of standard WLS branch length estimation, it is interesting to note that, for
m = O(n), their computational complexities coincide — as standard WLS requires
O(n?) time and O(n?) memory [42]. If instead m >> n, which is the most common
scenario in phylogenomics, an attractive aspect of ERaBLE is that its complexity
grows linearly in m, which makes it particularly suited to analyze phylogenomic data
sets from large collections of genes (typically several thousands) sampled across a
moderate number of taxa (few hundreds at most). This is indeed the scenario that
we have tested in the experiments in the Results and discussion section, where m
varies from 500 to about 7,000 and n = 40.

Finally, we remark that for some data sets the optimal solution of problem (6)
may not be unique. This can happen when some pairs of taxa do not co-occur in any
input distance matrix (note that this is a necessary but not sufficient condition for
multiplicity of solutions). All such cases are recognized by ERaBLE, and the user is
notified of the existence of multiple alternative solutions beyond the one returned.

Rescaling the outputs. Equation (5) shows that, as a consequence of their
definition, the gene rates should have a weighted average of 1. We thus require that
the estimated rates also satisfy this property, meaning that we need to rescale the
Gy, so that the inverses of the new scale factors satisfy equation (5). In other words,
we multiply the dj obtained by solving problem (6) by a correction factor ¢ such
that

1 &~ N,
_ =1
N;C~dk

By solving this equation for ¢, we obtain:

jo3

1 o= N,
_ L 7
¢ Nkzz1 . (7)
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Moreover, note that in order for cfij ~c- dkéz(f) to still hold, the same rescaling by
c must be applied to the estimated branch lengths. In conclusion, ERaBLE returns:

1
C- O

and c-Be

as estimates of ry and b, — the rate of gene Gy, and the phylogenomic length of
branch e, respectively.

Other phylogenomic distance-based methods

In our experiments, we have compared ERaBLE to a number of other approaches
that bioinformaticians and evolutionary biologists may adopt in order to estimate
gene rates and the branch lengths of a species tree in a phylogenomic context. These
approaches are implemented as analysis pipelines, and described in detail in the
Results and discussion section. While some of these pipelines implement standard
techniques such as maximum-likelihood or distance-based analysis of a concatenated
alignment, most pipelines are based on two phylogenomic distance-based methods
that we now describe.

SDM (Super Distance Matrix) [25] has the objective to construct a distance
matrix summarizing the topological signal in a collection of gene-specific distance
matrices. This “average” matrix can then be used to infer a phylogenomic tree, using
distance-based methods based on a single matrix. SDM applies two transformations
to the input matrices — it multiplies each of them by a scale factor, and adds a
scalar to each column and row (thus extending or shrinking external branches in
the underlying gene tree) — with the goal of bringing them as close as possible
to each other. The matrices thus obtained are then averaged to obtain a matrix
that can then be analyzed with other distance-based methods. Our experiments use
SDM*, a variant of SDM that only applies the scale factor transformation to the
input matrices, which avoids altering the ratio between the lengths of internal and
external branches in the reconstructed tree. We note that the implementation of
SDM* includes a preprocessing step that corrects the input matrices to make them
satisfy the triangle inequality. Since this step, as expected, affected negatively the
estimation of branch lengths (but helps that of the tree topology), we removed it
from the original code. In our experiments, the average matrix produced by SDM*
is used to estimate the branch lengths of a fixed topology T using standard OLS,
and gene rate estimates are obtained by taking the inverses of the scale factors
returned by SDM*. Average distances and scale factors are rescaled as described for
ERaBLE, that is, multiplied by the correction factor ¢ in equation (7) above.

DistR [5] was conceived to estimate gene rates from a collection of distance ma-
trices, and from the alignments used to calculate the distances. DistR uses the
alignments to approximate the variances of the input distances, with the classical
formulae by Bulmer [38]. These variances are then used in a distance-based opti-
mization problem akin to that solved by SDM* — the main difference being the
constraint on the scale of the results. DistR returns estimates for the gene rates,
and, as a byproduct, a distance matrix that we use to estimate the branch lengths
of a fixed topology 7 using standard OLS, as done for SDM*. No rescaling of the
outputs was conducted for DistR, as it automatically produces rates and distances
at a meaningful scale.
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Data sets

In this section, we describe the data sets that we have used in our experiments to
evaluate the performance of ERaBLE and competing methods. The first data set
consists of 500 simulated replicates: for each replicate, we take a random tree over
40 taxa, and for each tree we simulate sequence data for 500 genes, which are only
present in a random subset of taxa, and evolve at different rates. The second data
set consists of the 6,953 exon alignments for 40 mammals in OrthoMaM v8 [44].
Detailed descriptions follow.

Simulated data. Each of the 500 replicates is obtained as follows.

o Gene trees. A tree TV is taken randomly (without replacement) from the 5,000
trees on n = 40 taxa in the original test data set for PhyML [45]. This tree is
then rescaled to a total branch length of 1, by dividing all branch lengths by
their sum. Call the resulting tree T'. We then construct m = 500 gene trees
Ti,..., T, by multiplying the lengths of all the branches in T by factors
t1,...,t, randomly drawn from a continuous uniform distribution on the
interval [0.4,9]. This interval gives biologically realistic branch lengths [45].

e Sequence generation. For each gene tree T}, we generate a DNA alignment
consisting of n = 40 sequences of length Ny, where N is an integer drawn
uniformly from the interval [200, 600]. We chose relatively short sequences to
avoid making the simulated data sets too informative, so as to be able to
discriminate among the estimation accuracies of the methods tested. Each
alignment is generated with Seq-Gen [46], using T} and the model K2P+T,
with ratio between transition and transversion rates R = 2 (equivalent to
k =4 [47, Sec. 1.2.4]) and with a continuous gamma distribution with shape
parameter 1, to model rate heterogeneity across sites.

e Missing data. To simulate the partial overlap in the gene presence/absence
patterns typical of real data sets, for each alignment we randomly remove a
number of sequences. More precisely, for each of the m alignments generated
in the previous step, we draw a parameter p uniformly between 0 and 1, and
then we suppress each sequence with probability p. If the number of remaining
sequences in Ly is less than 4, then we leave 4 sequences chosen randomly out
of the 40, so as to guarantee a minimum amount of data to estimate the rate
for that gene.

o Model tree definition. We call the tree that we wish to reconstruct the “model
tree”, and we denote it by 7. Clearly, 7 must be the same as 7° and T,
up to their scale, and up to the removal of the taxa missing from all the
simulated alignments. In order to define the correct scale of the model tree,
we define tree T2, with the same topology as 70 and T, and branch lengths
defined by b, = & S | Nt where b denotes the length of e in Ty, and
N =>"/", Ni. Note that this is the same as equation (3), whose justification
is amply given above. Finally, we obtain the model tree T by taking the
restriction of 72 on the set of taxa L = |J;", L.

o Model rates definition. Similarly to the model tree, the “model gene rates”
must be the same as t1,...,t,, up to their scale. The absolute values of

t1,...,tm are in fact unrecoverable from the data. By imposing equation (5)
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to the rescaled rates, we must have:

tr 1 &
Tk = =, whereF:—Zthk.
F Nk:1

OrthoMaM data set. OrthoMaM (v8) [44] consists of a collection of single-copy
orthologous phylogenetic markers, selected among the genomes of the 40 mammals
in the Ensembl v73 database [48]. We downloaded the entire set of the 6,953 nu-
cleotide exon alignments in OrthoMaM v8, filtered with trimAl [49]. Alignment
lengths Ny range from 231 to 17,103 (median: 702), and each alignment contains a
variable subset Ly of taxa, with 4 < |Ly| < 40 (median: 27).

Results and discussion

In order to compare the performance of ERaBLE to that of other approaches,
we have conducted a number of experiments on the data sets described in the
Methods section. For each of the 500 simulated replicates and for the OrthoMaM
data set, we compare the branch length and gene rate estimates obtained by a
number of competing approaches, including ERaBLE. For the OrthoMaM data set
(6,953 genes), which is an order of magnitude larger than the simulated replicates
(500 genes), we also compare their running times and memory usage.

Since, to the best of our knowledge, no tool is readily available for the simulta-
neous estimation of branch lengths and gene rates in a phylogenomic context, for
our comparisons we have assembled a number of pipelines from existing methods.
Besides ERaBLE, these methods include SDM* [25] and DistR [5], which however
were conceived for other tasks than ours. We refer to the Methods for a brief de-
scription of how we adapted these tools to our goals. We describe the pipelines
below.

Analysis protocol

The OrthoMaM data set and each replicate in the simulated data set have the same
structure: they consist of m gene alignments Aq, As, ..., A, over the taxon sets
Ly, Ls, ..., Ly (m = 500 for the simulated data sets, m = 6,953 for OrthoMaM).
In addition to these inputs, the tested methods are also provided with a reference

w1 Li, to which they aim to assign branch

topology T, over the set of taxa L =
lengths. For simulated data, 7 is the topology of the model tree T, whereas for
OrthoMaM T is the mammalian tree topology in Additional file 5. The outputs are
a tree estimate 7' with topology 7T, and gene rate estimates 71, ..., .

The tested methods are classified in the three frameworks described in the Back-
ground section: supertree, superalignment and medium-level. Note that for distance
estimation, as well as for maximum likelihood (ML) tree reconstruction, we use the
model TN93+T, as it is the most complex nucleotide substitution model for which
an analytic formula for pairwise distance estimation is available. In the following,
we denote by I'. the continuous Gamma distribution used for pairwise distance es-
timation, and by I's the discrete Gamma distribution based on 8 categories, which
we adopt for ML tree inference. Also note that for pairwise distance estimation, the
shape parameter for the Gamma distribution cannot be estimated from the data,
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and thus must be set to a realistic value by the user [47] (more detail on this point
below). All tested methods are depicted schematically in Fig. 1 and their names
together with short descriptions can be found in Table 1. A detailed description

follows.
Supertree methods T
_ OLS R
Dgpy- TspM*add
1,72, ooy P
SDM*
T
\\ ERaBLEadd G
Dy,Ds,...,D,, >73 ; ;
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Figure 1 Pipelines of the analyses applied to both data sets, represented as flowcharts. We refer
to the Analysis protocol subsection for a detailed description of each analysis method.

Supertree methods. For each alignment A, we infer a gene tree T), with PhyML
[45, 50], using the model TN93+T's. The shape parameter for the Gamma distribu-
tion is set to 1 for the simulated data sets (that is, the value used to generate the
data), and left free to estimate for the OrthoMaM data set. Unless otherwise stated,
in the following experiments PhyML is free to estimate the topology of Ty, which
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is realistic when gene trees are inferred as part of a separate analysis, for example
to provide the input for supertree topology reconstruction. In other experiments,
we have constrained PhyML to reconstruct gene trees of topology agreeing with T,
an approach that significantly reduces running times. (More precisely, the topology
of T}, is constrained to be the restriction of 7 to Ly.) This is the correct way to
proceed when the only goal is the estimation of branch lengths in a reference tree.
We will come back on this second approach when comparing the computational
efficiencies of the methods tested.

Standard supertree methods, such as MRP [20, 21], would then only consider the
topologies of the inferred gene trees T 1,T2, . ,Tm, but this makes it impossible
to estimate branch lengths for the phylogenomic tree. In order to conserve branch
length information, we construct the additive distance matrices Dy, D3, ..., Dy,
corresponding to these gene trees — that is, the distance between taxa ¢ and j in
Dy, equals the sum of the lengths of the branches between i and j in T}.. Note that,
as additive distances uniquely determine a tree [51], Dy, can just be interpreted as
a different representation for Ty. We test three methods based on these additive
matrices (hence “add” in their names).

o SDM*add. We run SDM* on D1, Ds, ..., Dy, with Dy weighted by the align-
ment length Ni. The average matrix and scale factors thus obtained are then
multiplied by the scaling factor ¢ in equation (7), thus giving a scaled average
matrix Dgpm+, and gene rate estimates (the inverses of the resulting scale
factors). Finally, on the basis of Dgpy+ we assign OLS branch lengths to the
reference topology 7, using FastME [40].

e DistRadd. We run DistR on Dy, Ds,..., Dy, (and Ay, Ay, ..., Ap,), thus ob-
taining gene rate estimates and an average matrix Dpisr. The latter is then
used to assign OLS branch lengths to 7, with FastME.

e FRaBLFEadd. We run ERaBLE on D1, Do, ..., D,, and T, with the weighings
for wgf) and Zj described in the Methods section. ERaBLE directly provides
gene rate estimates and branch length estimates for 7.

Note that it is problematic to evaluate the variances of the distances computed by
SDM* and DistR (those in Dspy+ and Dpjgir, respectively). This is why we used
OLS branch length estimation for the last step in SDM*add and DistRadd.

Medium-level methods. From each alignment Ay, we estimate a distance matrix
Ay, using FastME [40] with the model TN93+4-T'... Note that estimation of the shape
parameter for the Gamma distribution would require joint comparison of multiple
sequences [47], but here we only use pairwise comparisons. Thus, we set the shape
parameter to 1 for the simulated data sets (that is, the value used to generate the
data), and to 0.5 for the OrthoMaM data set, as we consider this as a realistic
estimate for mammals. (E.g., the median shape parameter estimated by PhyML
when inferring the OrthoMaM gene trees is 0.493.) We test three methods identical
to those described above for supertree methods, except that they use the estimated
matrices Ay, Ao, ..., A, instead of the additive matrices deriving from the ML
gene trees. We call these methods SDM*, DistR and FRaBLE. (See again Fig. 1.)

Superalignment methods. Let Agyp denote the alignment obtained by con-
catenating Ay, ..., A,,. We test two methods based on Agyp.
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o Concat+ML. We assign branch lengths to the reference topology 7 by run-
ning topology-constrained PhyML on Agyp, with the model TN93+I's. We
call the resulting tree TCO”MH m - Here the shape parameter for the Gamma
distribution is left free to estimate. In fact, even though for each gene align-
ment A, taken separately we may set this parameter to 1 for the simulated
data, or to 0.5 for OrthoMaM, these values cannot be used on the concatena-
tion Agyp. This is because the alignments Aq, Ao, ..., A,, derive from trees
at different scales, meaning that rate variation in Asyp will be larger than
that on a single A, and the shape parameters smaller (PhyML estimates
0.487 for OrthoMaM, and 0.7 on average for the simulated data). As to gene
rate estimates, 75 is then obtained as the ratio between the total length of the
ML gene tree T}, (a source tree for supertree methods) and the total length
of the tree that is obtained from Tconcat+ML by taking its restriction to L.
For OrthoMaM, which, unlike the simulated data set, does not have model
gene rates and a model tree, we take the outputs of this method as reference.
The choice of PhyML over more computationally efficient alternatives is due
to its greater availability of models, which may entail better accuracy. (See
also Additional file 7, where we report about the effects of using alternative
ML methods in our experiments.)

o Concat+Dist. From Agyp, we estimate a distance matrix Agyp, using
FastME with the model TN93+4T'.. The shape parameter for the Gamma
distribution is set to the value estimated above by PhyML on Agyp. Then,
on the basis of Agyp, we assign OLS branch lengths to the reference topology
T, using FastME. Call the resulting tree Tconcat+ Dist- Finally, in order to es-
timate gene rates, we use the same procedure as that for Concat+ML, but in a
distance-based context: 7 is obtained as the ratio between the total length of
a distance-based gene tree T,‘f and the length of the restriction of TOoncat+ Dist

to L. Distance-based gene trees Tld, e ﬂi‘fi are obtained from the estimated
distance matrices Ay, ..., A,, using FastME with default options.

Table 1 Names and short descriptions of the methods tested.

Name Brief description

Concat+Dist Distance-based analysis of the concatenated alignment
Concat+ML ML analysis of the concatenated alignment

SDM*add SDM* run on the gene tree distance matrices (+ post-processing)
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