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ABSTRACT
A wide variety of processing incorporates a binary detec-
tion test that restricts the set of observations for param-
eter estimation. This statistical conditioning must be
taken into account to compute the Cramér-Rao bound
[1] (CRB) and more generally, lower bounds on the
Mean Square Error (MSE) [2]. Therefore, we propose
a derivation of some lower bounds - including the CRB
- for the deterministic signal model conditioned by the
energy detector [3] widely used in signal processing ap-
plications.

1. INTRODUCTION

Lower bounds on the MSE in estimating a set of deter-
ministic parameters [1] from noisy observations provide
the best performance of any estimators in terms of the
MSE. They allow to investigate fundamental limits of
a parameter estimation problem or to assess the rela-
tive performance of a specific estimator. Historically
the first MSE lower bound for deterministic parameters
to be derived was the CRB [1], which has been the most
widely used since. Its popularity is largely due to its
simplicity of calculation, the fact that in many cases,
it can be achieved asymptotically (high SNR [4] and/or
large number of snapshots [1]) by maximum likelihood
estimators (MLEs), and last but not least, its noticeable
property of being the lowest bound on the MSE of lo-
cally unbiased estimators. This initial characterization
of locally unbiased estimators has been extended first
by Bhattacharyya’s work, and significantly generalized
by Barankin’s work which allows the derivation of the
highest lower bound on MSE since it takes into account
the unbiasedness over the parameter space [1][2][5][6].
Unfortunately the Barankin bound (BB) is generally
incomputable [6]. Numerous works (see references in
[2][6] and [7]) devoted to the computing and tightness of
bounds on MSE have shown that the CRB and BB can
be regarded as key representative of two general classes
of bounds, respectively the Small-Error bounds and the
Large-Error bounds. Indeed, in non-linear estimation
problems three distinct regions of operation can be ob-
served. In the asymptotic region, the MSE of estimators
is small and, in many cases, close to the Small-Error
bounds. In the a priori performance region where the
number of independent snapshots and/or the SNR are
very low, the observations provide little information and
the MSE is close to that obtained from the prior knowl-
edge about the problem. Between these two extremes,
there is an additional ambiguity region, also called the

transition region. In this region, the MSE of MLEs de-
teriorates rapidly with respect to Small-Error bounds
and generally exhibits a threshold behavior correspond-
ing to a ”performance breakdown” [8] highlighted by
Large-Error bounds. As a result, the search for an eas-
ily computable but tight approximation of the BB is
still a subject worth investigation. Therefore, Quinlan-
Chaumette-Larzabal [6] have suggested a new approx-
imation (QCLB) of the BB that allows a better pre-
diction of the SNR value at the start of the transi-
tion region than existing approximations with a com-
parable computational complexity (CRB, Hammersley-
Chapman-Robbins bound (HCRB), McAulay-Seidman
bound (MSB), Abel bound of order 1 (AB1)).
However, in nearly all fields of science and engineering,
a wide variety of processing requires a binary detection
step designed to decide if a signal is present or not in
noise. As a detection step restricts the set of observa-
tions available for parameter estimation, any accurate
MSE lower bound must take into account this initial
statistical conditioning. As a contribution to the the-
oretical characterization of the joint detection and es-
timation problem, we propose in the present paper the
derivation of above mentioned approximations of the BB
(CRB, HCRB, MSB, AB1, QCLB) for the deterministic
signal model conditioned by the energy detector, which
is a simple realizable test widely used in signal process-
ing applications [3]. We therefore complete the charac-
terization obtained for the CRB in [9].

2. DETERMINISTIC SIGNAL AND
ENERGY DETECTOR

In many practical problems of interest, the received data
samples is a vector x consisting of a bandpass signal that
can be modelled as a mixture of a complex signal sθ and
a complex circular zero mean Gaussian noise n: x = sθ+
n. We consider the case where the signal of interest sθ

is dependent upon the vector of unknown deterministic
parameters θ. The noise covariance matrix Cn does not
depend upon θ. Therefore x ∼ CNL (mx,Cx), i.e. is
complex circular Gaussian of dimension L with mean
mx = sθ and covariance matrix Cx (Cx = Cn), with
p.d.f. [3, §13]:

fθ (x) = fCNL (x;mx (θ) ,Cx) =
e−(x−sθ)HC−1

x (x−sθ)

πL |Cx|
(1)

In practical problems, the signal of interest sθ is not
always present. Such problems require first a binary



detection step (decision rule) to decide if the signal of
interest sθ is present or not in the noise before running
an estimation scheme [2]. Let us recall that optimal
decision rules are based on the exact statistics of the
observations [3, §3]. Their expressions require knowl-
edge of the p.d.f. of observations under each hypothesis
and the a priori probability of each hypothesis, if known
(Bayes criterion). If no a priori probability of hypothe-
ses is available, then the likelihood ratio test (LRT) is
often used for binary hypothesis testing. Unfortunately
these optimal detection tests are generally not realizable
since they almost always depend at least on one of the
unknown parameters θ. The LRTs are intended for pro-
viding the best attainable performance of any decision
rule for a given problem [3, §3]. Therefore, a common
approach to designing realizable tests is to replace the
unknown parameters by estimates, the detection prob-
lem becoming a composite hypothesis testing problem
(CHTP) [3, §6]. Although not necessarily optimal for
detection performance, the estimates are generally cho-
sen in the maximum likelihood sense, thereby obtain-
ing the generalized likelihood ratio test (GLRT). If Cx

is known and sθ supposed to be completely unknown,
then the GLRT reduces to the energy detector [3, §7.3]:

∥∥W−1
x x

∥∥2
= xHC−1

x x ≷ T, Cx = WxWH
x (2)

where T is the detection threshold. It is a simple prac-
tical realizable detection test that can be used in any
application. Additionally from a theoretical standpoint,
one can expect the detection performance of the GLRT
derived from the parametric model of sθ to be some-
where between that of the Neyman-Pearson detector
and the energy detector [3, §7.3].

3. BACKGROUND ON THE QCLB

The general approach lately introduced in [6] allows to
revisit existing bounds by exploring the unbiasedness
assumptions, from its weakest formulation (CRB) to
its strongest formulation (BB). This approach has sug-
gested a new approximation (QCLB) of the BB that al-
lows a better prediction of the SNR threshold value than
existing approximations (CRB, HCRB, MSB, AB1),
with a comparable computational complexity. Indeed,
all mentioned lower bounds can be computed via the
QCLB. This versatility will be used in §4 to take into
account the detection test. For the sake of simplicity,
we focus on the estimation of a single real function g (θ)
of a single unknown real deterministic parameter θ. Ω
denotes the observation space, Θ the parameter space,
FΩ the real vector space of square integrable functions
over Ω and fθ (x) the p.d.f. of observations. A funda-
mental property of the MSE of a particular estimator
ĝ (θ0) (x) ∈ FΩ of g (θ0), where θ0 is a selected value of
the parameter θ, is that it is a norm associated with a
particular scalar product 〈 | 〉θ:

MSEθ0

[
ĝ (θ0)

]
=

∥∥∥ĝ (θ0) (x)− g (θ0)
∥∥∥

2

θ0

where:

〈g (x) | h (x)〉θ0
= Eθ0 [g (x) h (x)]

=
∫

Ω

g (x)h (x) fθ0 (x) dx

In the search for a lower bound on the MSE, this prop-
erty allows the use of two equivalent fundamental re-
sults: the generalization of the Cauchy-Schwartz in-
equality to Gram matrices (generally referred to as the
“covariance inequality”) and the minimization of a norm
under linear constraints introduced hereinafter. Let U
be an Euclidean vector space of any dimension (finite
or infinite) on the body of real numbers R which has a
scalar product 〈 | 〉. Let (c1, . . . , cK) be a free family of
K vectors of U and v = (v1, . . . , vK)T a vector of RK .
The problem of the minimization of ‖u‖2 under the K
linear constraints 〈u | ck〉 = vk, k ∈ [1,K] then has the
solution:

min
{
‖u‖2

}
= vT G−1v for uopt =

K∑

k=1

αkck (3)

(α1, . . . , αK)T = α = G−1v, Gn,k = 〈ck | cn〉

As formulated by Barankin [5], the ultimate constraint
that an unbiased estimator ĝ (θ0) (x) of g (θ0) should
verify is to be unbiased for all possible values of the
unknown parameter:

Eθ

[
ĝ (θ0) (x)

]
= g (θ) , ∀θ ∈ Θ (4)

In this case the problem of interest becomes:

min
{

MSEθ0

[
ĝ (θ0)

]}
under Eθ

[
ĝ (θ0) (x)

]
= g (θ) ,

(5)
∀θ ∈ Θ and corresponds to the search for the locally-
best unbiased estimator. Unfortunately, it is generally
impossible to find an analytical solution of (5) providing
the BB. Nevertheless the BB can be approximated by
discretization of Barankin unbiasedness constraint (4).
A general approach introduced in [6] consists in parti-
tioning the parameter space Θ in N real sub-intervals
In = [θn, θn+1[ where (4) is piecewise approximated by
the constraints, θn + dθ ∈ In:

Eθn+dθ

[
ĝ (θ0) (x)

]
= g (θn + dθ) + o

(
dθLn

)
(6)

Provided that both fθ (x) and g (θ) can be devel-
oped in piecewise series expansions of order Ln, then
min

{
MSEθ0

[
ĝ (θ0)

]}
under (6) is easily obtained us-

ing (3) [6]. Designating the BB approximations ob-
tained as N -piecewise BB approximation of homoge-
neous order L, if on all sub-intervals In the series expan-
sions are of the same order L, and of heterogeneous or-
ders {L1, ..., LN} if otherwise, this approach suggests a
straightforward practical BB approximation: the QCLB
based on a N +1-piecewise BB approximation of homo-
geneous order 1 defined by the constraints:



• Eθn+dθ

[
ĝ (θ0) (x)

]
= g (θn + dθ)+o (dθ) , θn+dθ ∈ In

The QCLB is therefore a generalization of the CRB
based on a 1-piecewise BB approximation of homoge-
neous order 1:

• Eθ0+dθ

[
ĝ (θ0) (x)

]
= g (θ0 + dθ) + o (dθ) , θ0 + dθ ∈ Θ

is as well a generalization of the usual BB approxima-
tion used in the open literature, i.e. the MSB, based on
an N + 1-piecewise BB approximation of homogeneous
order 0:

• Eθn+dθ

[
ĝ (θ0) (x)

]
= g (θn + dθ)+O (dθ) , θn+dθ ∈ In

and a generalization of the AB1 based on a N + 1-
piecewise BB approximation of heterogeneous order
{1, 0, ..., 0}:

•




Eθ0+dθ

[
ĝ (θ0) (x)

]
= g (θ0 + dθ) + o (dθ)

Eθn+dθ

[
ĝ (θ0) (x)

]
= g (θn + dθ) + O (dθ)

where θ0 + dθ ∈ I0, θn + dθ ∈ In>1.

For any set of N + 1 test points {θn}[1,N+1] = {θ0} ∪
{θn}[1,N ] (or set of N + 1 sub-intervals In), the QCLB
verify QCLB ≥ AB1 ≥ max {MSB, CRB} and is given
by:

QCLB = vT

[
MS C
CT EFI

]−1

v (7)

where:

v =
(

∆gT ,

(
. . . ,

∂g(θn)
∂θ

, . . .

))T

∆gT = (. . . , g(θn)− g(θ0), . . .)

MSn,l = Eθ0

[
fθn (x) fθl

(x)
fθ0 (x)2

]

Cn,l = Eθ0

[
∂ ln fθl

(x)
∂θ

fθn (x) fθl
(x)

fθ0 (x)2

]

EFIn,l = Eθ0

[
∂ ln fθn (x)

∂θ

∂ ln fθl
(x)

∂θ

fθn (x) fθl
(x)

fθ0 (x)2

]

MS is the Mac-Aulay Seidman matrix, EFI stands for
the Extended Fisher Information matrix, as it reduces to
the FI (Fisher Information) when the set of test points
is reduced to θ0 only. C is a kind of ”hybrid” matrix.
An immediate generalization consists of taking their
supremum over sub-interval definitions (set of test
points).

4. CONDITIONAL LOWER BOUNDS

In this section, we provide an extension of QCLB ana-
lytical expression - and therefore of the CRB, HCRB,
MSB and AB1- by taking into account the energy de-
tector. Indeed, if D is a realizable conditioning event,
conditional bounds are obtained by substituting D and

fθ (x | D) for Ω and fθ (x) in the various expressions [2]:

MSn,l = Eθ0

[
fθn (x | D) fθl

(x | D)
fθ0 (x | D)2

| D
]

Cn,l = Eθ0

[
∂ ln fθl

(x | D)
∂θ

fθn
(x | D) fθl

(x | D)
fθ0 (x | D)2

| D
]

EFIn,l = Eθ0

[
∂ ln fθn

(x | D)
∂θ

∂ ln fθl
(x | D)

∂θ

fθn
(x | D) fθl

(x | D)
fθ0 (x | D)2

| D
]

If fθ (x) is given by (1) and D =
{
x | xHC−1

x x ≥ T
}

is
the event of the energy detector (2), then [9]:

PD (sθ) =
∫

D

fθ (x) dx =
∫

t≥T

fX 2
2L

(
t; sH

θ C−1
x sθ

)
dt (8)

where fX 2
2L

(t; λ) is the p.d.f. of a non central chi-
squared random variable with 2L degrees of freedom
and noncentrality parameter λ:

fX 2
2L

(t;λ) = e−(t+λ)IL−1

(
2
√

λt
) (√

t

λ

)(L−1)

(9)

IL (z) being the modified Bessel functions of the first
kind [3, p 26]. Then a few lines of algebra leads to:

fθn (x | D) fθl
(x | D)

fθ0 (x | D)
= (MSn,l) fCNL

(x | D;mx,Cx)

mx = sθn + sθl
− sθ0

MSn,l = e
2 Re

{
(sθn−sθ0)

H
C−1

x (sθl
−sθ0)

}

PD (sθ0)PD (sθn + sθl
− sθ0)

PD (sθn)PD (sθl
)

(10)

Let us denote E [x | D] =
∫

D

xfCNL (x | D;mx,Cx) dx.

Since ∂ ln fθ(x|D)
∂θ = 2 Re

{
∂sH

θ

∂θ C−1
x (x− sθ)

}
− ∂ ln PD(sθ)

∂θ ,
then:

EFIn,l = (MSn,l)E

[
∂ ln fθn (x | D)

∂θ

∂ ln fθl
(x | D)

∂θ
| D

]

EFIn,l = (MSn,l)

[
2 Re

{
∂sH

θn

∂θ
C−1

x An,lC−1
x

∂sθl

∂θ

}
(11)

+2Re

{
∂sH

θn

∂θ
C−1

x Bn,l

(
C−1

x

)T ∂s∗θl

∂θ

}

+
∂ ln PD (sθn)

∂θ

∂ ln PD (sθl
)

∂θ

−2
∂ ln PD (sθl

)
∂θ

Re

{
∂sH

θn

∂θ
C−1

x (E [x | D]− sθn)

}

−2
∂ ln PD (sθn)

∂θ
Re

{
∂sH

θl

∂θ
C−1

x (E [x | D]− sθl
)

}]



Cn,l = (MSn,l)E

[
∂ ln fθl

(x | D)
∂θ

| D
]

Cn,l = (MSn,l)

[
2Re

{
∂sH

θl

∂θ
C−1

x (E [x | D]− sθl
)

}
(12)

− ∂ ln PD (sθl
)

∂θ

]

where:

An,l = E
[
(x− sθl

) (x− sθn
)H | D

]

= E
[
xxH | D]− E [x | D] sH

θn
− sθl

E [x | D]H

+sθl
sH
θn

Bn,l = E
[
(x− sθl

) (x− sθn
)T | D

]

= E
[
xxT | D]− E [x | D] sT

θn
− sθl

E [x | D]T

+sθl
sT
θn

and [9]:

E [x | D] =
1− PL+1 (mx)
1− PL (mx)

mx

E
[
xxH | D]

=
1− PL+1 (mx)
1− PL (mx)

Cx+
1− PL+2 (mx)
1− PL (mx)

mxmH
x

E
[
xxT | D]

=
1− PL+2 (mx)
1− PL (mx)

mxmT
x

∂ ln PD (sθ)
∂θ

=
(

PL (sθ)− PL+1 (sθ)
1− PL (sθ)

)
∂

(
sH
θ C−1

x sθ

)

∂θ

PD (sθ) = 1− PL (sθ)

PL (s) =

T∫

0

fX 2
2L

(
t; sH

θ C−1
x sθ

)
dt

Finally the conditional QCLB is given by (7) computed
according to (10)(11)(12) and the conditional MSB,
AB1, CRB are given by:

MSB = ∆gT [MS]−1 ∆g

AB1 = vT

[
MS c
cT EFI0,0

]−1

v,





c = (. . . ,Cn,0, . . .)
T

v =
(
∆gT , ∂g(θ0)

∂θ

)T

CRB =
∂g(θ0)

∂θ
[EFI0,0]

−1 ∂g(θ0)
∂θ

where [9]:

EFI0,0 = 2 Re

{
∂sH

θ0

∂θ
C−1

x

∂sθ0

∂θ

}(
1− PL+1 (θ0)
1− PL (θ0)

)

+ wL (θ0)

(
∂

(
sH
θ0

C−1
x sθ0

)

∂θ

)2

wL (θ) =
2PL+1 (θ)− PL (θ)− PL+2 (θ)

1− PL (θ)

−
(

PL+1 (θ)− PL (θ)
1− PL (θ)

)2
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Figure 1: MSE of MLE and MSE Lower Bounds con-
ditioned or not by the Energy Detector versus SNR,
L = 10, PFA = 10−3

5. SINGLE TONE THRESHOLD ANALYSIS

Let us consider the reference estimation problem where
the vector x is modelled by:

x = aψ(θ) + n

ψ(θ) =
[
1, ej2πθ, ..., ej2π(L−1)θ

]T

, θ ∈ ]−0.5, 0.5[

i.e. sθ = aψ(θ) and Cx = Id, a2 being the SNR (a > 0).

Then ∂ ln PD(sθ)
∂θ = 0 and θ̂ML= max

θ

{
Re

[
ψ(θ)Hx

]}

For any set of N + 1 test points {θn}[1,N+1], only the
MSB, the AB1 and the QCLB are of a comparable com-
plexity. Nevertheless, we also include in the compar-
ison the HCRB as it is the simplest representative of
Large Errors bounds. For the sake of fair comparison
with the HCRB which is the supremum of the MSB
where {θn}[1,2] = {θ0, θ0 + dθ}, the MSB, AB1, QCLB
are also computed as supremum over the possible val-
ues of {θn}[1,N+1]. For the sake of simplicity {θn}[1,3] =
{θ0, θ0 + dθ, θ0 − dθ}. We consider the reference esti-
mation case where θ0 = 0.

Figure (1) compares the various bounds, conditioned or
not by the Energy Detector, as a function of SNR in the
case of L = 10 samples and PFA = 10−3. The MSE of
the MLE is also shown in order to compare the thresh-
old behaviour of the bounds (106 trials). As expected,
the QCLB keeps providing a significant improvement in
the prediction of the SNR threshold value, whatever the
observations are conditioned or not (same results can be
observed for L = 2, 4, ..., 32 and PFA = 10−1, 10−2, ...
, 10−6).

A more unexpected and non intuitive result is the in-
crease of the MSE of the MLE in the transition region
as the detection threshold increases (as the PFA de-
creases) highlighted by figure (2). Indeed, intuitively,
a detection step is expected to decrease the MSE of the
MLE by selecting instances with relatively high signal
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Figure 2: MSE of MLE, CRB and QCLB conditioned
or not by the Energy Detector versus SNR, L = 10,
PFA = 10−2, 10−3, 10−4

energy - sufficient to exceed the detection threshold -
and disregarding instances belonging to the a priori re-
gion that deteriorate the MSE. The former analysis is
reinforced theoretically by the lower bounds behavior
(CRB and QCLB) in figure (2) and has also been rein-
forced so far practically by results obtained in [2] for the
monopulse ratio estimation problem under a stochastic
signal model. Again, if we consider the stochastic case,
i.e. a ∼ CN 1 (0, snr), then θ̂ML = max

θ

{∣∣ψ(θ)Hx
∣∣2

}

and one can check that the behavior of its MSE is the
opposite and true to the common intuition.
This paradoxical result clearly addresses a challenging
theoretical issue that will have to be the subject of fur-
ther research.

6. CONCLUSION

In the present paper, we have derived lower bounds on
MSE (CRB, HCRB, MSB, AB1, QCLB) for the deter-
ministic signal model conditioned by the Energy Detec-
tor. This results will be useful to update the estimation
performance analysis for a wide variety of processing
including the Energy Detector. Additionally, we have
shown that the QCLB keeps providing a significant im-
provement in the prediction of the SNR threshold value
when the observations are conditioned, in comparison
with the MSB (the usual BB approximation in the open
literature [7]).
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