Maximum Symmetrical Split of Molecular Graphs.
Application to Organic Synthesis Design

Philippe Vismara,*§, Claude Laurenço*‡ and Yannic Tognetti,†

ABSTRACT: Whereas the potential symmetry of a molecule may be a feature of importance in synthesis design, this one is often difficult to detect visually in the structural formula. In the present article we describe an efficient algorithm for the perception of this molecular property. We have addressed this problem in terms of graph theory and defined it as the Maximum Symmetrical Split of a molecular graph. A solution is obtained by deleting in such a graph a minimum number of edges and vertices so that the resulting subgraph consists of exactly two isomorphic connected components that correspond to a pair of synthetically equivalent synthons. In view to reduce the search space of the problem, we have based our algorithm on CSP techniques. In this study we have found that the maximum symmetrical split is an original kind of Constraint Satisfaction Problem. The algorithm has been implemented into the RESYN_Assistant system and its performance has been tested on a set of varied molecules which were the targets of previously published synthetic studies. The results show that potential symmetry is perceived quickly and efficiently by the program. The graphical display of this perception information may help a chemist to design reflexive or highly convergent syntheses.

INTRODUCTION

Short solutions are best, this common sense principle has found obvious applications in organic synthesis design. Ideally, a synthesis should make a target molecule from readily available starting materials in one step and in quantitative yield. However, such an ideal synthesis is unlikely to be practical and remains a formidable challenge in case of complex molecules. As most syntheses are in fact multistep processes, the practitioners want to minimize the number of steps so as to approach the ideal synthesis, and any progress in synthesis strategy occurs when they are able to devise new plans shorter or simpler than the previous ones.

Velluz et al. have stated that two types of multistep synthesis, linear and convergent, must be considered from the economical viewpoint. In the former a target molecule is assembled by
stepwise adding small building blocks in a linear reaction sequence. In the latter the two or more direct precursors of a target are built independently, and they react together in the last step of the synthesis to give the desired molecule. The reaction sequence of a convergent synthesis is branched and its longest path from starting materials to the target molecule is necessarily shorter than the one of the reaction sequence of a linear synthesis of the same number of steps (Figure 1). This has an impact on the cost of synthesis in terms of yield, time and manpower.

![Figure 1. Convergent vs linear synthetic plans.](image)

Convergency was formalized by Hendrickson\(^4\) who has introduced a graph-theoretical index to evaluate and compare linear, convergent and intermediate synthetic plans. The simplest way to develop a convergent plan is to disconnect retrosynthetically bonds in the middle of the target structure. Such disconnections divide the structure into two fragments – synthons\(^5\) – which may be similar in size, composition, constitution or structure. An optimal result occurs when the target structure is symmetric. In this case both fragments are identical and do not require to be separately prepared. A convergent synthesis which takes advantage of this symmetry by reducing the work at bench has been called a reflexive synthesis by Bertz.\(^6\) For example, the \(C_2\)-symmetric structure of \(\beta\)-carotene may be disconnected at its central double bond, according to disconnection a in Figure 2. This disconnection suggests a coupling strategy (\(C_{20} + C_{20}\)) involving two identical fragments which correspond to vitamin \(A_1\) derivatives. The route reported by McMurry and Fleming\(^7\) is an illustration of the effectiveness of this strategy. It is interesting to note that the symmetric structure of \(\beta\)-carotene allows to devise other strategies, in particular related to simultaneous disconnection of two symmetric bonds of the polyenic chain. Many combinations of three fragments have been studied. As an example, a triply convergent synthesis based on a \((C_{14} + C_{12} + C_{14})\) strategy, according to disconnections b and \(b'\) in Figure 2, has recently been reported by Vaz et al.\(^8\)

![Figure 2. Two strategies based on symmetry for \(\beta\)-carotene synthesis.](image)

In his seminal article “General Methods for the Construction of Complex Molecules”, Corey\(^9\) has pointed out that the analysis of potential, as well as actual, molecular symmetry can be of
importance in solving a synthetic problem. As defined by Corey, a molecule may be said to possess potential symmetry when it can be disconnected to give a symmetrical structure or two or more synthetically equivalent structures. A classical example is given by usnic acid which is unsymmetrical but which can be prepared by an o,p-coupling of two phenoxy radicals, both deriving from a same phenol (Figure 3) as in Barton’s synthesis.\(^\text{10}\)

![Figure 3. Barton’s synthesis of usnic acid.](image)

Potential symmetry is frequently present in natural products but not so easily perceived. For example, designing a reflexive synthesis of carpanone like Chapman’s\(^\text{11}\) is not obvious (Figure 4).

![Figure 4. Chapman’s synthesis of carpanone.](image)

An attempt was made in 1986 to incorporate a strategy based on potential symmetry into the LHASA retrosynthetic analysis program.\(^\text{12,13}\) The new strategy module was derived from a preceding one developed to incorporate a starting-material oriented strategy.\(^\text{14}\) That new module was able to propose changes, in terms of retrosynthetic goals such as carbon-carbon bond disconnections and functional group transformations, which were needed to symmetrize the molecular graph of a target structure. Nevertheless, the program was confronted with a combinatorial problem in the case of complex targets, erythronolide A for example (cf. Figure 20), and then generated a large number of results without finding any acceptable solutions. The main reason for this pitfall was that no algorithms were devised specifically to solve the potential symmetry problem. Instead the implemented algorithms were adapted from those developed for mapping the starting material and target structures,\(^\text{15}\) which is a related but different problem. Later, a genetic algorithm was used to solve the Maximum Common Subgraph (MCS) problem and a few examples were shown of its application in potential symmetry perception.\(^\text{16}\) Such a non-deterministic approach may give good results but cannot guarantee that the optimum solution will be got.\(^\text{17}\) This has led us to re-examine this problem and solve it by following a new deterministic way based on the CSP (Constraint Satisfaction Problem). The algorithm we devised has been implemented into our RESYN Assistant system, a software for computer-aided understanding of organic synthesis problems.\(^\text{18}\) For a given molecule, as the potential symmetry of substances has its origin mainly in dimerizations of others, this algorithm allows the system to display the bond disconnections and atom deletions that would give pairs of the largest equivalent synthons. Several maximum solutions may exist, each resulting from splitting the molecular graph of the target into two isomorphic parts.
If we consider a molecular graph $G=(V, E)$, labeled on the vertices and edges with atom and bond types respectively, this Maximum Symmetrical Split problem can be defined as follows:

Problem 1. Delete in G a minimum number of edges and vertices so that the resulting subgraph consists of exactly two isomorphic connected components.

A major point of this definition is that the two components resulting from the split must be connected since they represent synthons. Although maximal unconnected splits larger than a maximum connected one can be found, there is no relationship between these two kinds of splits and the former are generally not significant from the viewpoint of retrosynthesis. Another point is that the isomorphism between the two components should preserve the labeling of the molecular graph. This last constraint, however, may limit the size of the components and has to be loosened in part to get larger ones. These two points are illustrated in Figure 5. In this example, the split is done on an abstract molecular graph in which all bond types are symbolized by a general label, precisely a single line; stereochemistry is omitted too. Of course, in such a case, refunctonalizations will have to be performed in order to take advantage of reflexivity, i.e. to find a single precursor of the target from the pair of synthons. In fact, an evaluation of the solutions may apply other criteria than the sizes of the components. The number and nature of the refunctonalizations as well as the number, types and positions of the bonds being disconnected in the molecular graph can be taken into account. Then, a smaller solution may be preferred when these criteria are more favorable to it. On the other hand, if these criteria are unfavorable to reflexive solutions, particularly as refunctonalizations look impracticable or too complex, the maximum symmetrical split of the molecular graph will be useful to find convergent solutions, i.e. the ones that lead to pairs of similar precursors.

It is important to notice that the symmetrical split problem is absolutely different from the perception of exact topological symmetry which has been widely investigated in chemistry, generally through the automorphism group of the molecular graph. Graph drawing is an other domain in which symmetry has been extensively studied. Chen et al. have addressed the problem of finding the maximum symmetric subgraph that can be computed from a graph by deleting vertices or edges and contracting edges. The Isomorphic Subgraphs problem has been formalized by Bachl as finding two large disjoint subgraphs of a given graph such that they are a copy of each other. The “edge-induced” version of this problem is similar to but more general than the maximum symmetrical split problem: the resulting subgraphs can be unconnected. Since the connectivity cannot be used to prune the search space, the combinatorial of the problem is very large. More recently, Bachl and Brandenburg have proposed a greedy heuristic for the approximation of large isomorphic subgraphs, but this does not necessarily lead to an optimal solution.

In a sense, solving Problem 1 is similar to finding a matching from a part of the molecular graph to the remainder. Hence, it is interesting to consider the problem of graph matching. Although the graph isomorphism problem can be solved in polynomial time for molecular graphs, finding a matching from a molecular graph to another one is a NP-Complete problem, that is no polynomial time algorithm exists to solve it. Several backtrack algorithms have been proposed for this subgraph isomorphism problem, one of the best-known being Ullman’s. It has been shown that significant improvements can be achieved in modeling and solving graph matching as a CSP. In the next section we briefly present this model and then we show that the maximum symmetrical split problem can be described as an original kind of CSP.
GRAPH MATCHING AS A CONSTRAINT SATISFACTION PROBLEM

A constraint satisfaction problem is described by a constraint network defined as a triple whose elements are a set of variables x_1, x_2, \ldots, x_k, a set of values for each variable and a set of constraints among variables. For instance, a binary constraint specifies which pairs of values can be assigned to a pair of variables. Figure 6 describes a constraint network for testing if a molecular graph G_1 can be matched to a molecular graph G_2: (i) each vertex of G_1 is a variable of

Figure 5. Connected and unconnected maximum symmetrical splits of a molecular graph.
the CSP; (ii) a variable \(x \) can be assigned to any vertex of \(G_2 \) whose atom type label is the same as that of \(x \). The set of values which the variable \(x \) can take is called the domain of \(x \) and denoted by \(D(x) \); (iii) for each edge \((x_1, x_2)\) in \(G_1 \), a binary constraint is defined between \(x_1 \) and \(x_2 \) to represent that the vertices assigned to \(x_1 \) and \(x_2 \) must be adjacent. Therefore, a pair of values \((y_1, y_2)\) \(\in D(x_1) \times D(x_2) \) is allowed by the constraint if the edge \((y_1, y_2)\) belongs to \(G_2 \). For exact matching search, the binary constraint also insures that if two edges are matched together, they have the same bond type label (simple, double, ...), e.g. edge \((x_2, x_4)\) cannot match edge \((y_8, y_{10})\). But for potential symmetry search, as mentioned earlier, it is best to ignore the mismatch between bond type labels; (iv) a constraint of difference is defined on the variables to insure that they all take different values. Of course, any solution for this constraint network is a matching of \(G_1 \) to \(G_2 \).

The usual approach to solve a CSP starts by trying to reduce the domains of the variables. The aim of this filtering step is to delete values that cannot be assigned to the variables. For instance, in Figure 6, a value \(y \) is deleted from the domain of a variable \(x \) if the degree of vertex \(y \) is smaller than that of vertex \(x \). Clearly, \(x \) cannot be matched with a vertex which has less neighbors. Thus, the domain of variable \(x_2 \) is reduced to three values : \(y_2, y_5 \) and \(y_7 \). An other major filtering method is Arc-Consistency. For any binary constraint between \(x_i \) and \(x_j \), the domain of \(x_i \) is reduced to the values that have at least one corresponding consistent assignment to \(x_j \). In Figure 6, the value \(y_5 \) can be deleted from the domain of \(x_2 \) because \(y_5 \) cannot be assigned to any value according to the constraints \(\{x_1, x_2\} \) and \(\{x_3, x_2\} \). Increasingly efficient algorithms were developed to test Arc-Consistency: AC-4\(^{26}\), AC-6\(^{27}\) or AC-7\(^{28}\).

Generally, filtering methods dramatically reduce the size of the search space of the CSP. For instance, the previous examples of filtering applied to the CSP of Figure 6 give the following results:

![Figure 6. Definition of a CSP to search a matching from graph \(G_1 \) to graph \(G_2 \).](image-url)
When the initial filtering step is achieved, a backtracking search is realized to instantiate the variables of the CSP. There is a vast literature on methods which improve this brute-force approach, such as partial filtering after each instantiation, intelligent backtracking or maintaining Arc-Consistency during the backtrack.25,27 For constraints of difference, Régin29 has proposed an efficient filtering method which amounts to finding a maximal matching in the bipartite graph between the set of variables and the set of values. Recently, Larrosa et al.30 have introduced a specialized filtering method for the CSP formulation of the subgraph isomorphism problem.

A KIND OF MAX-CSP PROBLEM

The problem of maximum symmetrical split can be easily reformulated in terms of pattern matching (Figure 7):

Problem 2. Find two maximum subsets of vertices V_1 and V_2, a minimum subset of edges E_D and a bijective matching ϕ from V_1 to V_2 such as:

- V_1 and V_2 are disjoint
- each subgraph G_1 or G_2 respectively induced by V_1 or V_2 in $G'=\left(V, E \setminus E_D\right)$ is connected
- ϕ preserves labeling and adjacency of G'

![Figure 7. An illustration of Problem 2.](image)

Of course, Problems 1 and 2 are equivalent.

Solving Problem 2 is very similar to searching a specific matching of the molecular graph G onto itself. From a CSP point of view, one can consider V_1 as the set of variables, V_2 as the set of
values and \(\phi \) as an instantiation of the variables that satisfies most of the adjacency constraints of \(G \). As previously stated, each edge of the graph can correspond to a constraint in the CSP. For each solution of Problem 2, \(E_D \) is the set of edges that must be deleted in order to obtain the isomorphic subgraphs \(G_1 \) and \(G_2 \). Hence, these edges can be considered as violated constraints in the CSP.

So Problem 2 is quite similar to a Max-CSP Problem, i.e. a CSP for which no instantiation exists that satisfies all the constraints. Then, this problem is solved by finding an instantiation of all the variables that violates the fewest constraints. Nevertheless, Problem 2 is not a classic Max-CSP especially because it requires to distribute the vertices of \(G \) between \(V_1 \) and \(V_2 \), i.e. between the set of variables and the set of values. An other major difference is that the constraints cannot be satisfied or violated independently, they must respect some specific rules. For instance, if the binary constraint for adjacency between two vertices \(x \) and \(y \) of \(G_1 \) is satisfied by a solution, then the constraint between the vertices of \(G_2 \) assigned to \(x \) and \(y \) must be satisfied too. Otherwise, \(G_1 \) and \(G_2 \) would not be isomorphic.

Consequently, it is almost impossible to benefit from the techniques developed to solve Max-CSP31-34 since these assume that the constraints are considered independently. Being in front of a new kind of CSP, we have developed an original approach based on the following main points: (i) searching only connected subgraphs is a good way to prune the search space; (ii) while computing a solution, a variable \(v \in V_1 \) should be instantiated only if at least one of its neighbors has been already instantiated; (iii) only the constraints that involve instantiated variables must be checked.

ALGORITHM

Our algorithm for solving Problem 2 applies a classic backtrack principle. It attempts to extend the current solution by assigning to a variable one of the values in its domain. When no new assignment is possible, it backtrack and changes the previous assignment. To insure that the resulting subgraphs are connected we propose to dynamically build the constraint network. Our algorithm starts with any vertex of the graph taken as the only element of the set \(\text{Variables} \). The domain of this first variable is the set of all vertices whose labels are the same as that of the variable. A new vertex will be added to \(\text{Variables} \) only if it is adjacent to an already instantiated variable. Consequently, the resulting subgraphs will actually be connected. The constraint network is built and partially solved at the same time. During this computation, subgraphs \(G_1 \) and \(G_2 \) are both growing since they include the instantiated variables and the assigned values respectively. Even if all the vertices are potential variables, at most half of them will really become variables of the constraint network. So the network size is considerably reduced. Dynamically building the constraint network also provides an efficient filtering method to reduce the sizes of the domains. For every value \(y \) in the domain of any variable \(x \) we check that at least one instantiated variable \(v \) exists such as vertex \(x \) is adjacent to vertex \(v \) and vertex \(y \) is adjacent to vertex \(\phi(v) \). This filtering method is easy to implement since all the non-instantiated variables are adjacent to at least one already instantiated variable.

Let us now describe in detail the different steps to building and solving the CSP.

Step 1. Choose a variable \(x \) from the set \(\text{Variables} \) which is not yet instantiated. Vertex \(x \) is added to the graph \(G_1 \). If \(x \) is adjacent to any vertex \(z \) in \(G_2 \), the edge \((x, z)\) is removed, i.e. \((x, z)\) is added to \(E_D \).
Step 2. Choose a value \(y \) in \(D(x) \) and assign \(y \) to \(x \), that is: \(\phi(x) = y \). Vertex \(y \) is added to \(G_2 \). Since \(G_1 \) and \(G_2 \) must be disjoint, any edge joining \(y \) and a vertex of \(G_1 \) is removed, i.e. added to \(E_D \). Figure 8 illustrates that some edges adjacent to \(x \) or \(y \) must be removed to insure that \(G_1 \) and \(G_2 \) will be isomorphic. More precisely, to \(E_D \) are added any edge joining \(x \) and \(z \in G_1 \) such as \(\phi(z) \notin \Gamma(y) \), and any edge joining \(y \) and \(t \in G_2 \) such as \(\phi^{-1}(t) \notin \Gamma(x) \), where \(\Gamma(x) \) and \(\Gamma(y) \) denote the sets of neighbors of \(x \) and of \(y \) respectively. To insure that \(G_1 \) and \(G_2 \) are both connected graphs, we assume that for any \(y \in D(x) \), there is at least one vertex \(v \in \Gamma(x) \) such as \(\phi(v) \in \Gamma(y) \). Step 4 shows how to maintain this property.

![Figure 8. Dashed edges must be removed.](image)

Step 3. Remove \(x \) and \(y \) from the domain of any unassigned variable. Consequently, if the domain of any variable \(v \) becomes empty, \(v \) is deleted from \(Variables \) and added to the set \(V_D \). This deletion could be provisional if vertex \(v \) has some neighbors which are not yet in \(G_1 \) or \(G_2 \). If one of these neighbors is instantiated afterwards, then \(v \) will be added to \(Variables \) again if its domain is not empty.

Step 4. As vertex \(x \) is now in \(G_1 \), any neighbor of \(x \) which is not in \(G_1 \), \(G_2 \) or \(V_D \) can be added to \(Variables \). For any neighbor \(w_i \), the domain of variable \(w_i \), denoted by \(D(w_i) \), is the set of neighbors of \(y = \phi(x) \) which are not in \(G_1 \) or \(G_2 \), which are different from \(w_i \) and which belong to \(S(w_i) \), the set of all vertices whose labels are the same as that of vertex \(w_i \). Figure 9 illustrates this definition, showing that a vertex \(w_2 \) can be a variable and a value in the domain of an other variable at the same time. The way of adding values to the variable domains insure that the resulting graphs \(G_1 \) and \(G_2 \) will be both connected graphs. Indeed, a value \(k \) is added to \(D(w_i) \), only if \(w_i \in \Gamma(x) \) and \(k \in \Gamma(y) \). Hence, all the values in the domains are vertices adjacent to at least one vertex of the current set \(V_2 \).

![Figure 9. New variables \(w_1 \) and \(w_2 \) and their domains in step 4.](image)

Step 5. If the set \(Variables \) is not empty, go recursively to step 1 in order to instantiate a new variable. Otherwise, save the current solution if it is maximum. Then backtrack to Step 2 and choose a new value for the current variable.

The main recursive procedure of this algorithm is summarized in Figure 10 and the initialization program is given in Figure 11.
As mentioned in Step 4, due to dynamic building of the constraint network, a vertex can be added to and removed from Variables repeatedly. Such a case arises when a previously explored vertex \(v \) is reached again but from an adjacent vertex which had not yet been taken as a variable. To avoid circular search, we have to check that any value added to the domain of variable \(v \) was not explored for \(v \) before. This is done by using the set \(\text{OldD}(v) \) which stores the values already checked for variable \(v \).

Search(Variables, \(V_1, V_2, D, E_D, \text{OldD}, r \))

1. \(\text{Variables}' \leftarrow \text{Variables}; \quad E_D \leftarrow \emptyset \)
2. While \(\text{Variables}' \neq \emptyset \) Do
3. \(\text{choose a variable } x \text{ and delete it from Variables'} \)
4. \(\text{Add } x \text{ to } V_1 \)
5. For each \(y \in D(x) \) Do
6. \(\Phi(x) \leftarrow y; \quad \text{// assign } y \text{ to variable } x \)
7. \(\text{Add } y \text{ to } V_2 \)
8. \(E'_D \leftarrow \emptyset \quad \text{// edges to add in } E_D \)
9. For each \(t \in \Gamma(y) \) Do
10. \(\text{If } t \in V_1 \text{ Or } (t \in V_2 \text{ And } \Phi^{-1}(t) \notin \Gamma(x)) \text{ Then add } (y, t) \text{ to } E'_D \)
11. \(\text{Variables}'' \leftarrow \text{Variables'}; \)
12. For each \(v \in \text{Variables'} \) Do
13. \(D'(v) \leftarrow D(v) \setminus \{x, y\} \)
14. \(\text{If } D'(v) = \emptyset \text{ Or } v = y \text{ Then delete } v \text{ from Variables}'' \) End If
15. For each \(z \in \Gamma(x) \) such that \(z > r \) Do
16. \(\text{If } z \in V_1 \text{ Then} \)
17. \(\quad \text{If } \Phi(z) \notin \Gamma(y) \text{ And } (x, z) \notin E_D \text{ Then add } (x, z) \text{ to } E'_D \) End If
18. \(\text{Else If } z \in V_2 \text{ Then} \)
19. \(\quad \text{add } (x, z) \text{ to } E'_D \)
20. \(\text{Else} \)
21. \(\Delta \leftarrow \{k \in S(z) \cap \Gamma(y) \text{ such that } k \notin V_1, k \notin V_2, k \neq z, k > r \text{ and } k \notin \text{OldD}(z)\} \)
22. \(\text{If } z \in \text{Variables} \text{ Then } D'(z) \leftarrow D'(z) \cup \Delta \)
23. \(\text{Else If } \Delta \neq \emptyset \text{ Then} \)
24. \(\quad D'(z) \leftarrow \Delta; \quad \text{Add } z \text{ to Variables}'' \)
25. \(\text{Else add } (x, z) \text{ to } E'_D \)
26. \(\text{If } |\text{Variables}''| > 0 \text{ And current solution may become larger than current maximum} \text{ Then} \)
27. \(\quad \text{Search(Variables'', } V_1, V_2, D', (E_D \cup E'_D \cup E''_D), \text{OldD}, r) \) Else
28. \(\quad \text{save current solution if it is maximum} \)
29. \(\text{Delete } y \text{ from } V_2 \)
30. \(\text{Delete } x \text{ from } V_1 \)
31. \(\text{OldD}(x) \leftarrow \text{OldD}(x) \cup D(x) \)
32. \(E_D \leftarrow E_D \cup \{(x, z), \quad z \in \Gamma(x) \cap V_1\} \)
33. For \(x \in \text{Variables} \) Do \(\text{OldD}(x) \leftarrow \text{OldD}(x) \setminus D(x) \) End For

Figure 10. Algorithm for computing the maximum symmetrical split of a molecular graph.
Finally, to prevent the algorithm from finding a same solution several times, it is taken advantage of the vertex numbering. As the vertices of the molecular graph must be identified, they are labeled with integers from 1 to $|V|$. Then, the search from a starting vertex r is restricted to the vertices whose labels are greater than that of r. Hence, when the search procedure has been applied to a vertex r, all the edges adjacent to r can be added to the set E_D (see line 5 of the initialization procedure in Figure 11).

Figure 11. Initialization procedure.

```
Main(G = (V, E))
1. $E_D \leftarrow \emptyset$
2. For $r = 1$ to $|V|$ Do
3. \begin{align*}
D(r) &\leftarrow \{k \in S(v) \text{ such that } k > r\} \\
\text{Search} &\{r\}, \emptyset, \emptyset, D, \emptyset, \emptyset, r)
\end{align*}
4. $E_D \leftarrow E_D \cup \Gamma(r)$
5. If $|E| - |E_D| < \text{current Max}$ Then break;
```

RESULTS AND DISCUSSION

Our algorithm has been implemented into the RESYN_Assistant system. We are developing this software as a tool to help in understanding organic synthesis problems. A given molecule is recognized by RESYN_Assistant as a member of different chemical categories according to its features. From this perception the program builds a new structured representation of the molecule which combines several viewpoints and hierarchical levels of abstraction. This representation can provide a basis for reasoning in problem solving. The initial domain of RESYN_Assistant has been extended to organic reactions and afterwards the program has been used in studies of knowledge extraction from reaction databases via data mining techniques. Graphic interfaces allow to edit molecules or reactions and to display results. Written in Java RESYN_Assistant runs on a large range of platforms.

Results obtained in the detection of potential symmetry in various molecular structures using our algorithm are shown in Figures 12 to 20. Most examples have been chosen because they were the subject of published synthetic studies that took advantage of this property. The proposed disconnections of bonds - in bold in the figures - suggest retrosynthetic strategies. A chemist will evaluate their relevance by searching for appropriate transforms and possible starting materials corresponding to the generated synthons. These bond disconnections are not ranked but the ones which separate the two components will be easily distinguished from those which make the components isomorphic by removing hanging parts. The former can be classified as main disconnections and the latter as adjustment disconnections.
When solving the problem of usnic acid precursor 1, only one solution is obtained (Figure 12). The proposed disconnections leaves two isomorphic components to which we can relate the single starting material 2. On the other hand, in the case of usnic acid 3 itself, we get two solutions because the oxygen atom in ring B matches two other oxygen atoms linked to carbon atom 9 in ring A and carbon atom 3 in ring C respectively (Figure 13). In each solution it is needed to remove the oxygen atom which remains unmatched. Thus, disconnections a and b imply disconnection a', and disconnections b and c imply disconnection c'. To decide between the two solutions, a chemist would have to look for methods for the preparation of ethers in similar structural contexts. A Michael-like addition of a phenate followed by elimination of a hydroxide as described by Barton et al.10 meets disconnection c. Moreover, superimposing the subgraphs the two solutions have generated shows a common supergraph which brings us back to the previous problem and the same starting material 2. Similar cases where a set with odd number of atoms has to match onto itself may be frequently encountered. Results obtained with other natural products from various families are presented below.
Figure 14. Potential symmetry perception in some lignan and aryltetralin structures; for structure 6 two solutions are found which differ by only one bond disconnection: the alternative to bond a is bond b.

The lignan class is rich in examples (Figure 14). One of the simplest is enterolactone 4 whose potential symmetry is obvious. The split of its molecular graph by disconnecting the two bonds in bold gives a pair of equivalent synthons related to hydrocinnamic acid derivatives. A total synthesis of this molecule was described, the key step of which was an oxidative coupling of 3-methoxyhydrocinnamic acid dianion. As said before, the other lignan carpanone 5 is a much more complex case. Nevertheless, the set of bond disconnections corresponding to the known reflexive synthesis is found quickly by applying our algorithm. The cyclolignan subgroup contains many other instances, including β-peltatin-A methyl ether 6. For this molecule, the program provides two solutions. Both involve the same main bond disconnections to split the cyclolignan skeleton and lead to precursors related to cinnamic acid. However, the adjustment disconnections point to difficult refunctionalizations that are needed to get a single precursor in a reflexive synthetic plan. In fact, the known synthesis of 6 is convergent, starting from well substituted derivatives of cinnamic alcohol and phenylpropionic acid. Other aryltetralin derivatives, such as resformicol A 7, possess a similar potential symmetry (Figure 14). In the syntheses of compounds 6 and 7, Diels-Alder reactions have formed the key steps. Reactions of this type, intra or intermolecular, are often met in synthetic studies of natural products with potential symmetry. It is the case, for instance, of terpenes such as absinthin 8, kitol 9, quassin 10, or of alkaloids such as yuehchukene 10 (Figure 15). For each of them our algorithm gives only one solution, which suggest that one could make use of a Diels-Alder reaction to carry out a reflexive synthesis.
Figure 15. Potential symmetry-based strategy can meet Diels-Alder transform-based tactic.

Besides yuehchukene, a number of alkaloids possess potential symmetry. Erysodienone 12, morphine 13 and emetine 14 are typical members of the isoquinoline alkaloid family (Figure 16). The solutions proposed for the two first molecules correspond to known convergent syntheses47,48 but it is not the case for the last one.49 Though synthesis of channaine 15 has yet to be described, this example is interesting because the set of bond disconnections shows that 15 is probably a dimer of N-Demethylmesembrenone.50 It should be noted that potential symmetry is not easily recognized at a glance from the two channaine formulas 15 and 15' depicted in Figure 16.51

Figure 16. Potential symmetry perception in some alkaloid structures.
Such a visual perception is even more difficult in the case of proto-daphniphylline 16 (Figure 17). The solution our algorithm proposes is a set of disconnections which concern the four carbon-carbon bonds and the two carbon-nitrogen bonds formed by the biomimetic process of pentacyclization discovered by Heathcock et al.52 during the synthesis of this molecule. The sixth bond disconnection of the set, marked with a, allows to subsequently generate two equivalent synthons related to farnesyl derivatives but does not fit in with Heathcock’s route. In this one, the squalene derivative 17 converted by pentacyclization is obtained according to a \((C_{13} + C_4 + C_{13})\) strategy based on the bond disconnections marked with b and b'.

![Figure 17. The proto-daphniphylline case.](image)

Squalene is a key intermediate in the biosynthesis of steroids and triterpenoids.53 In the last class of structures, the rings often hide the precursor symmetry but our algorithm may reveal it (Figure 18). For example, in the first solution proposed for malabaricanediol 18, the disconnections of cyclic bonds generate two equivalent synthons related to farnesyl derivatives as above, the disconnection marked with a splitting symmetrically the squalene skeleton.54 The second solution is also maximum but the bond disconnections break the structural isoprene rule and the induced symmetry. So far, only the first solution has been experimented.55 The same relationships between farnesyl, squalene and a triterpene are found in the example of protosterol 19 whose C-20 cation is the key intermediate in the enzymatic conversion of 2,3-oxidosqualene to lanosterol.53 On the other hand, these relationships are not found with lanosterol 20 itself. The two methyl migrations form C-14 to C-13 and from C-8 to C-14 break the initial symmetry of the squalene skeleton, and then the maximum symmetrical split of the molecular graph of this substance is not based on the structural isoprene rule.
As for taxane skeleton 21, it is a regular diterpene framework as shown in Figure 19. The proposed disconnections of two bonds of the 8-membered ring correspond to the strategy applied by Nicolau et al.56 in the synthesis of the baccatin III moiety 22 of taxol. The two generated synthons have the same monoterpenic skeleton, including a 6-membered ring, which can be split into two isoprene units. In a general way, monoterpenes give such a split; chrysanthemic acid 23 is a typical example57 (Figure 19).

![Figure 18: Potential symmetry perception in some triterpenoid structures.](image18)

![Figure 19: Potential symmetry perception in some mono and diterpene structures.](image19)
Other examples of potential symmetry can also be found in the class of macrocyclic compounds. These examples are often complex. For instance, our algorithm proposes ten different maximum symmetrical splits for the macrolide erythronolide A. One of them, which generates two carbohydrate-related synthons and a propionate rest, corresponds to the synthetic strategy proposed by Hannessian and Rancourt (Figure 20).

![Figure 20. The erythronolide A case](image)

Of course, the maximum symmetrical split also applies to molecular graphs which present actual symmetry. The results may be useful in the design of syntheses of complex structures such as of dodecahedrane (Figure 21).

![Figure 21. Maximum symmetrical split of the dodecahedrane graph](image)

The present version of the algorithm is effective enough to quickly analyze the molecular graphs of most organic compounds. The execution times we have observed on different PCs are generally lower than one second. However, some improvements could be made. For example, a particular order on the vertex set which speeds up the process could be researched. As explained before, the way how the algorithm explores the problem space depends on vertex numbering and then the execution time is sensitive to this one. It would be interesting to study how numbering modifications, according to some properties of the vertices, change the speed of the algorithm. Some of such vertex features are already perceived by RESYN_Assistant. These are, in particular, atom type, nature of neighbors, functionality, stereochemical and topological status. In addition, it should be useful to calculate the maximum size that graph G_i can reach when starting from vertex r and exploring only vertices whose numbering labels are greater than that of r, because it is useless to continue the search if this size is smaller than that of the current maximum solution. Such an evaluation could even be performed dynamically during the exploration so as to know more precisely the maximum sizes that G_1 or G_2 can reach according to the distribution of the remaining vertices.

It must be noted that in the above examples the largest isomorphic connected substructures are searched ignoring the mismatches of bond type labels. A worthwhile extension of the program could be the implementation of an interface allowing the user to modify unary constraints induced by the labeling on vertices and edges. Thus the algorithm would be easily set up to take into
account more or less specific information on atoms and bonds, i.e. to extend or limit the domains. For instance, the domain of each aromatic type edge could be limited to the set of the other edges of same type, or it could be extended to the set of the other onring type edges or of the other edges without regard to their type. We think that the exploration could start with very specific information and progress with more generic one. This interface implementation should be concomitant with the development of a function to evaluate the found solutions. This one could take into account the sizes of the solutions and the cost of the corresponding symmetrical splits according to the topological, functional and stereochemical changes they involve. For instance, a solution would be penalized by aromatic bond disconnections as well as by uncertain refunctionalizations or impracticable stereochemical modifications. The proximity of the components of every solution to known starting materials could be used as an other parameter of the function. However, tuning all the parameters of such a function can be difficult because the heuristics needed for this task are often very specific of every family of compounds.

CONCLUSION

Symmetry is a major molecular feature to which an organic chemist has to pay attention at every stage of synthesis design. The present work particularly concerns the potential symmetry of synthetic targets, the perception of which can allow to develop retrosynthetic strategies for planning reflexive or highly convergent syntheses. This perception is a problem we have formalized in terms of graph-theoretical notion as the maximum symmetrical split of a molecular graph. To solve this problem we have devised an algorithm based on CSP techniques because these allow to drastically reduce the size of its search space. In fact, we have found that the maximum symmetrical split problem can be described as a new kind of CSP. Our algorithm is intended to be an analytic tool that help to make decisions during retrosynthesis. That is why it has been implemented as a new function of RESYN_Assistant, a system for computer-aided understanding of synthesis problems whose aim is to perceive and represent target molecules according different synthetic viewpoints. This program by itself is not a procedure for generating synthetic pathways but it could be incorporated into a larger system for organic synthesis design. The current version of the algorithm gives good results with varied synthetic targets as shown by about twenty examples. For each of them, the program has quickly found all the pairs of largest similar synthons and the minimum sets of bond disconnections to get them; most of the proposed solutions correspond to published synthetic studies. Obviously, relevant results can be obtained only with structures that lend themselves to reflexive or highly convergent syntheses. For instance, applied to the structure of taxol the algorithm gives only unrealistic solutions whereas it proposes a pertinent split of the taxane skeleton (Figure 19). Then, during a retrosynthesis, potential symmetry shall be searched as much in precursors as in the target structure. When potential symmetry of a molecule is not obvious, the display of results will reveal significant clues helping a chemist to develop short streamlined retrosynthetic routes.

ACKNOWLEDGMENT: One of the authors (C. L.) is indebted to Pr. A. P. Johnson for old but enlightening discussions.

REFERENCES AND NOTES

5. Synthons have been defined by Corey as "structural units within molecules which can be formed and/or assembled by known or conceivable synthetic operations" see ref. 9.

18. RESYN_Assistant is the acronym for REtroSYNthesis Assistant. The development of this system was undertaken in 1996 at LIRMM, in the framework of GDR 1093 of CNRS “Traitement Informatique de la Connaissance en Chimie Organique” (1993-2000, director: C. Laurenço), with a financial support from Sanofi Chimie and the TIIM Pole of the Region Languedoc Roussillon, and with an outstanding contribution of Dr. P. Jambaud.

51. these formulas were obtained by queries to SciFinder Scholar

