Parametric Semidefinite Programming: Geometry of the Trajectory of Solutions - LAAS-Décision et Optimisation
Pré-Publication, Document De Travail Année : 2024

Parametric Semidefinite Programming: Geometry of the Trajectory of Solutions

Résumé

In many applications, solutions of convex optimization problems are updated on-line, as functions of time. In this paper, we consider parametric semidefinite programs, which are linear optimization problems in the semidefinite cone whose coefficients (input data) depend on a time parameter. We are interested in the geometry of the solution (output data) trajectory, defined as the set of solutions depending on the parameter. We propose an exhaustive description of the geometry of the solution trajectory. As our main result, we show that only six distinct behaviors can be observed at a neighborhood of a given point along the solution trajectory. Each possible behavior is then illustrated by an example.
Fichier principal
Vignette du fichier
arxiv_version.pdf (3.08 Mo) Télécharger le fichier
example_1.png (1.04 Mo) Télécharger le fichier
example_2.png (964.09 Ko) Télécharger le fichier
example_3.png (641.49 Ko) Télécharger le fichier
example_4a.png (139.65 Ko) Télécharger le fichier
example_4b.png (60.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03196925 , version 1 (13-04-2021)
hal-03196925 , version 2 (17-03-2022)
hal-03196925 , version 3 (30-10-2024)

Identifiants

Citer

Antonio Bellon, Didier Henrion, Vyacheslav Kungurtsev, Jakub Mareček. Parametric Semidefinite Programming: Geometry of the Trajectory of Solutions. 2024. ⟨hal-03196925v3⟩
153 Consultations
79 Téléchargements

Altmetric

Partager

More