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Abstract—Multicore system analysis requires efficient solutions
for architectural parameter and scalability exploration. Long
simulation time is the main drawback of current simulation
approaches. In order to reduce the simulation time while keeping
the accuracy levels, trace-driven simulation approaches have
been developed. However, existing approaches do not allow
multicore exploration or do not capture the behavior of multi-
threaded programs. Based on the gem5 simulator, we developed
a novel synchronization mechanism for multicore analysis based
on the trace collection of synchronization events, instruction
and dependencies. It allows efficient architectural parameter
and scalability exploration with acceptable simulation speed and
accuracy.

Index Terms—Multi-threaded programs, Parameter Explo-
ration, Trace-Driven Simulation, Scalability Exploration, Syn-
chronization Mechanism.

I. INTRODUCTION

S Imulation is widely used in system design for evaluating

different design options. Depending on the abstraction

level considered for simulating a given system configuration,

there is a tradeoff between the obtained precision and speed.

Generally, simulating a detailed system model provides accu-

rate evaluation results at the price of potentially high simu-

lation time. On the other hand, less detailed or more abstract

system representations usually provide less accurate evaluation

results, but in a fast and costless manner. In practice, such

representations are defined such that they only capture system

features that are mostly relevant to the problem addressed by

a designer. Trace-driven simulation is a popular technique that

enables fast design evaluation by considering system models

where inputs are derived from a reference system execution,

referred to as traces.

Considering multicore architectures, a typical trace-driven

simulation relies on collecting reference traces in a trace-

collection phase based on an accurate reference architecture

with a low core count. Because traces are collected on such

an accurate reference architecture, most relevant phenomena

are captured such as CPU microarchitecture events, memory

transaction events, event jitter due to the underlying operating

system execution, etc. The resulting traces can be then reused

in a number of target trace-driven simulations in which CPU

cores are replaced with trace injectors as an abstraction,

thereby enabling to refocus the simulation effort on other

performance-critical system sub-components such as caches,

communication architecture and memory sub-system.

Elastic Traces (ET) framework [1] is an extension of the

gem5 environment [2] that allows to collect and playback

micro-architecture dependency and timing annotated traces

attached to the Out-of-Order (OoO) CPU model. The focus

of this tool is to achieve memory performance exploration in

a fast and accurate way compared to the slow gem5 OoO CPU

model. It relies on extensive modifications of the OoO CPU

model. Probe points have been added in the pipeline stages.

Each instruction is monitored and a data dependency graph is

created by recording data Read-After-Write dependencies and

order dependencies between loads and stores [3]. Two different

traces are produced: one for instruction fetch requests and

one for data memory requests. To ease the capture of a large

amount of trace data, the Google protobuf format is used [4].

While Elastic Traces simulation provides an attractive design

evaluation support, it does not enable to address multicore

architecture.

In this paper, we present the ElasticSimMATE (ESM) tool,

which extends Elastic Traces with inter-core synchronization

features, in order to make possible multicore architectures

simulation. ElasticSimMATE enables to conduct explorations

belonging to two categories as follows:

• fast system parameter exploration: because trace-driven

simulation is fast, the influence of various parameters

such as cache sizes, coherency policy, memory speed can

be rapidly assessed through replaying the same traces on

different system configurations.

• system scalability: this approach relies on replicating

traces for emulating more cores, thereby analyzing how

performance scales when increasing the number of cores.

This approach requires to record and carefully handle the

synchronization semantics in the trace-replay phase so as

to carefully account for the execution semantics on such

an architecture.

This paper is organized as follows. Section II discusses

related work. In Section III, describes the main concpets

of the ElasticSimMATE approach. In Section IV we present

the experimental results on selected applications. Finally, we

conclude this paper in Section V.978-1-5386-3344-1/17/$31.00 c©2017 European Union



II. RELATED WORK

Simulation speed and accuracy are two crucial considera-

tions for architectural and scalability analysis exploration. In

the sequel, we review some relevant simulation approaches.

A. Traditional simulators

Existing techniques can be classified into two fundamental

families [5].

The first family focuses on the increasing of computational

power, e.g., increasing the number of simulated events per

second. Usually it is achieved by running the simulation

distributed across multiple host machines [6], [7]. Distributed

simulation is a known difficult technique as one must carefully

deal with simulation partitioning and event synchronizations

among available hosts. Another popular approach for ac-

celerating simulation is just-in-time (JIT) dynamic binary

translation, e.g., OVP [8] and QEMU [9]. JIT-based simulators

are instrumented with timing models so that basic architecture

block models and their inter-operations can be driven accord-

ing to the annotated timing information. The second family

of techniques includes approaches reducing the number of

simulation events required for accurate results. It concentrates

on optimizing component descriptions (e.g. CPUs, intercon-

nect infrastructure) following the transaction-level modeling

strategy [10] or by using trace-driven simulation [11]. The

above approaches lack expressive modeling supports such as

those related to cache hierarchies, coherency protocols and

communication architecture which are of bold importance.

Such simulators can achieve speeds close to thousands MIPS at

the cost of a limited accuracy. They often focus on functional

validation rather than architectural exploration.

In order to allow architectural parameter and scalability

exploration with acceptable accuracy, trace-driven simulation

is an alternative approach. In [1], authors proposed a collection

and replay mechanism defined in gem5 simulation framework.

However, its application is restricted to mono-core execution

and no synchronization mechanism is presented. On the other

hand, a synchronization mechanism for multi-threaded appli-

cation is presented in [12]. In a similar way, authors in [13]

proposed a collection mechanism for parallel events and a

playback methodology to allow architectural exploration.

B. Trace-driven extensions of gem5

In Elastic Traces [1], the replay phase allows to play

back traces for architecture exploration. Instruction traces and

data dependency traces are injected on the I-side and D-

side generators respectively (see Fig. 1). This trace replayer

supports only single-threaded applications which is one main

limitation. Elastic Traces demonstrates a speedup of 6-8x

compared to a reference Out-of-Order core and is accurate,

with less than 10% error versus the reference [1].

SimMATE [12] is a trace-driven simulator that operates on

top of gem5 and is devoted to the exploration of in-order

manycore architectures. Traces collected on a reference archi-

tecture in Full-System mode are made of outgoing memory

transactions collected at Level-1 caches, i.e. cache misses. In

Figure 1: Elastic Traces Replay Mechanism

trace replay phase CPU cores are replaced with Trace Injectors

(TIs) that are connected to the interconnect subsystem cache

and initiate the transactions recorded in the trace database. The

interconnect and memory subsystems remain fully simulated

so as to account for the latencies incurred by the traffic in the

given simulated architecture configuration. SimMATE takes

into account inter-core synchronizations: additional informa-

tion such as barriers are recorded in the traces through a

redefinition of the used shared-memory API functions (e.g.,

Pthreads) in trace collection. An arbiter takes care of lock-

ing/unlocking trace injectors whenever necessary, according

to the synchronization constructs recognized in the traces.

ElasticSimMATE leverages the benefits of both Elastic

Traces and SimMATE trace-driven approaches in gem5 for

multicore architectures: Elastic Traces provides an accurate

modeling of CPU core instruction pipeline for Out-of-Order

cores whereas SimMATE brings a solution that makes it

possible to account for the inter-core execution dependencies.

It offers a single simulation solution of great interest for a fast

and accurate exploration of next-generation multicore systems.

III. ELASTICSIMMATE FRAMEWORK

Figure 2 conceptually depicts the ElasticSimMATE work-

flow, from the OpenMP application source files to the replay

on different target architecture configurations. The red-colored

#pragma omp statements listed in the source are read by

the pre-processor in the usual case and result in the insertion

of calls to the OpenMP runtime. In ElasticSimMATE, these

calls further require to call a tracing function that will make

it possible to record the start and end of a parallel region

in the trace. The resulting binaries are then executed in a

Full-System (FS) simulation (Trace Collection phase) so as

to generate the execution traces. Three traces are created:

instruction and data dependencies trace files (as per the Elastic

Traces approach) and an additional trace file that embeds

synchronization information. These three trace files are used in

the trace replay phase devoted to the architecture exploration.

ElasticSimMATE supports the following gem5 features:

ARMv7 and ARMv8 ISAs, O3 CPU model and SimpleMem-

ory model (required by Elastic Traces).



Figure 2: ElasticSimMATE workflow

ElasticSimMATE is compatible with both OpenMP 3.0 and

POSIX thread APIs. Focus is put on OpenMP 3 in this

document. Recording synchronization traces requires using

a specific gem5 pseudo-instruction created for this purpose:

m5_trace(). This pseudo-instruction requires to be inserted

either manually or automatically by means of using an instru-

mented runtime system.

A. ElasticSimMATE workflow

ElasticSimMATE simulation is composed of four steps:

code annotation, checkpoint creation, trace collection and

replay, introduced in the following subsections.

1) Code Annotation: First of all, it is necessary to an-

notate the code with m5_trace() pseudo-instruction before

compilation either manually or automatically. This pseudo-

instruction takes care of recording synchronization information

in the trace, such as the program counter and the number

of instructions and dependencies. It must be inserted at the

beginning and at the end of each event.

While manual insertion of the tracing calls are possible at

source code level this is rather cumbersome and therefore two

other options have been considered:

• Source to source approach. This approach relies on

parsing application input files and automatically inserting

the m5_trace calls wherever needed. We have verified

that the proposed approach works for C/C++ but would

require to be ported for other languages.

• Automatic tracing call insertion. This solution relies on

modifying the API runtime so that whenever a parallel

code region is detected a tracing call gets automatically

inserted right at the precise instant where parallel execu-

tion starts. It is regarded as the most suitable solution as

it is accurate and only requires to work with a specific

version of the runtime system.

Automatic tracing call insertion is the option selected

at this stage and is available for OpenMP using the

Nanos++ runtime system / Mercurium compiler [14]. Mer-

curium source to source compiler automatically inserts

Nanos++ function calls whenever a specific runtime hand-

ling is required. Figure 3 illustrates the process and the

function calls inserted before being passed on to gcc:

nanos_create_team() and nanos_end_team() alongside the

nested nanos_enter_team() and nanos_leave_team() are

displayed at respectively the beginning and end of the parallel

region. The approach here relies on modifying those functions

so as these carry out the required work for tracing. Table I

describes the currently supported set of OpenMP constructs.

Table I: OpenMP constructs supported in Nanos++ tracing tool

OpenMP Event Position Nanos++ Call

Parallel / Parallel for Beginning nanos_enter_team()
End nanos_leave_team()

Critical Beginning nanos_set_lock()
End nanos_unset_lock()

Barrier Beginning nanos_omp_barrier()

2) Checkpoint creation:
a) Principle: once the desired architecture parameters

are decided for the trace capture, the simulation is launched

in order to create a checkpoint after system boot and before

application execution. It makes possible to obtain clean traces

without OS boot phase information. This checkpoint resets all

statistics in gem5 and allows to resume simulation from that

point.

Checkpoints are acquired by setting cpu-type to

arm_detailed. While this model is slow because of its

accuracy, this only applies to the trace capture which is to be

performed only once per application.

3) Traces collection:
a) Principle: In this phase, ElasticSimMATE restores

the system state from the checkpoint and begins trace col-

lection. Three types of events are considered during parallel

sections: instruction executed, dependencies (load/store), and

synchronization events. Instruction and data dependency traces



Figure 3: Function insertion while using Nanos++ and mercurium

are captured thanks to an augmented TraceCPU model. The

following information are captured into the synchronization

trace for each CPU and each event:

• Tick: the tick count of a CPU at the entrance in the

parallel region.

• Program Counter: the program counter at the beginning

of a parallel region ; it will be used during the replay

phase for identifying parallel sections.

• Thread ID: the thread ID assigned by the scheduler.

• Event Type: an enumerate type that encodes events

corresponding to parallel for, critical and barrier.

• Number of instructions: the number of instructions

executed by a CPU during the recorded event.

• Number of data accesses: the number of data accesses

performed during the recorded event.

It has to be noted that for each thread under analysis the

Tick and PC information will be the same since all threads

are created at the same time. It means that the information

on the synchronization traces is the same. In the case of the

dependency trace, the load and store information are only

collected between the CPU and the L1 caches. At the end

of the trace collection phase, three Google Protobuf files are

obtained per simulated CPU core with the required data for

the replay phase:

• Instruction Executed Trace File.

• Dependency Trace File (LOAD/STORE).

• Synchronization Event Trace File.

4) Traces replay:
a) Principle: As illustrated in Figure 4a, collected traces

can be replayed in target architecture configurations in diffe-

rent ways. Letting N be the number of cores used in trace

collection and M in trace replay, two main purposes are

considered as follows:

• Parameters exploration: we perform an architectural

exploration in which we replay the exact number of

simulated cores, i.e., N = M. The objective is to analyze

the influence of a number of architectural parameters

such as cache sizes, interconnect bandwidth or memory

latency.

• Replication: we perform a scalability analysis, by tar-

geting a higher core count compared to that of the

initial system from which given traces are captured, i.e.,

M

∧

N. This is achieved by simulating more trace

injectors. Noted that the replication mechanism allows

us to perform weak-scaling analysis as the problem size

is increased by the ration of M
N . In addition, current

implementation is performed with no address offsetting

mechanism. This means that most of the resources are

shared among cores.

b) Implementation: Figure 4b shows the interplay of

the principal objects involved during the replay phase in

ElasticSimMATE. A number of TraceCPU objects operate and

check if LOAD/STORE dependencies are met on the basis of

the traces they access, as per the Elastic Traces base model.

These further read out the synchronization trace and keep track

of the parallel regions.

The actual behaviour when entering a parallel region is as

follows:

• Init: whenever one such region is detected on a

TraceCPU, a notification is sent to the arbiter so as to

properly handle the synchronizations.

• Processing: TraceCPU model continues the execution.

The length of a region is encoded in the trace in form

of a number of instructions to be executed alongside a

number of data dependencies to be met. Local counters

keep track of both instruction and dependency counts.

• Stall: when counters reach the two values (number of

executed instructions and number of executed dependen-

cies) listed in the synchronization trace record TraceCPU

stalls (locked state) and simultaneously notifies the arbiter

it has reached a barrier.

• End: when the arbiter has received lock notifications from

all TraceCPU objects it unlocks them all and execution

is resumed.



(a) Trace replay: N represents the number of cores for the collection and M the number of cores for the replay

(b) Replay overview including modified TraceCPU and arbiter

Figure 4: Trace replay approach

IV. EXPERIMENTAL RESULTS

ElasticSimMATE is evaluated and compared against both

Elastic Traces and gem5 Full-System simulation, the latter

being the reference. As figures of merits we analyze execution

time, simulation time and the simulation accuracy with respect

to both the reference gem5 Full-System simulation and Elastic

Traces.

Further results are reported concerning scalability analysis.

They rely on the "trace replication" approach (see Section

III-A4), which is based on trace reuse for emulating the

presence of more cores in the considered targeted system. As

traces are replicated on a per-core basis, these results account

for weak-scaling analysis. Finally, parameters explorations are

performed considering different L2 cache sizes.

A. Experimental Setup

1) Baseline system: As reference model we consider an

Out-of-Order (or O3) CPU model in gem5 that represents an

ARMv7 architecture. Figure 5 depicts a four-core architecture

along with the cache hierarchy, an interconnect and a main

memory. For the trace collection, we set up the same confi-

guration from 1 to 4 cores while omitting the L2 cache in a

similar way as Elastic Traces approach.

Unless otherwise stated, all experiments are done using

the parameters shown in Table II. Each core has its own

L1 Data and Instruction caches. The unique L2 cache is

shared between all cores through a bus. We run FS simulation

which is instrumented for capturing traces. All experiments are

conducted on a 56-core server (Xeon E5 clocked at 2.6GHz).

Figure 5: Reference system with 4 cores

2) Benchmarking: We perform benchmarking of Elastic-

SimMATE in three different modes so as to analyze both in-

trinsic accuracy / simulation speed and usability in scalability

analysis. The following sections therefore display results that

correspond to three modes:

• Base replay: we use a matrix multiplication workload

with matrix input sizes ranging from 16x16 to 128x128

such that simulation complexity can be easily scaled. For

each input size experiments are performed on 1, 2 and 4

cores. Full System (FS) simulation in gem5 is performed

as a reference scenario for both accuracy and simulation

speedup evaluation.

• Trace replication for scalability analysis: these results

are gathered on the basis of a 1-core trace that is reused

for every TraceCPU of the target simulation. Per-core



Table II: Reference baseline system

Parameter Value
CPU Model O3

Size 32kB
I Cache Associativity 2-way

Cycle Hit Latency 1
Size 32kB

D Cache Associativity 2-way
Cycle Hit Latency 1

Size 1MB
L2 Cache Associativity 16-way

Cycle Hit Latency 12
Main Model SimpleMemory

Memory latency 30ns

workload therefore remains unchanged, as well as syn-

chronization semantics: a synthetic synchronization bar-

rier is emulated by the arbiter that ensures all TraceCPU

objects reach the end of any parallel region before re-

suming the execution of the subsequent statements in

a code. These experiments are conducted on the matrix

multiplication workload (up to 512x512 matrix sizes) and

3 compute-intensive applications defined in Rodinia [15]

and Parsec [16] benchmark suites respectively: Hotspot,
K-means and Blackscholes.

• Architectural parameter exploration: we use K-means

application with 1, 2 and 4 cores for collection. Then, we

replay varying the L2 cache size. FS simulations are also

run to serve as references.

B. Accuracy and Speedup Evaluation

In this section we evaluate how correlated are the results

obtained with ESM in relation to ET and FS. In all cases,

the deviation percentage is calculated based on FS results

(
VFS−VET,ESM

VFS
). Table III shows the execution times reported

by the three tools. We observe that ElasticSimMATE preserves

Elastic Traces accuracy with negligible deviation in predicted

execution time for single core experiments. On the other hand,

error tends to decrease on multicore experiments.

Table III: Simulation accuracy for the matrix multiplication:

Execution time comparison

#Core FS [ms] ET [ms] ESM [ms] FS vs ET [%] FS vs ESM [%]

16x16
1 115.61 98.55 98.72 14.76 14.61
2 99.36 102.15 -2.80
4 105.75 106.79 -0.99

32x32
1 116.83 99.77 99.77 14.60 14.60
2 100.19 102.82 -2.63
4 106.25 107.46 -1.14

64x64
1 126.34 109.30 109.31 13.48 13.48
2 106.84 106.58 0.25
4 110.43 109.42 0.91

128x128
1 225.39 183.92 183.92 18.40 18.40
2 159.96 142.41 10.97
4 132.67 127.47 3.92

2) Speedup Evaluation: Figure 6 shows the simulation

speedups achieved by respectively Elastic Traces and Elas-

ticSimMATE compared to gem5 FS simulation. Speedups are

in the same order of magnitude for both solutions. Modest

speedups of around 3x for small input set sizes find root in

the short application execution time for which gem5 spends

Figure 6: Simulation speedup for matrix multiplication

a comparatively significant time in simulation initialization

versus simulation run.

C. Trace Replication

Results shown in this section use trace replication only.

Though traces can be collected on an arbitrary number of cores

(up to 4 in our setup), all figures reported here are made on

the basis of 1 core trace collection that is replicated according

to the target core count. Similar results were obtained when

using two and four cores count. All of the experiments in this

section are carried out using only ESM, since FS simulation

up to 128 cores would take a prohibitive amount of time.

(a) Small Input Sizes

(b) Large Input Sizes

Figure 7: Simulation time for matrix multiplication

Figures 7a and 7b show the simulation time versus core

count for the matrix multiplication for 2 sets of input sizes,

small (16x16 to 64x64) and large (128x128 to 512x512).



(a) Small Input Sizes

(b) Large Input Sizes

Figure 8: Execution time for matrix multiplication

Simulation times for large input sizes have been experimented

for systems comprising up to 64 cores. In the worst case

(512x512 matrix sizes, 64 cores) simulation time was about

65 hours which remains tractable for scalability evaluation.

Figures 8a and 8b show the corresponding execution times

accounting for weak scaling. The rather early increase in exe-

cution time obviously relates to contention in the interconnect

/ memory subsystem (shared bus in these experiments). Note

that trace replication is in the current version made without

any address offsetting i.e. all cores issue requests to the same

addresses (encoded in the trace) which results in unrealistic

data sharing during replay. This is confirmed after analyzing

gem5 execution statistics which report well above 80% data

sharing in most experiments.

Similar experiments have been carried out on sample appli-

cations extracted from Rodinia and Parsec benchmark suites.

Blackscholes, Hotspot and K-means have been selected for

their different memory access patterns. Figures 9a and 9b give

simulation times and execution times for systems comprising

up to 128 cores. Better weak-scaling is observed compared

to the matrix multiplication. Interconnect saturation occurs

from 32 cores for hotspot. Simulation times are in the tens

of hours for the chosen applications / input set sizes for 128

core systems which is acceptable.

D. Architectural Parameter Exploration

By using ElasticSimMATE in an architectural parameter

exploration mode we vary the L2 cache size and measure

the execution time. We compared our results with regard to

gem5 Full-System simulation for one, two and four cores.

(a) Simulation Time

(b) Execution Time

Figure 9: Trace replication analysis for selected applications

Here we focus on relative accuracy between FS and ESM

instead of absolute accuracy. Execution time results are shown

in Figure 10. While the observed execution times for ESM

and FS differ, they globally follow the same tendency. For

instance, given any pair of configurations (i.e., L2 cache size)

the relative comparison of their associated execution times is

similar for both simulation approaches. In addition, for a given

cache configuration the relative comparison of the execution

times obtained with different core counts is similar for both

simulation approaches. The above observations suggest the

soundness of ESM with regard to FS. Since ESM is in

average 3x faster than FS, designer can therefore exploit

the capabilities of our approach to perform detailed and

complex architecture parameter exploration in a fast way. To

illustrate this opportunity, let us consider a simple exploration

Figure 10: K-means execution time for different L2 cache size



of typical design decisions that can have an impact on system

performance. Here, we vary the size of the L2 cache in the

memory hierarchy and we analyze the resulting effect on

the related performance metrics such as the total cache miss

rate and the total cache miss latency. Table IV reports the

experimental results for K-means in FS and ESM simulations.

In FS changing the L2 cache from 16kB to 1MB represents a

reduction in the cache miss rate of 57.7% while ESM shows

60.3% reduction. Furthermore, increasing the L2 cache from

16kB to 2MB reduces the cache misses for about 65.6% with

FS and 67.7% with ESM. In this case, a designer would

consider 1MB L2 cache as a preferable choice instead of 2MB

cache size, as the improvement in the performance is marginal

in the latter case. This in turn would reduce the cost in area

and power consumption. A similar analysis can be made based

on the total cache miss latency.

Table IV: Parameter exploration analysis for k-means.

L2 Cache Size 16kB 1MB 2MB
Simulation Approach FS ESM FS ESM FS ESM
Cache Miss Rate (%) 75.9 76.7 18.3 16.4 10.3 8.9

Cache Miss Latency (ms) 59.6 59.1 13.6 12.4 7.5 6.8

E. Summary

The displayed results show that overall simulation accuracy

remains in the same range compared to that of Elastic Traces

for low core counts while a slight error is observed towards

higher numbers of cores. This finds roots in the lack of address

offsetting when emulating more cores in the target simulation,

as well as a coarse grained handling of instructions and

data synchronizations. Simulation time scales satisfactorily

and most simulations completed in usually hours, occasionally

days when selecting large input sets and core counts. Trace

collection, even though done once for each application is time-

consuming and produces large trace files, in the order of tens

of gigabytes for the applications used in these experiments.

Synchronization trace account for well below 1% of overall

trace files, the rest being related to intrinsic Elastic Traces

tracing approach.

V. CONCLUSION AND FUTURE WORK

This paper describes a gem5 trace-driven simulation solu-

tion. It relies on two former contributions, Elastic Traces and

SimMATE. The resulting tool, ElasticSimMATE, preserves

the accuracy at the heart of Elastic Traces and makes it

possible to conduct a fast architectural parameter exploration.

We illustrated the opportunity offered by ESM for fast and

sound architecture exploration through the impact analysis

of L2 cache size on system performance. In addition, we

showed the scalability of ESM based simulations, thanks to

an adequate trace replication mechanism. This mechanism

relies on reusing traces collected on a reference architecture

onto more cores thereby enabling to perform weak scaling

experiments (workload/problem size remains same per core).

Experimental results confirmed that ESM can simulate up to

128 cores. Furthermore, based on the application complexity,

ESM is at least 3x faster than FS simulation.

One important extension to the current work is to enhance

the considered trace format in order to enable strong-scaling

experiments. Indeed, it will make possible complementary

evaluations of multicore architectures such that a given work-

load could be divided and allocated to available cores, i.e.,

workload/problem size could be adapted to the number of

cores. Beyond the simple architectural exploration reported

in this work, we plan to address further design issues, e.g.,

interconnect topologies and protocols, memory hierarchy, etc.

Finally, our tool will be freely-available once we have make

the proposed improvements.
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