Essentially optimal sparse polynomial multiplication - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2020

Essentially optimal sparse polynomial multiplication

Pascal Giorgi
Bruno Grenet
Armelle Perret Du Cray
  • Function : Author
  • PersonId : 1064718
  • IdRef : 272431613

Abstract

We present a probabilistic algorithm to compute the product of two univariate sparse polynomials over a field with a number of bit operations that is quasi-linear in the size of the input and the output. Our algorithm works for any field of characteristic zero or larger than the degree. We mainly rely on sparse interpolation and on a new algorithm for verifying a sparse product that has also a quasi-linear time complexity. Using Kronecker substitution techniques we extend our result to the multivariate case.
Fichier principal
Vignette du fichier
2001.11959.pdf (192.34 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02476609 , version 1 (13-05-2020)
hal-02476609 , version 2 (31-08-2020)

Identifiers

Cite

Pascal Giorgi, Bruno Grenet, Armelle Perret Du Cray. Essentially optimal sparse polynomial multiplication. ISSAC: International Symposium on Symbolic and Algebraic Computation, Jul 2020, Kalamata, Greece. pp.202-209, ⟨10.1145/3373207.3404026⟩. ⟨hal-02476609v1⟩
295 View
199 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More