F. M. Atay and A. Hutt, Stability and Bifurcations in Neural Fields with Finite Propagation Speed and General Connectivity, SIAM Journal on Applied Mathematics, vol.65, issue.2, pp.644-666, 2004.
DOI : 10.1137/S0036139903430884

P. Baldi and A. Atiya, How delays affect neural dynamics and learning, IEEE Transactions on Neural Networks, vol.5, issue.4, pp.1045-9227, 1994.
DOI : 10.1109/72.298231

J. Bélair and S. A. Campbell, Stability and Bifurcations of Equilibria in a Multiple-Delayed Differential Equation, SIAM Journal on Applied Mathematics, vol.54, issue.5, pp.1402-1424, 1994.
DOI : 10.1137/S0036139993248853

S. A. Campbell, Time delays in neural systems, in Handbook of brain connectivity, pp.65-90, 2007.

S. A. Campbell, I. Ncube, and J. Wu, Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system, Physica D: Nonlinear Phenomena, vol.214, issue.2, pp.101-119, 2006.
DOI : 10.1016/j.physd.2005.12.008

S. A. Campbell, S. Ruan, and J. Wei, QUALITATIVE ANALYSIS OF A NEURAL NETWORK MODEL WITH MULTIPLE TIME DELAYS, International Journal of Bifurcation and Chaos, vol.09, issue.08, pp.1585-1595, 1999.
DOI : 10.1142/S0218127499001103

T. Danino, O. Mondragon-palomino, L. Tsimring, and J. Hasty, A synchronized quorum of genetic clocks, Nature, vol.44, issue.7279, pp.463-326, 2010.
DOI : 10.1038/nature08753

M. Dhamala, V. K. Jirsa, and M. Ding, Enhancement of Neural Synchrony by Time Delay, Physical Review Letters, vol.92, issue.7, p.92, 2004.
DOI : 10.1103/PhysRevLett.92.074104

T. Erneux, Applied Delay Differential Equations, of Surveys and Tutorials in the Applied Mathematical Sciences, 2009.

U. Ernst, K. Pawelzik, and T. Geisel, Synchronization Induced by Temporal Delays in Pulse-Coupled Oscillators, Physical Review Letters, vol.74, issue.9, pp.1570-1573, 1995.
DOI : 10.1103/PhysRevLett.74.1570

V. K. Jirsa, G. Deco, and R. Mcintosh, Emerging concepts for the dynamical organization of restingstate activity in the brain, Nature Reviews Neuroscience, vol.12, pp.43-56, 2011.

K. Gopalsamy and X. He, Stability in asymmetric Hopfield nets with transmission delays, Physica D: Nonlinear Phenomena, vol.76, issue.4, pp.344-358, 1994.
DOI : 10.1016/0167-2789(94)90043-4

A. Gosh, Y. Rho, A. R. Mcintosh, R. Kötter, and V. K. Jirsa, Noise during Rest Enables the Exploration of the Brain's Dynamic Repertoire, PLoS Computational Biology, vol.2, issue.10, 2008.
DOI : 10.1371/journal.pcbi.1000196.s011

K. Gu, S. Niculescu, and J. Chen, On stability crossing curves for general systems with two delays, Journal of Mathematical Analysis and Applications, vol.311, issue.1, pp.311-231, 2005.
DOI : 10.1016/j.jmaa.2005.02.034

S. Guo, Y. Chen, and J. Wu, Two-parameter bifurcations in a network of two neurons with multiple delays, Journal of Differential Equations, vol.244, issue.2, pp.444-486, 2008.
DOI : 10.1016/j.jde.2007.09.008

J. K. Hale and S. M. , Introduction to Functional Differential Equations, 1993.
DOI : 10.1007/978-1-4612-4342-7

E. M. Izhikevich, G. M. Edelman, -. Ucken, J. P. Pade, and A. K. , Large-scale model of mammalian thalamocortical systems, Pro, KNAUER ceedings of the national academy of sciences, pp.3593-3598, 2008.

I. Kanter, M. Zigzag, A. Englert, F. Geissler, and W. Kinzel, Synchronization of unidirectional time delay chaotic networks and the greatest common divisor, EPL (Europhysics Letters), vol.93, issue.6, pp.93-60003, 2011.
DOI : 10.1209/0295-5075/93/60003

J. B. Kruskal and J. , On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical Society, vol.7, issue.1, pp.48-50, 1956.
DOI : 10.1090/S0002-9939-1956-0078686-7

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, of Mathematics in science and engineering, 1993.

J. Li and Y. Kuang, Analysis of a Model of the Glucose???Insulin Regulatory System with Two Delays, SIAM Journal on Applied Mathematics, vol.67, issue.3, pp.757-776, 2007.
DOI : 10.1137/050634001

W. Lu and T. Chen, Synchronization of Coupled Connected Neural Networks With Delays, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.51, issue.12, pp.2491-2503, 2004.
DOI : 10.1109/TCSI.2004.838308

L. Lücken, J. P. Pade, K. Knauer, and S. Yanchuk, Reduction of interaction delays in networks, EPL (Europhysics Letters), vol.103, issue.1, p.10006, 2013.
DOI : 10.1209/0295-5075/103/10006

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, vol.197, issue.4300, pp.197-287, 1977.
DOI : 10.1126/science.267326

J. Mallet-paret and G. R. Sell, The Poincar?????Bendixson Theorem for Monotone Cyclic Feedback Systems with Delay, Journal of Differential Equations, vol.125, issue.2, pp.441-489, 1996.
DOI : 10.1006/jdeq.1996.0037

Y. Manor, C. Koch, and I. Segev, Effect of geometrical irregularities on propagation delay in axonal trees, Biophysical Journal, vol.60, issue.6, pp.1424-1437, 1991.
DOI : 10.1016/S0006-3495(91)82179-8

R. D. Nussbaum, Differential-delay equations with two time lags, Memoirs of the American Mathematical Society, vol.16, issue.205, 1978.
DOI : 10.1090/memo/0205

A. Panchuk, D. P. Rosin, P. Hövel, and E. Schöll, SYNCHRONIZATION OF COUPLED NEURAL OSCILLATORS WITH HETEROGENEOUS DELAYS, International Journal of Bifurcation and Chaos, vol.23, issue.12, p.23, 2013.
DOI : 10.1142/S0218127413300395

P. Perlikowski, S. Yanchuk, O. V. Popovych, and P. A. Tass, Periodic patterns in a ring of delay-coupled oscillators, Physical Review E, vol.82, issue.3, p.36208, 2010.
DOI : 10.1103/PhysRevE.82.036208

O. V. Popovych, S. Yanchuk, and P. A. , Delay- and Coupling-Induced Firing Patterns in Oscillatory Neural Loops, Physical Review Letters, vol.107, issue.22, p.228102, 2011.
DOI : 10.1103/PhysRevLett.107.228102

D. P. Rosin, D. Rontani, D. J. Gauthier, and E. Schöll, Control of Synchronization Patterns in Neural-like Boolean Networks, Physical Review Letters, vol.110, issue.10, p.104102, 2013.
DOI : 10.1103/PhysRevLett.110.104102

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous, Discrete and Impulsive Systems Series A, pp.863-874, 2003.

L. P. Shayer and S. A. Campbell, Stability, Bifurcation, and Multistability in a System of Two Coupled Neurons with Multiple Time Delays, SIAM Journal on Applied Mathematics, vol.61, issue.2, pp.61-673, 2000.
DOI : 10.1137/S0036139998344015

M. C. Soriano, J. García-ojalvo, C. R. Mirasso, and I. Fischer, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers, Reviews of Modern Physics, vol.85, issue.1, pp.421-470, 2013.
DOI : 10.1103/RevModPhys.85.421

P. Van-den-driessche and X. Zou, Global Attractivity in Delayed Hopfield Neural Network Models, SIAM Journal on Applied Mathematics, vol.58, issue.6, pp.1878-1890, 1998.
DOI : 10.1137/S0036139997321219

J. Wu, Introduction to neural dynamics and signal transmission delay, 2001.
DOI : 10.1515/9783110879971

H. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev et al., Elsäßer, and I. Fischer, Synchronization of delay-coupled oscillators: A study of semiconductor lasers, Physical Review Letters, pp.94-163901, 2005.

S. Yanchuk and G. Giacomelli, Pattern Formation in Systems with Multiple Delayed Feedbacks, Physical Review Letters, vol.112, issue.17, p.174103, 2014.
DOI : 10.1103/PhysRevLett.112.174103

H. Ye, A. N. Michel, and K. Wang, Qualitative analysis of Cohen-Grossberg neural networks with multiple delays, Physical Review E, vol.51, issue.3, pp.51-2611, 1995.
DOI : 10.1103/PhysRevE.51.2611