N. Brisebarre, J. Muller, S. Kumar, and R. , Accelerating correctly rounded floating-point division when the divisor is known in advance, IEEE Transactions on Computers, vol.53, issue.8, pp.1069-1072, 2004.
DOI : 10.1109/TC.2004.37

C. Cebenoyan, Floating point specials on the GPU, 2005.

W. J. Cody, Algorithm 665: Machar: a subroutine to dynamically determined machine parameters, ACM Transactions on Mathematical Software, vol.14, issue.4, pp.303-311, 1988.
DOI : 10.1145/50063.51907

W. J. Cody, Algorithm 714; CELEFUNT: a portable test package for complex elementary functions, ACM Transactions on Mathematical Software, vol.19, issue.1, pp.1-21, 1993.
DOI : 10.1145/151271.151272

W. J. Cody, Algorithm 715; SPECFUN---a portable FORTRAN package of special function routines and test drivers, ACM Transactions on Mathematical Software, vol.19, issue.1, pp.22-30, 1993.
DOI : 10.1145/151271.151273

W. J. Cody and R. Karpinski, A Proposed Radix- and Word-length-independent Standard for Floating-point Arithmetic, IEEE Micro, vol.4, issue.4, pp.86-100, 1984.
DOI : 10.1109/MM.1984.291224

J. T. Coonen, Specification for a proposed standard for floating point arithmetic, Memorandum ERL M78, 1978.

M. Daumas, Informatique répartie, chapter Implantations de la norme IEEE 754 de l'arithmétiquè a virgule flottante. Hermès, 2005.

M. Daumas and D. W. Matula, Rounding of floating point intervals, Interval Computations, issue.4, pp.28-45, 1994.

M. Flynn, Very high-speed computing systems, Proceedings of the IEEE, vol.54, issue.12, pp.1901-1909, 1966.
DOI : 10.1109/PROC.1966.5273

M. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Transactions on Computers, vol.21, issue.9, pp.948-960, 1972.
DOI : 10.1109/TC.1972.5009071

W. , M. Gentleman, and S. B. Marovitch, More on algorithms that reveal properties of floating point arithmetic units, Communications of the ACM, vol.17, issue.5, 1974.

G. Da, G. , and D. Defour, Implementation of float-float operators on graphics hardware, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00021443

K. Hillesland and A. Lastra, GPU floating-point paranoia, ACM Workshop on General Purpose Computing on Graphics Processors, p.8, 2004.

. Intel, Pentium II Processor : Developer's Manual, 1997.

R. Karpinski, PARANOIA : a floating-point benchmark, Byte, vol.10, issue.2, pp.223-235, 1985.

D. Manocha, General-purpose computations using graphics processors, Computer, vol.38, issue.8, pp.85-88, 2005.
DOI : 10.1109/MC.2005.261

P. Markstein, IA-64 and elementary functions : speed and precision, 2000.

M. Parks, Number theoretic test generation for directed rounding, Proceedings of the 14th Symposium on Computer Arithmetic, pp.241-248, 1999.

M. Pichat, ContributionsàContributions`Contributionsà l'etude des erreurs d'arrondi en arithmétiquè a virgule flottante

M. Pichat and J. Vignes, Ingénierie du contrôle de la précision des calculs sur ordinateur, Editions Technip, 1993.

D. M. Priest, On properties of floating point arithmetics : numerical stability and the cost of accurate computations, 1992.

F. John, D. E. Reiser, and . Knuth, Evading the drift in floating point addition, Information Processing Letters, vol.3, issue.3, pp.84-87, 1975.

N. L. Schryer, A test of computer's floating-point arithmetic unit, 1981.

J. Michael, E. E. Schulte, and . Swartzlander, Truncated multiplication with correction constant, Proceedings of the 6th IEEE Workshop on VLSI Signal Processing, pp.388-396, 1993.

D. Stevenson, A Proposed Standard for Binary Floating-Point Arithmetic, Computer, vol.14, issue.3, pp.51-62, 1981.
DOI : 10.1109/C-M.1981.220377

D. Stevenson, An American national standard : IEEE standard for binary floating point arithmetic, ACM SIGPLAN Notices, vol.22, issue.2, pp.9-25, 1987.

B. Verdonk, A. Cuyt, and D. Verschaeren, A precision- and range-independent tool for testing floating-point arithmetric I: basic operations, square root, and remainder, ACM Transactions on Mathematical Software, vol.27, issue.1, pp.92-118, 2001.
DOI : 10.1145/382043.382404

U. Verifying, B. Verify-u1, U. , F. , B. et al., FUZZY TEST There are two pairs of conditions checked One of the two must be true. The first of the pair is X != 1. The second is (X -1/2) -1/2 ==0 No fuzziness detected in comparison MULTIPLICATION GUARD BIT TESTS This first checks that 1*x and x*1 behave the same Then it checks if (1+U2)*2 and 2*(1+U2) behave the same Multiplication guard bit tests: passed passed passed passed MULTIPLICATION: Seems to have guard bit MULT ACCURACY TEST Checks multiplication accuracy per line 1980 MULTIPLICATION: Accuracy tests passed DIVISION GUARD BIT TESTS The following three division guard bit tests are from line-U2) -(1 + U2) == 0 test: failed DIVISION: 1/3 == 3/9 test: passed DIVISION: 3/9 == 9/27 test: passed These are tests of X Error bound for add=, test: passed DIVISION: (1+U2)/1 == (1+U2) test: passed DIVISION: 1/(1+U2) < 1 test passed, 2000.