Distributed MCMC inference for Bayesian Non-Parametric Latent Block Model
Abstract
In this paper, we introduce a novel Distributed Markov Chain Monte Carlo (MCMC) inference method for the Bayesian Non-Parametric Latent Block Model (DisNPLBM), employing the Master/Worker architecture. Our non-parametric co-clustering algorithm divides observations and features into partitions using latent multivariate Gaussian block distributions. The rows are evenly distributed among workers, which exclusively communicate with the master and not among themselves. DisNPLBM demonstrates its impact on cluster labeling accuracy and execution times through experimental results. Moreover, we present a real-use case applying our approach to co-cluster gene expression data. The code source is publicly available at https://github.com/redakhoufache/Distributed-NPLBM.
Origin | Files produced by the author(s) |
---|