Article Dans Une Revue Discrete and Computational Geometry Année : 2023

Deformed graphical zonotopes

Résumé

We study deformations of graphical zonotopes. Deformations of the classical permutahedron (which is the graphical zonotope of the complete graph) have been intensively studied in recent years under the name of generalized permutahedra. We provide an irredundant description of the deformation cone of the graphical zonotope associated to a graph G, consisting of independent equations defining its linear span (in terms of non-cliques of G) and of the inequalities defining its facets (in terms of common neighbors of neighbors in G). In particular, we deduce that the faces of the standard simplex corresponding to induced cliques in G form a linear basis of the deformation cone, and that the deformation cone is simplicial if and only if G is triangle-free.
Fichier principal
Vignette du fichier
s00454-023-00586-x.pdf (2.89 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-03788987 , version 1 (11-09-2024)

Licence

Identifiants

Citer

Arnau Padrol, Vincent Pilaud, Germain Poullot. Deformed graphical zonotopes. Discrete and Computational Geometry, 2023, ⟨10.1007/s00454-023-00586-x⟩. ⟨hal-03788987⟩
97 Consultations
10 Téléchargements

Altmetric

Partager

More