
HAL Id: lirmm-00086098
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00086098v1

Submitted on 17 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronizer Based on Operational Transformation for
P2P Environments
Jean Ferrié, Michelle Cart

To cite this version:
Jean Ferrié, Michelle Cart. Synchronizer Based on Operational Transformation for P2P Environments.
06039, 2006, pp.23. �lirmm-00086098�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00086098v1
https://hal.archives-ouvertes.fr

Synchronizer Based on Operational Transformation

 for P2P Environments

Michelle CART, Jean FERRIÉ
LIRMM / University Montpellier 2

161, rue Ada - 34392 Montpellier (France)
{cart, ferrie}@lirmm.fr

Abstract
Reconciling divergent copies is a common problem encountered in distributed or mobile systems, asynchro-
nous collaborative groupware, concurrent engineering, software configuration management, version control
systems and personal work involving several mobile computing devices. Synchronizers provide a solution
by enabling two divergent copies of the same object to be reconciled. Unfortunately, a master copy is gener-
ally required before they can be used for reconciling n copies, otherwise copy convergence will not be
achieved. This paper presents the principles and algorithm of a Synchronizer which provides the means to
reconcile n copies, without discriminating in favour of any particular copy. Copies can be modified (concur-
rently or not) on different sites and the Synchronizer we propose enables them to be reconciled pairwise, at
any time, regardless of the pair, while achieving convergence of all copies. For this purpose, it uses the
history of operations executed on each copy and Operational Transformations. It does not require a central-
ised or ordering (timestamp, state vector, etc.) mechanism. Its main advantage is thus to enable free and lazy
propagation of copy updates while ensuring their convergence – it is particularly suitable for P2P environ-
ments in which no copy should be favoured.

Keywords
Replication, copy consistency, reconciliation, history merge, synchronizer, operational transformation

1. Introduction
Users involved in mobile computing, concurrent engineering or distributed collaborative work, generally
work on copies of shared objects. For instance, in mobile computing a user can replicate an object (calendar,
file, address book, etc.) on mobile devices (Laptop, PDA, etc.) before disconnection and then manipulate
these copies in disconnected work and on different devices. In asynchronous or multi-synchronous [Do95]
collaborative groupware and distributed engineering, each user manages its private copy of the shared object
(document, map, etc.) and propagates its updates to the others (or makes them public) when connected. In
both cases, as each copy of the same object can be modified separately and independently of the others,
copies could diverge and therefore have to be reconciled [SS05].

In this context, a Synchronizer is a tool that enables two copies of the same object to be reconciled in order
to obtain an integrated view of the object. It takes two divergent copies of the object as an input and then
returns the copies in the same state, after somehow merging the updates. For this merging, Synchronizers
use a mechanism based on the state of copies or on the history and semantic properties of operations exe-
cuted on these copies.

File Synchronizers (Microsoft’s Briefcase, Power Merge, Windows File Synchronizer, Unisson [BP98], etc.)
consider the object to be a file hierarchy. They allow create/delete actions on files and directories, and also
updates, except when they concern two copies of the same file to be propagated from one copy of the file
system to another. Solving the conflict is delegated to the user when updates concern two copies of the same
file. Data Synchronizers (Palm Pilot Hotsync, Puma Technology Intellisync, Microsoft ActivSync, Apple
I-Sync, etc.) allow reconciling and merging of updates relative to two copies of the same file (calendar,

 - 1 -

address book, etc.), while delegating to the user conflicting situations which generally correspond to non-
commutative actions. Several merge tools [MD94] presently used in the field of collaborative work and also
in software engineering can be considered as Data Synchronizers – they allow two copies of the same file to
be reconciled in accordance with the data type (text [Be90, Ti85], UML or XML [TKS03]), after having
detected divergences using, for instance, Diff algorithms [CG97, MD94]. In another context, a reconciliation
platform called IceCube [KRS01], was proposed in order to reconcile divergent copies and to merge (in a
combinatory manner) their histories using semantic properties of operations executed on these copies and
also using two kinds of constraints, i.e. static (e.g. when concerning non-commutative operations) and dy-
namic (e.g. when referring to object state). All of these merging and synchronizing tools, which were ini-
tially designed for reconciling two copies, can also be used for reconciling n copies (with n > 2), on condi-
tion that a master copy exists and that each copy is reconciled with the master copy, otherwise copy conver-
gence will not be achieved.

Synchronizing multiple copies of the same object can be obtained in a synchronous or asynchronous mode.
In synchronous methods, all the copies play the same role and no copy is favoured. Among these, methods
based on Operational Transformations [EG89], and developed for collaborative (CSCW) and real-time
environments [RNG96, SYZ97, SCF97, SCF98, SE98, VCF00, SXS04, FVD04] maintain copy consistency
of the same object by memorizing operations in histories and exploiting their semantic properties. In these
environments, every operation generated by a user is immediately executed on his copy before broadcasting
to all the other copies in order to be executed on them. As concurrent operations are not necessarily executed
in the same order on each copy, they need to be ordered (by means of timestamps, state vectors or se-
quencer) and then transformed before being executed using, for instance, Operational Transformation, to
achieve copy convergence. These methods used to synchronize n copies are limited because of their syn-
chronous aspect and because some ordering mechanisms (timestamps, state vectors, etc.) must be available.
Hence, they are not suitable for P2P environments.

With asynchronous methods, synchronizing multiple copies involves pairwise copy synchronization. To our
knowledge, all published methods require a master copy, also called primary or public copy. Every copy
therefore must be separately resynchronized with the master copy to achieve copy convergence. Examples of
such methods are given by Configuration Management Environments [Be90, CW98, Es00], most of which
are based on the Copy/Modify/Merge paradigm. Briefly, the master copy of the object is stored in the public
space. Two (or several) users can simultaneously work on their private copy of the object, provided it has
been copied in their private workspace. User U1 can then modify his copy and propagate modifications to the
master copy by committing, provided that no user has committed from the time when user U1 downloaded
the object copy into his workspace and the one he wants to commit. If this is not the case, user U1 needs to
synchronize his copy with the last committed version and to download the latter into his workspace before
merging his modifications with this last committed version using merge tools [MD94]. Version control
systems based on these principles were specified to synchronize text files [Be90, Ti85], XML files [TKS03]
or graphical objects [IN04, IN04b]. Copies are reconciled using state of their representation [Be90, Ti85,
TKS03, IN04] and more recently history and semantic properties of operations [IN04b].

A Synchronizer actually has the same objective as an asynchronous method. From this standpoint, a generic
data Synchronizer was proposed in [MSO03] to synchronize updates on n copies (pairwise) using the same
master copy. This Synchronizer is built on an adaptation of an algorithm which was initially proposed in the
context of distributed real-time collaborative (synchronous) environments [VCF00]. It exploits semantic
properties and histories of operations executed on the copies and merges two histories using Operational
Transformations [EG89].

The fact that a master copy is required to (pairwise) synchronize updates of n copies of the same object is
incompatible with a P2P environment in which no copy should be favoured. Indeed, a P2P environment
offers a completely decentralised approach for sharing objects by permitting replication of copies of the
same object from site to site. Unfortunately, in existing P2P systems, there is only partial or no copy consis-
tency, i.e. when a copy is updated the modification is not propagated to all the other copies. Although this
aspect is not important for musical files, it may be for other applications. In popular P2P systems involving

 - 2 -

millions of users, i.e. Gnutella and Kazaa, manipulated objects are read-only files, so updates are not taken
into account. In Freenet [CMH02], updates are partially taken into account insofar as they are propagated
from origin sites to neighbour sites when connected. In P-Grid [ACD03], update propagation is ensured by
an algorithm offering probabilistic guarantees for copy consistency. However, the main drawback is that
updates on copies of the same object can only come from the origin site of this object, i.e. from a master
copy.

In this paper, we present a Synchronizer that allows copy consistency, without discriminating in favour of
any particular copy. Even though the copies may have been modified (concurrently or not) on different sites,
the Synchronizer we present, can reconcile them pairwise, regardless of the pair, and copy consistency is
always ensured. The main advantage of this Synchronizer is that it allows free and lazy propagation of
updates originating from the different copies; so, it is particularly suitable for P2P environments in which no
copy is favoured. It uses the history of operations executed on each copy and is based on Operational Trans-
formations.

The paper is set up as follows. Section 2 reviews the Synchronizer principle as well as the model, based on
synchronous collaborative algorithms and on Operational Transformations, that inspired our proposal. Sec-
tion 3 presents the algorithm of a Synchronizer, called MOT1, that ensures copy reconciliation while requir-
ing a master copy. Section 4 highlights the limits of MOT1 when no master copy is available. Then we
outline the principles and the algorithm of an original Synchronizer, called MOT2, which enables any two
copies to be reconciled and therefore any number of copies, without favouring any particular copy, but while
ensuring their convergence. Finally, some properties of histories produced by MOT2 are described and
MOT2 proof is provided.

2. Objectives and Underlying Model

2.1 Synchronizer Principle

In the following, we consider an object (i.e. text, graphics, file, file system, XML tree, calendar, etc.) can be
handled using definite operations {op} and is replicated on different sites. With each copy C of the object,
the history H of operations that have been executed on C is associated. Initially, the copies are identical and
they correspond to the same object state, then they progress independently of each other on their own site,
which causes them to diverge. A Synchronizer (see Figure 1) is able to reconcile two divergent copies of the
same object. As an entry, it takes both copies to be reconciled as well as their associated histories, thus
producing both identical copies as well as their corresponding histories which have become equivalent. A
couple (C, H), where C is the copy and H its associated history, is indicated by the name S of the site that
manages the copy C – so we may talk about synchronizing either some copies or some sites. Synchronizing
sites Si and Sj is denoted Synch(Si, Sj).

Synch (Si , Sj)

Si : (Ci , Hi) Sj : (Cj , Hj) Before synchronization :
Ci ≠ Cj

Hi ≠ Hj

Si : (Ci , Hi) Sj : (Cj , Hj)

After synchronization :
Ci = Cj identity of copies
Hi ≡ Hj equivalence of histories

Figure 1. Synchronizer principle

Two kinds of synchronizers are considered. A Synchronizer with a master site assumes the existence of a
particular site, called the master site, and only permits synchronization between any site and the master site.
On the contrary, a Synchronizer without a master site permits synchronization between any two sites.

The Synchronizers we present here rely on an algorithm that can merge the histories Hi and Hj associated
with copies and obtain two identical histories. This algorithm can be either centralised (so it runs on a single
site) or distributed (so it runs on two sites, each one managing one copy and the associated history).

 - 3 -

The following sections review the different principles underlying this algorithm: copy synchronization using
synchronous collaborative algorithms, especially using SOCT4 as well as Operational Transformations.

2.2 Synchronous Collaborative Algorithms and Operational Transformations

Collaborative work often relies on the use of shared objects that are concurrently accessed by different users.
In order to conciliate both availability and reactivity constraints when the environment is distributed, objects
are generally replicated so that a copy is associated with every site or user. Therefore, the purpose of syn-
chronous collaborative algorithms is to maintain the consistency of these copies in real-time. The real-time
aspect means that an operation generated by a user is immediately executed on his copy and integrated as
soon as possible on the other copies. Copy consistency involves three properties: (1) causality preservation
among users' actions, (2) user intention preservation, and (3) copy convergence.

The difference between the various algorithms [EG89, RNG96, SYZ97, SCF97, SCF98, SE98, VCF00]
concerns how they achieve integration of an operation. From a general standpoint, the history of operations
whose execution leads to the current state is required for each object. When an operation op is generated at a
site, it is immediately executed on the current state of the copy at this site and appended to the history, then
broadcast to the other sites. The reception of an operation op by a site and its integration into the history at
this site must take operations which are concurrent to op and already executed on the copy into account in
order to determine the operation op' whose execution on the current state of the copy realises the same
intention as the operation op. The transformation of op into op' is achieved using transposition functions,
forward transposition and backward transposition [SCF97, SE98], called Operational Transformations.
However, to guarantee copy convergence, Operational Transformations must meet two conditions called C1
and C2 [EG89, RNG96]. We can distinguish two kinds of collaborative algorithms:

1. algorithms [SCF98, SE98] for which the histories associated with the copies can be different (i.e.
concurrent operations may be ordered in different ways according to the sites) while being equiva-
lent. These algorithms use both forward transposition and backward transposition and conditions C1
and C2 must be met.

2. algorithms [SYZ97, VCF00] for which the histories associated with the copies are identical (i.e.
concurrent operations appear in the same order on all the sites). In this class, the SOCT4 algorithm
[VCF00] has a twofold advantage. It only uses forward transposition, and secondly condition C2
does not have to be met.

2.3 Forward Transposition

Forward transposition is used when concurrent and non-commutative operations are executed on copies in
different orders. To illustrate this concept, let us consider two copies of an object, O1 and O2, that are in the
same initial state. Let us suppose that operation op1 [resp. op2] executed on copy O1 [resp. O2] leads to the
state O1.op1 [resp. O2.op2]. Later, the execution of op2 [resp. op1] on copy O1 [resp. O2] leads to the state
O1.op1.op2 [resp. O2.op2.op1]. When operations are not commutative1, the resulting states are not equivalent
(O1.op1.op2 ≢ O2.op2.op1). In these conditions, the forward transposition allows transformation of an opera-
tion before its execution so that it takes all concurrent operations serialized before it into account. In short,
the forward transposition function, denoted in the following as Transpose-forward(op1, op2), is specific to a
couple of concurrent operations (op1, op2) which are defined from the same object state. As a result, it gives
the operation op2' (also written as op2op1) which has the same effect as op2 but which is defined from the
state resulting from the execution of op1, and op2' is called the forward transposition of op2 with op1. To
guarantee copy convergence, Operational Transformations and particularly forward transpositions must meet
condition C1 [EG89, RNG96] which is summed up by state equivalence: ∀Oi, Oi.op1.op2' ≡ Oi.op2.op1'. It
generally must meet a further condition C2 which is not detailed.

Example 1. Let us assume that object O is represented as a string of characters and the operation in-
sert(p, c) inserts character c at position p in the string. Copies O1 and O2 are in the same initial state

1 That concerns the "forward" commutativity [We88], as opposed to the "backward" commutativity.

 - 4 -

"efect". The operation op1 = insert(2,'f') executed on copy O1 adds 'f' at position 2, whereas operation
op2 = insert(6,'s'), which is concurrently executed on copy O2, adds 's' at the end of the string. Execu-
tion of these operations in different orders leads to copies in divergent states: O1.op1.op2 ≡ "effecst"
and O2.op2.op1 ≡ "effects". To guarantee copy convergence, operation op2 [resp. op1] has to be forward
transposed with op1 [resp. op2] before being executed on copy O1 [resp. O2] so as to take the concur-
rent operation op1 [resp. op2] serialized before it into account, in order to obtain: O1.op1.op2' ≡
O2.op2.op1' ≡ "effects". The transposition function to be used and meeting condition C1 is as follows:

Transpose-forward(insert(p1, c1), insert(p2, c2)) =
 case p1 ? p2 of
 p1 < p2 : return insert(p2 +1, c2) ;
 p1 > p2 : return insert(p2 , c2) ;
 p1 = p2 : if c1 = c2 then return id ;
 elsif pr(c2) > pr(c1) then return insert(p2 , c2) ;
 else return insert(p2+1 , c2) ; endif ;
 endcase.

The forward transposition of op2 = insert(6,'s') with op1 here would be op2' = Transpose-
forward(insert(2,'f'), insert(6,'s')) = insert(7,'s'), whereas the forward transposition of op1 = insert(2,'f')
with op2 would give the operation op1' = op1 as a result.

2.4 Relationships between Operations and Histories

By convention, we will say that an operation is executed on a site, when it is executed on the copy located at
this site.

Definition 1. The history Hi, associated with the copy Ci at site Si, memorizes the sequence of operations
that transforms the copy Ci from its initial state into its current state, when executed in this order on copy Ci.
More precisely, a history Hi is constituted by elements such as <Idop, Sop, op> where op is an operation
executed on the copy associated with Hi, Sop the site where the operation was generated and Idop the opera-
tion identifier. Operations stored in the history Hi at site Si have been either generated at Si and therefore
immediately executed on Si, or were generated at another site Sj and executed on Si as a result of synchroniz-
ing Si with Sj or with another site.

Two operations are related by a causal ordering relation or are concurrent.

Definition 2. Given any two operations opk and opl, generated at sites Sopk
 and Sopl

 we say that opk causally
precedes opl (noted opk →C opl) iff: (i) Sopk

 = Sopl
and opk was generated before opl, or (ii) Sopk

 ≠ Sopl
 and opl

was generated after the execution of opk by site Sopl
, or (iii) there is an operation opm such that opk →C opm

and opm →C opl.

Therefore, any new operation op generated at Si and executed on the current state of the copy Ci is such that:
∀opi ∈ Hi, then opi →C op.

Definition 3. Operations opk and opl are said to be independent or concurrent (noted opk // opl) iff: not (opk

→C opl) and not (opl →C opk).

The relation →C expresses the potential causality between the operations. When opk causally precedes opl,
opl is assumed to be dependent on the effects of opk. In other words, the generation of opl takes the effects
produced by the execution of opk into account. Conversely, when opk and opl are concurrent, then these
operations are completely independent and neither one has been affected by the other.

The order of operations in Hi expresses precedence.

Definition 4. Given two operations opk and opl in the history Hi, opk is said to precede opl (noted opk →Hi

opl) iff opk appears before opl in Hi.

 - 5 -

Let us note that precedence is compatible with the causal ordering relation, i.e. if opk →C opl then
opk →Hi

 opl. However, two operations may belong to the same history as a result of a synchronization, with-
out having a causal precedence relation between them.

2.5 Principle of Integration in SOCT4

This section details the integration procedure of SOCT4 [VCF00], which is the basis of our synchronizer
proposal. In SOCT4, operations are memorized in the histories associated with the copies according to a
global unique order. To this end, a timestamp delivered by a sequencer is associated with each operation,
and determines its position in every history. The integration procedure is executed by a site whenever an
operation generated and broadcast by a remote site is received (reception is sequential in the timestamp
order). It determines the operation to be executed on the current state of the local copy and inserts the re-
ceived operation into the history at the position corresponding to its timestamp (see Figure 2).

...
1

History H
before integration

s

op
remote operation
with timestamp t

op op op
2 t-1

concurrent operations

seq

...
1

Integration
of op

... ...
op op op

2 t-1

forward transposition of
 the concurrent operations

op seq

forward transposition of op

...
1

History H
after integration

s
op op op

2 t-1

forward transposed
concurrent operations

op

op
C1

op
Cm

op
C1

op
Cm

op '
C1

op '
Cm

 operation
 to be executed
on the current state

Figure 2. Integration of an operation in SOCT4

The integration of operation op, with timestamp t, in position t, is based on the assumption that op is defined
on the state resulting from the execution of operations op1 to opt-1 and that all operations located from posi-
tion t (sequence seq) are concurrent to op.

The Integration procedure defined below is called to integrate the remote operation op, received as a triplet
<Idop, Sop, op>, in position t in history HS of site S.

Notations:

CS : copy of the object on site S
HS : representation of the history by a table of items in the form <Idop, Sop, op> ;
 HS[k].operation corresponds to the field op of HS[k]
sizeofHS : number of items in HS

procedure Integration (HS, t, <Idop, Sop, op>) ;

-- Step 1. shift the history to insert <Idop, Sop, op> in position t
for k:= sizeofHS downto t do HS[k+1]:= HS[k] ; end for ;
HS[t]:= <Idop, Sop, op> ; sizeof HS:= sizeofHS +1 ;
-- Step 2. determine the operation to be executed on the current
-- state and transform operations that follow op in HS
for k :=t+1 upto sizeofHS do

 opk:= HS[k].operation ;

 - 6 -

 HS[k].operation:= Transpose-forward(op, opk) ;
 op:= Transpose-forward(opk, op) ;

end for ;
-- Step 3. execute the obtained operation on the copy of S
execute(op, CS) ;

end Integration ;

Step 2 is the essential integration step. Along this step, the operation op is forward transposed with each
operation of seq; the resulting operation, noted opseq, is executed on the current state of the copy. During the
calculation of opseq, each operation of seq is transposed to take the insertion of op in HS into account. More
precisely, considering seq=opc1

.opc2
….opcm

, each operation opci
 of seq is forward transposed with opseq

i-1,
where seqi-1= opc1

.opc2
….opci-1

 is the sequence of operations in seq that precede opci
. So, operation opci

 is
replaced in HS by opci

op seqi-1 with opseq
0 =op. In the Integration procedure, Transpose-forward(op, opk) is the

function that delivers opci
opseqi-1 and Transpose-forward(opk, op) is the function that delivers opseq

i, assuming
that i=k-t.

The memorized history HS does not correspond to the real history (i.e. the sequence of operations actually
executed on the local copy) but it is equivalent to it. The advantage of SOCT4 is that the histories memo-
rized on the different sites converge towards the same history and are finally identical when all operations
have been integrated within all sites.

Note that the integration of an operation in the last position in HS does not require any transposition. It only
involves memorizing a new item. For clarity, we introduce the Append procedure, which in the following
enables us to distinguish the integration with transposition from the integration without transposition.

procedure Append (HS, <Idop, Sop, op>) ;
 sizeofHS:= sizeofHS +1 ;
 HS[sizeofHS]:= <Idop, Sop, op> ;
 execute(op, CS) ;

end Append ;

The validity conditions of the SOCT4 integration procedure may be expressed independently of timestamps
as follows. Given a history HS = HC.seq, the integration of operation op into HS, after HC and before seq, is
correct if conditions (a) and (b) have been met:

(a) : op is defined from the state produced by the execution of operations in HC;

(b) : ∀ op’ ∈ seq, op’ is concurrent to op (i.e. not (op →c op’) and not (op’→c op)).

The history resulting from the integration of op is HC.op.seq', where seq' means that seq operations have
been forward transposed with op to take the insertion of op into account.

3. Synchronizer with a Master Site

3.1 Principle

A Synchronizer with a master site using Operational Transformation was derived from SOCT4 [MOS03].
The master site, that we designate by R, maintains the master copy as well as the history HR of the operations
applied to it from the initial state to obtain the current state. By construction, the master copy is the most up-
to-date copy among all copies of the object. Any site S that wants to resynchronize its copy absolutely must
merge its history HS with the history HR of the master copy. The following describes the merging principle.

Before the merge, the histories HR and HS are identical until index kS, where kS corresponds to the last opera-
tion of the history obtained from the most recent merge of sites R and S. So we have: HS[j] = HR[j], ∀j : 1 ≤ j
≤ kS. Let us call HC this common sub-history (common prefix) of HR and HS and let us designate by hR [resp.
hS] the part of HR [resp. HS] that follows HC. So we get:

HR = HC.hR and HS = HC.hS

 - 7 -

More precisely, hS corresponds to the sequence of operations generated at S since the last synchronization of
S with R and hR corresponds to the operations generated at R or at another site that was synchronized with R.
The hR operations are concurrent to the hS operations.

Merging of histories HR and HS involves two phases (see Figure 3). Each one is a direct application of
SOCT4.

Phase (1): it proceeds on site S and it makes the history HS progress. It involves importing hR and integrating
it into HS from position kS +1. The obtained history is: HS = HC.hR.hS' where hS' is the sub-history hS modi-
fied by forward-transposition to take hR operations into account.

Phase (2): it proceeds on site R and makes the history HR progress. It involves importing hS' and appending
(integrating without transposition) it to HR so as to finally obtain HR.hS'.

Phase (2)

Phase (1)

History HR
before merge

1 op op
2 op

ks+1

. ..
op

ks

...

History HS
before merge

1 op op
2 hS

. ..
op

ks

... History HS
after merge

1 op op
2

. ..
op

ks

...

...

... History HR
after merge

1 op op
2

. ..
op

ks

...

hR

hR

hS'

hR

hS'

ks+1 op

ks+1
op

Figure 3. Merging of histories HS and HR

In the history resulting from the synchronization of HR and HS, note that the sub-history hR derived from the
master site stayed unchanged whereas the sub-history hS generated at site S was forward transposed with hR.
In fact, every operation present in HR before the merge is already in a definitive form (shown in black in the
figure), and after the merge it remains in the same range in history HS. The hS' operations integrated at the
end of HR are also in a definitive form after the merge.

3.2 The MOT1 Algorithm

The principle of the Synchronizer with a master site described above is fulfilled by the history merging
algorithm MOT1 (“Merge based on Operational Transformation”). MOT1 here corresponds to a centralized
algorithm, and it accepts both couples (CR, HR) and (CS, HS) as inputs and reconciles the copies CR and CS by
merging the histories HR and HS. As output, it produces both couples (CR, HR) and (CS, HS), which are iden-
tical. To illustrate the fact that MOT1 is above all an history merging algorithm, we voluntarily overlooked
copies that are only accessed in the Integration and Append procedures.
 procedure MOT1 (HR , HS) ;

-- Look for the prefix common to HR and HS: determine the index kS reached after the most recent
-- merging of sites R and S

 k := kS + 1 ;
while k ≤ sizeofHR loop -- Phase (1): integrate hR into HS

< Idop, Sop , op > := HR[k] ;

 - 8 -

Integration (HS, k, < Idop, Sop , op >) ; -- HR[k] HS[k]
k := k + 1 ;

 endloop ;
while k ≤ sizeofHS loop -- Phase (2): append hS' to HR

< Idop, Sop , op > := HS[k] ;
Append (HR, < Idop, Sop , op >) ; -- HS[k] HR[k]
k := k + 1 ;

 endloop ;
 end MOT1 ;

The history resulting from phase (1) is the final history. Phase (2) only expresses the necessary evolution of
HR from its initial state. So, the processing to be performed on the history of each site is emphasized, thus
making the distribution of MOT1 on both sites easier.

We observe that phases (1) and (2) in MOT1 are not symmetrical. When distributing the MOT1 algorithm,
phase (1) corresponds to the processing to be performed on site S, whereas phase (2) corresponds to the
processing to be performed on site R. So, with MOT1, the roles of sites R and S can be considered as not
symmetrical during the synchronization. Moreover, their roles are fixed once and for all in-so-far as the
master site stays the same for all synchronizations.

The proof of MOT1 is given in Appendix A1. Beyond the fact that it is presented as a centralized algorithm,
MOT1 differs from [MOS03] by the fact that no sequencer is used. A sequencer is needed in SOCT4 to
timestamp and thus to globally order operations broadcast by the various sites. In [MOS03], operation time-
stamping enables the master site to control concurrent synchronizations. In MOT1, timestamping is unneces-
sary as the merge procedure is executed in a critical section. The operation order naturally corresponds to the
order of their integration into the master site history HR.

Example 2 illustrates a succession of synchronizations of sites S2 and S3 with the master site S1, by using
MOT1. The following notations are used. Synch(Si, Sj) means synchronization of sites Si and Sj, where Si is
the master site; Synch(Si, Sj) ⇒ introduces the history resulting from synchronization of Si and Sj. The
sequence of operations generated at site Si between its (n-1)th and nth synchronization is designated by hi[n];
hi[n]' means that operations in hi[n] have been forward transposed during the synchronization of Si with
another site (merging hi[n] with another history).

Example 2. Initially, all copies of the object are in the same state; then sites progress independently
from each other (see Figure 4). The history resulting from the first synchronization between S2 and S1
is: Synch(S1, S2) ⇒ h1[1].h2[1]' (italics are used to highlight sequences of operations that have been
modified by transposition during the synchronization). Then S2 and S1 continue to progress independ-
ently. Further synchronization of S3 and S1 leads to the resulting history: Synch(S1, S3) ⇒
h1[1].h2[1]'.h1[2].h3[1]', where h3[1] has been forward transposed with the master site history. Just be-
fore resynchronizing S2 and the master site S1, the respective histories of S2 and S1 are :

H2 = h1[1].h2[1]'.h2[2] and H1 = h1[1].h2[1]'.h1[2].h3[1]'.h1[3].

Synchronizing S1 and S2 leads to the result: Synch(S1, S2)⇒ h1[1].h2[1]'.h1[2].h3[1]'.h1[3].h2[2]'.

All copies converge towards the same state and will be identical when, in the absence of newly gener-
ated operations, all sites get resynchronized with the master site S1 (after S3 has been resynchronized
with S1, in the absence of new operations generated by S2, S3 and S1).

 - 9 -

h2[2]

h3[1]h1[1].h2[1]'.h1[2]

H3H1H2

S2

h1[2]

h3[1]

h1[1] h2[1]

Synch (S1, S2) ⇒ h1[1].h2[1]'

legend
 marks the end of HC
 (last common state)

h1[1].h2[1]'. h2[2] h1[1].h2[1]'. h1[2].h3[1]'.h1[3]

h1[3]

Synch (S1, S2) ⇒ h1[1].h2[1]'.h1[2].h3[1]'.h1[3].h2[2]'

Synch (S1, S3) ⇒ h1[1].h2[1]'.h1[2].h3[1]'

S3S1

Figure 4. An example of synchronization by MOT1 with the master site S1

In summary, the following features can be retained for MOT1.

Input histories: HR = HC.hR

 and HS = HC.hS
where hS is a sequence of operations generated at site S and
 hR is a sequence of operations generated at other sites than S.
Resulting history: Synch(R, S) ⇒ HC.hR.hS'
where hS' means that operations of sub-history hS have been forward transposed with respect to hR opera-
tions.

4. Synchronizer without a Master Site

4.1 Limitations of MOT1

The principle of a Synchronizer without a master site assumes that sites get synchronized and merge their
histories, in pairs, regardless of the pair associations, while finally ensuring copy convergence. To be able to
use the MOT1 algorithm to achieve this, it is necessary to define the role of each Si and Sj site, before each
synchronization Synch(Si, Sj), since this role is not symmetrical. The role assigned to a site is temporary and
only set for the duration of the synchronization. We will provide examples to illustrate the effect on the form
of the resulting history and demonstrate the impossibility of obtaining copy convergence.

As a convention in the following, the notation Synch(Si, Sj) means that when synchronizing sites Si and Sj,
the first Si site serves as the master site (R).

4.1.1 Arbitrary role assignment to sites
In this section, we assume that each time two sites get synchronized, the site that serves as the master site is
chosen arbitrarily.

Example 3. Let us consider sites S1, S2 and S3 whose copies are initially identical and which progress
independently (see Figure 5). When assigning the role of master site to the S1 site, the history resulting

 - 10 -

from synchronizing S1 and S2 is: Synch(S1, S2) ⇒ h1[1].h2[1]'. Note that if the role assigned to sites
were different, the history resulting from their synchronization would be different: Synch(S2, S1) ⇒
h2[1].h1[1]'. Further synchronization of sites S3 and S1 results in the following history: Synch(S3, S1)
⇒ h3[1].h1[1]'.h2[1]''.h1[2]'. As in Example 2, the first two synchronizations are made with S1. How-
ever S1 plays the role of master site in the first synchronization but not in the second. The histories
produced are then different. As no master site is required, it is now possible to directly synchronize S2

and S3. Before synchronization we have:

 H2 = h1[1].h2[1]'.h2[2] and H3 = h3[1].h1[1]'.h2[1]''.h1[2]'

Note that H2 and H3 have no common prefix. Their last common state is the initial state. However,
some operations are present in both histories although they appear under different forms because they
have been transposed; the sequences h1[1].h2[1]' in H2 and h1[1]'.h2[1]'' in H3 (shown in bold) exem-
plify this; they involve operations with the same identity (field <Idop> is identical), but under different
forms (field <op> is different). In these conditions, it is no longer possible to synchronize S3 and S2
(by either Synch(S3, S2) or Synch(S2, S3)) when using MOT1 since the input histories do not fulfil the
required property (common prefix HC). Applying the MOT1 merge algorithm would result in a history
in which some operations (operations of h1[1].h2[1]' and h1[1]'.h2[1]'') would each appear twice –
which of course is incoherent.

h1[1].h2[1]'.h1[2]

h3[1].h1[1

Synch (S1, S2) ⇒ h1[1].h2[1]'

Synch (S3, S1) ⇒ h3[1].h1[1

h1[1].h2[1]'.h2[2]

Synch (S2, S3) or Synch (S3, S2)

 legend
 marks the end of HC
 (last common state)

Figure 5. Synchronizing attempt using MOT1 without a mast

In the following, sequences consisting of operations that are identical in their ide
in their form (<op>) and that appear in the same order are called avatars.
h1[1].h2[1]' in H2 and h1[1]'.h2[1]'' in H3 are avatars. Note that avatars are characte
are not defined from the same state in both histories.

4.1.2 Role assignment depending on a predetermined site order
To assign their role to sites that achieve synchronization, we use a predetermined
When a synchronization Synch(Si, Sj) between two sites Si and Sj occurs, the Si
site is such that Si < Sj. It could be thought that by totally ordering the synchroni
tions would be defined from the same state in histories to merge. The following
the case.

 - 11 -
H3
H1
H2
S2
h1[2]
]'.h2

h

]'.h2

 ?

er sit

ntity
In E
rize

 tota
 site
zing
exam
h3[1]
h1[1]
3[1]
h2[2]
h2[1]
S1
 S3
[1]''.h1[2]'

[1]''.h1[2]'

e

 (<Idop>) but different
xample 3, sequences
d by the fact that they

l order between sites.
 serving as the master
 sites, common opera-
ple shows that is not

Example 4. Let us consider the four sites S1, S2, S3 and S4 represented in Figure 6. The order used is:
S1 < S2 < S3 < S4. With this convention, the following histories result from successive synchroniza-
tions:

Synch(S1, S3) ⇒ h1[1];
Synch(S2, S4) ⇒ h2[1];
Synch(S2, S3) ⇒ h2[1].h2[2].h1[1]'.h3[2]';
Synch(S1, S4) ⇒ h1[1].h2[1]'.h4[2]'.

Again it can be noted that histories H1 and H3 have no common prefix and contain avatars (shown in
bold), i.e. some operations are present in both histories (field <Idop> is identical), while they appear
under different forms (field <op> is different) because they are not defined from the same state. More-
over, it can be noted that the avatars of h1[1] and h2[1] appear in different orders in each history. Con-
sequently, it is not possible, for the same reasons as previously outlined, to synchronize S3 and S1 (by
either Synch(S3, S1) or Synch(S1, S3)) when using MOT1 – applying this merge algorithm would
make each avatar of h1[1] and h2[1] appear twice in the resulting history.

h1[1]

legend
 marks the end of HC
 (last common state) h2[1].h2[2] h1[1].h3[2]

H4

h3[2]

H2H3H1

S1

h2[2]

h4[2]

h1[1] h2[1]

Synch (S1, S3) ⇒ h1[1] Synch (S2, S4) ⇒ h2[1]

h2[1].h4[2]

S3 S2 S4

Synch (S2, S3) ⇒ h2[1].h2[2].h1[1]'.h3[2]'

Synch (S1, S4) ⇒ h1[1].h2[1]'.h4[2]'

Figure 6. Using MOT1 with a predetermined order between synchronizing sites

To sum up, the use of MOT1 to synchronize a pair of any sites, without favouring any one, is useless since
various problems due to characteristics of the produced histories have not finally been solved, namely: (i)
the impossibility of guaranteeing the existence of a common prefix in histories that have common sub-
histories, (ii) the presence of avatars, and (iii) the possibility for avatars common to several histories to
appear in different orders.

4.2 General Principle of MOT2

In the absence of a master site, the MOT2 merge algorithm presented in the following ensures copy conver-
gence while permitting any pair of copies to be synchronized. To obtain this property, MOT2 merges the
histories by using an order between the sites that generate the operations instead of using an order between
the sites that achieve synchronization. A unique global order can thus be built without requiring a centraliz-
ing or ordering mechanism (timestamp, state vector, sequencer, etc.). As a result, histories produced by
MOT2 are such that the common sub-histories appear in the same order. Moreover, in MOT2, the role of

 - 12 -

sites is totally symmetrical when synchronizing. In particular, the history produced by Synch(Si, Sj) is iden-
tical to that produced by Synch(Sj, Si) (i.e. Synch(Si, Sj) ⇒ identical to Synch(Sj, Si) ⇒).

The basic principle of MOT2 is as follows. Given the input histories: Hi = HC.opi and Hj = HC.opj where
opi and opj are operations generated by sites Sopi

 and Sopj
, respectively, the resulting history when synchro-

nizing Si and Sj is:

 if Sopi
 < Sopj

 then Synch(Si, Sj) ⇒ HC.opi.opj'

 if Sopi
 > Sopj

 then Synch(Si, Sj) ⇒ HC.opj.opi'

where opi' [resp. opj'] means that operation opi [resp. opj] has been forward transposed with operation opj
[resp. opi].

More generally, given the input histories: Hi = HC.opi.seqi and Hj = HC.opj.seqj where opi and opj are
operations respectively generated by sites Sopi

 and Sopj
, seqi and seqj are sequences of operations generated

by any sites, the choice of the operation (opi or opj) to integrate after HC depends on the generator sites and
involves the following effects:

 if Sopi
 < Sopj

 then integration of opi in Hj, which gives:
 Hi = HC.opi.seqi (Hi unchanged) and Hj = HC.opi.opj'.seqj'

 if Sopi
 > Sopj

 then integration of opj in Hi, which gives:
 Hi = HC.opj.opi'.seqi' and Hj = HC.opj.seqj (Hj unchanged)

where opi'.seqi' [resp. opj'.seqj'] means that operations opi.seqi [resp. opj.seqj] have been forward transposed
with the operation opj [resp. opi].

The following example illustrates the application of this principle in the execution of Example 4.

Example 5. As in Example 4, we have: Synch(S1, S3) ⇒ h1[1] and Synch(S2, S4) ⇒ h2[1]. We will
now detail the next two synchronizations Synch(S2, S3) and Synch(S1, S4) when using MOT2. We re-
call that the order of the sites is: S1 < S2 < S3 < S4.

1. Detail of Synch(S2, S3). Before synchronization, the histories of sites S2 and S3 are: H2 = h2[1].h2[2]
and H3 = h1[1].h3[2]. Note that HC is empty. Synchronizing S2 and S3 according to MOT2 successively
achieves the following.

a. Integrate operations of h1[1] into H2 as S1, generator site of h1[1], and S2, generator site of
h2[1], are such that S1 < S2. The result is:

H2 = h1[1].h2[1]'.h2[2]' and H3 = h1[1].h3[2].

(We underline the resulting common sub-history and write the operations modified by forward
transposition in italics).

b. Integrate operations of h2[1]' into H3 as S2, generator site of h2[1]', and S3, generator site of
h3[2], are such that S2 < S3. The result is:

H2 = h1[1].h2[1]'.h2[2]' and H3 = h1[1].h2[1]'.h3[2]'.

c. Integrate operations of h2[2]' into H3 as S2, generator site of h2[2]', and S3, generator site of
h3[2]', are such that S2 < S3. The result is:

H2 = h1[1].h2[1]'.h2[2]' and H3 = h1[1].h2[1]'.h2[2]'.h3[2]''.

d. Append (integrate without transposition) operations of h3[2]'' into H2 as the end of H2 has
been reached. The final result is:

H2 = H3 = h1[1].h2[1]'.h2[2]'.h3[2]''.

2. Detail of Synch(S1, S4). Before synchronization, the histories of sites S1 and S4 are: H1 = h1[1] and
H4 = h2[1].h4[2]. Synchronizing according to MOT2 achieves the following.

 - 13 -

a. Integrate operations of h1[1] into H4 as S1 < S2. The result is:

H1 = h1[1] and H4 = h1[1].h2[1]'.h4[2]'.

b. Append (integrate without transposition) operations of h2[1]' and h4[2]' into H1 as the end of
H1 has been reached. The final result is:

H1 = H4 = h1[1].h2[1]'.h4[2]'.

After these synchronizations it should be pointed out that operations common to histories H1, H2, H3
and H4 (i.e. h1[1].h2[1]') appear in the same order and constitute their common prefix.

In Example 5, the application of MOT2 produced histories that have common contiguous sequences of
operations corresponding to their common prefix. We will see later that this may produce histories that have
common non-contiguous sequences of operations, and we will note that these common sequences appear in
all histories in the same order.

4.3 The MOT2 Merge Algorithm

The principle described in the previous section is achieved by the MOT2 history merging algorithm. MOT2
accepts any two couples (Ci, Hi) and (Cj, Hj) as inputs and reconciles copies Ci and Cj by merging histories
Hi and Hj. As an output, both couples (Ci, Hi) and (Cj, Hj) are identical. As for MOT1, we voluntarily over-
looked copies only accessed in the Integration and Append procedures.

procedure MOT2 (Hi , Hj) ;
 -- Look for the prefix HC common to Hi and Hj: determine the index kS of the last operation of HC

 k := kS + 1 ;
while (k ≤ sizeofHi) and (k ≤ sizeofHj) loop

< Idopi , Sopi , opi > := Hi[k] ;
< Idopj , Sopj , opj > := Hj[k] ;
case Sopi

 ? Sopj
 of

Sopi
 < Sopj : Integration (Hj , k, < Idopi , Sopi , opi >) ; -- Integrate opi into Hj

Sopj
 < Sopi : Integration (Hi, k, < Idopj , Sopj , opj >) ; --Integrate opj into Hi

Sopj
 = Sopi : ; -- Operation is present in Hi and Hj

endcase ;
k := k + 1 ;

 endloop ; -- The end of Hi or Hj has been reached
 while k ≤ sizeofHj loop -- End of history Hi: append the remainder of Hj to Hi

 < Idopj
 , Sopj

, opj > := Hj[k] ;
 Append (Hi, < Idopj

, Sopj
, opj >) ;

 k := k + 1 ;
 endloop ;

 while k ≤ sizeofHi loop -- End of history Hj: append the remainder of Hi to Hj
 < Idopi , Sopi , opi > := Hi[k] ;
 Append (Hj , < Idopi

, Sopi , opi >) ;
 k := k + 1 ;

 endloop ;
end MOT2 ;

MOT2 begins by determining the prefix common to Hi and Hj. Then, the generator sites of operations that
follow the common prefix in Hi and Hj are compared in order to determine the operation to be integrated.
After integration, the common prefix is augmented by one operation and the process is repeated until the end
of one of the histories. The remaining operations of the history which is not terminated are then appended to
the other history. When the compared operations opi and opj are such that Sopi

 = Sopj
, they have the same

generator site and are therefore identical (i.e. Idopi
 = Idopj

 and opi = opj), which means that the operation is
common to both histories Hi and Hj. Therefore, one directly skips to integrate the next operation. MOT2 can

 - 14 -

thus be applied to two histories that are defined from the same initial state, without explicitly providing their
last common state, which will be automatically determined by the algorithm.

The following example illustrates processing of the algorithm and presents a situation where histories pro-
duced by MOT2 have common non-contiguous operation sequences.

Example 6. Let us again consider the execution of Example 3 (see Figure 5) completed by adding the
S4 site. Figure 5 slightly modified (h2[1] is empty and h3[2] has been added) is visible inside the dotted
frame in Figure 7. The site order is: S4 < S3 < S2 < S1.

The histories produced by the MOT2 algorithm after successive synchronizations are now given be-
low.

 Synch (S2, S1) ⇒ h1[1]
 Synch (S3, S1) ⇒ h3[1].h1[1]'.h1[2]'
 Synch (S2, S3) ⇒ h3[1].h1[1]'.h2[2]'.h1[2]''.h3[2]'
 Synch (S4, S1) ⇒ h4[1].h3[1]'.h1[1]''.h1[2]''.h1[3]'

Note that the impossibility of achieving Synch (S2, S3) using MOT1 (see Example 3) is overcome by
using MOT2. Before once more synchronizing sites S2 and S1, their histories are as follows:

H1 = h4[1].h3[1]'.h1[1]''.h1[2]''.h1[3]' and H2 = h3[1].h1[1]'.h2[2]'.h1[2]''.h3[2]'.h2[3]

Note that H2 and H1 contain several avatars (shown in bold), and these appear in the same order. Syn-
chronizing S2 and S1 using MOT2 successively achieves the following statements.

a. Integrate h4[1] into H2, which gives:

 H1 = h4[1].h3[1]'.h1[1]''.h1[2]''.h1[3]' (unchanged) and

 H2 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]';

b. Integrate h2[2]'' into H1, which gives:

 H1 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h1[3]'' and

 H2 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]' (unchanged);

c. Integrate h3[2]'' into H1, which gives:

 H1 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h1[3]''' and

 H2 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]' (unchanged);

d. Integrate h2[3]' into H1, which gives:

 H1 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'.h1[3]'''' and

 H2 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]' (unchanged);

e. Append h1[3]'''' into H2, which gives:

 H1 = H2 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'.h1[3]'''';

Finally we get: Synch (S2, S1) ⇒ h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'.h1[3]''''.

In Example 6, we observe that the common sequences of operations, either contiguous or not, appear in the
same order in all histories. This is actually the main feature of MOT2. While allowing free propagation of
histories, since a site may at any time synchronize its copy with any site, MOT2 guarantees that sub-histories
common to various histories appear in the same order (see Theorem 5). By means of successive synchroni-
zations, a global order is built without requiring any centralized mechanism. MOT2 thus guarantees that
copies will converge towards the same state. For this reason, MOT2 is particularly well suited to P2P envi-
ronments where copies may be concurrently modified without discriminating in favour of any copy or site.
As MOT2 uses Operational Transformations (i.e. forward transposition) and SOCT4 to merge histories, it

 - 15 -

achieves automatic copy reconciliation while respecting causality precedence between operations when this
exists.

h2[3]

S4 S2 S1

h3[2]

h3[1].h1[1]'.h1[2]'.h1[3

h4[1].h3[1]'.h1[1]''.h1[2]''.h1[3]' h3[1].h1[1]'.h2[2]'.h1[2]''.h3[2]'.h2[3]

Synch (S2, S1) ⇒ h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'.h1[3]''''

h3[1].h1[1]'.h1[2]'.h3[2

h1[1].h1[2]

h1[1].h2[2]

H3

h2[2]

H1H2H4

h4[1] h1[1]

Synch (S2, S1) ⇒ h1[1]

Synch (S4, S1) ⇒ h4[1].h3[1]'.h1[1]''.h1[2]''.h1[3]'

h4[1]

h1[2]

h1[3]

h3[1]

h3[1]

Synch (S3, S1) ⇒ h3[1].h1[1]'.h1[2]'

legend
 marks the end of HC
 (last common state)

Synch (S2, S3) ⇒ h3[1].h1[1]'.h2[2]'.h1[2]''.h3[2]'

S3

Figure 7. Example of synchronization using MOT2

4.4 MOT2 Properties and Proof

This section presents the properties and theorems that enable us to prove the correction of the MOT2 merge
algorithm. Demonstrations of the theorems are given in the Appendix.

The subsequent results we are interested in concern the operation order. Consequently, although the opera-
tions may appear under different forms because of the transpositions, we will combine the operation and its
various transposed forms in the notation. In other words, the notation opk will represent either the generated
operation opk or its forward transposed forms opk', opk'', etc. The fact that an operation got transformed
through transpositions therefore no longer appears in the formulations.

Property P1. Given Hi, ∀opk and ∀opl ∈ Hi such that: opk →Hi
 opl, after merging Hi with another history

using MOT2, the precedence in the resulting history H is still: opk →H opl.

As (see Definition 4) the precedence is compatible with the causal ordering relation, merging preserves both
the precedence (→H) and the causal precedence relation (→C).

Let us now consider the histories Hi and Hj of sites Si and Sj with a common prefix HC. Let us call opi and opj
the operations belonging to histories Hi and Hj, respectively, and defined from the same state (the state left

 - 16 -

by HC). Then we have: Hi = HC.opi.seqi and Hj = HC.opj.seqj, where seqi and seqj are sequences of any opera-
tions. Merging Hi and Hj using the MOT2 algorithm will produce two new histories Hi and Hj that are
identical. H designates the history resulting from the merge of Hi and Hj. The precedence between opi and
opj in H is determined by the order between their generator sites. Property P2 expresses this result.

Property P2. Given opi and opj such that: Hi = HC.opi.seqi and Hj = HC.opj.seqj, after merging Hi and Hj
using MOT2, the precedence in the resulting history H is such that:

if Sopi
 < Sopj then opi →H opj

 if Sopi
 > Sopj then opj →H opi .

Property P3 generalizes property P2 to the case of a sequence of operations.

Property P3. Given opi ∈ Hi and a sequence seq ∈ Hj, defined from the same state and such that Hi =
HC.opi.seqi and Hj = HC.seq.seqj, after merging Hi and Hj using MOT2 the precedence in the resulting
history H is such that:

if ∀op ∈ seq: Sop < Sopi then seq →H opi.

The proof is given in Appendix A2.

Given two operations opk and opl that occur consecutively in a history H produced by MOT2, the following
theorem specifies that if they are concurrent then they are ordered according to their generator site.

Theorem 1. Given two operations opk and opl that occur consecutively in a history H produced by MOT2
and such that opk →H opl:

if opk // opl then Sopk
 < Sopl

.

The demonstration is given in Appendix A3. Theorem 2, obtained by contraposition, specifies that if the
operations are both consecutive and ordered in the history according to the inverse order of their generator
site, then they are related by a causal precedence relation.

Theorem 2. Given two operations opk and opl that occur consecutively in a history H produced by MOT2
and such that opk →H opl:

if Sopk
 ≥ Sopl then opk →C opl.

These theorems are illustrated by Example 6, when each sequence hi[n] corresponds to a single operation.
The considered final history is:

 Synch (S2, S1) ⇒ h4[1].h3[1].h1[1].h2[2].h1[2].h3[2].h2[3].h1[3].

We observe that consecutive concurrent operations (h4[1] and h3[1], h3[1] and h1[1], h2[2] and h1[2], h2[3]
and h1[3]) are actually ordered according to their generator site order (recall that in this example the site
order is: S4 < S3 < S2 < S1). Concerning consecutive operations that are ordered according to the inverse
order of their generator site (h1[1] and h2[2] on one hand, h1[2] and h3[2] on the other), they are actually
related by a causal precedence relation: h1[1]→C h2[2] and h1[2]→C h3[2].

The following theorem is a generalization of Theorem 1. Its demonstration is given in Appendix A4.

Theorem 3. Given the sequence seq.op in a history H produced by MOT2, where seq is constituted from
operations concurrent to operation op, then:

∀opk ∈ seq ⇒ Sopk
 < Sop.

Theorem 4 is deduced by contraposition.

Theorem 4. Given the sequence seq.op in a history H produced by MOT2 where seq = op0....opn. If se-
quence seq contains an operation opk such that Sopk

 ≥ Sop then:

∃ opl ∈{opk....opn} ⇒ opl →C op.

 - 17 -

These theorems can be illustrated by the same example as given previously, still considering that each se-
quence hi[n] corresponds to a single operation. The final history considered is:

 Synch (S2, S1) ⇒ h4[1].h3[1].h1[1].h2[2].h1[2].h3[2].h2[3].h1[3].

Let us consider the underlined sequence seq with op = h3[2]; h2[2] (i.e. opk) and h3[2] (i.e. op) are such that
S2 > S3 (i.e. Sopk

 > Sop), although h2[2] is concurrent to h3[2] (i.e. opk // op); we actually observe that h1[2]
(i.e. opl) exists such that: h1[2] →C h3[2] (i.e. opl →C op).

Theorem 5 states that, when histories Hi and Hj produced by MOT2 contain common operations, then these
appear in the same order.

Theorem 5. Given opk and opl ∈ Hi, opk and opl ∈ Hj, where Hi and Hj are histories produced by MOT2:

 if opk →Hi
 opl then opk →Hj

 opl .

The proof is given in Appendix A5. This theorem underlies the proof of the MOT2 algorithm. Indeed, as
operations common to histories produced by MOT2 appear in the same order in these histories, we are sure
that, whatever successive synchronizations occur, the histories which have integrated the same operations
are identical. In other words, by means of synchronizations, histories associated with each copy integrate
new operations and therefore converge towards the same history. So the MOT2 algorithm dynamically
guarantees operation ordering according to a unique global order without requiring a centralising or order-
ing (timestamp, state vector, sequencer, etc.) mechanism.

Finally, the proof that the integration of an operation meets the validity conditions of SOCT4 (conditions (a)
and (b) in section 2.5) is given in Appendix A6.

5. Conclusion
This paper has studied problems involving reconciliation of multiple divergent copies of the same object by
means of a Synchronizer when using Operational Transformation. In this setting, we have proposed an
original Synchronizer, i.e. MOT2, that enables the users to reconcile copies while ensuring their conver-
gence and respecting the potential causal precedence between operations, without favouring any copy.
MOT2 is particularly suitable for a P2P environment as it enables pairwise copy reconciliation, with any pair
association, and without requiring a master site. Each site can thus synchronize its copy, when it wants, with
any other site that owns a copy of the object. While permitting free propagation of update operations, MOT2
guarantees that they will appear in the same order in all the histories. It thus ensures, through successive
synchronizations, the construction of a global order without requiring any ordering mechanism (timestamps,
state vectors, sequencer). Finally, the Operational Transformation used (forward transposition only) necessi-
tates verification of condition C1 only, which is easily met. The MOT2 algorithm can be centralized (it then
runs on a single site) or distributed (it runs on two sites, each one owning a copy and the corresponding
history). Here we have proposed a centralized version of the MOT2 algorithm in order to present its func-
tioning principle and provide proof of its correction. It can be used as such in a distributed P2P environment
by supplying each site with a version of MOT2. The algorithm is the same on all sites, with no site playing a
specific role. Two sites only need to transmit their history to each other and then run MOT2 to achieve
synchronization.

 - 18 -

6. Appendix

A1. Proof of the MOT1 Algorithm

MOT1 is verified by checking that the integration of operations in each phase meets the SOCT4 validity
conditions (conditions (a) and (b) of section 2.5). In phase (1), the operation opk (with opk = HR[k].operation)
to be integrated at the same position k into HS is such that: (a) it is defined from the state left by the HS[k-
1].operation since ∀j: 1≤ j ≤ k-1, HS[j] = HR[j] and (b) ∀j: k < j ≤ sizeofHS, op = HS[j].operation is concur-
rent to opk, because op has been generated at site S after the last synchronization of S with R. In phase (2),
the operation opk (with opk = HS[k].operation) which is added to HR at the same position k is such that: (a) it
is defined from the state left by HR[k-1].operation since ∀j: 1 ≤ j ≤ k-1, HR[j] = HS[j] and (b) ∄ op with op =
HR[j].operation, ∀j: k < j ≤ sizeofHR since k = sizeofHR.

A2. Proof of Property P3

Let Hi = HC.opi.seqi and Hj = HC.seq.seqj with seq = op1.op2..... oph. As Sop1
 < Sopi

 , according to the P2
property, we have: op1 →H opi. As op1 is integrated into the history Hi, after the first iteration of the algo-
rithm we get: Hi = HC.op1.opi'.seqi', where opi'.seqi' is the forward transposition of opi.seqi with op1. If we
only consider operation ordering, then Hi = HC.op1.opi.seqi. Now, let us consider opi ∈ Hi and op2 ∈ Hj

which are defined on the same state (the one left by HC.op1). As Sop2
 < Sopi

 according to P2 we get: op2 →H
opi. After successive iterations, it turns out that oph →H opi. Finally, op1 →H op2 →H.....→H oph →H opi then
seq →H opi.

A3. Proof of Theorem 1

The operations opk and opl are concurrent, so we can deduce that they were joined together in the same
history when synchronizing two sites. Let us call these sites Si and Sj. Moreover, the operations opk et opl are
consecutive. We can thus deduce that when histories Hi and Hj were merged, there was an integration step
with: Hi = HC.opk... and Hj = HC.opl.... Since the result of this step was HC.opk.opl..., then, according to the
P2 property: Sopk

 < Sopl
. CQFD.

A4. Proof of Theorem 3

Operations of the sequence seq are concurrent to op, i.e. they were joined together in the same history as op
as result of synchronizations. Let us consider the first synchronization when operation op and all or part of
the sequence seq were joined together in the same history. Let us call this initial sequence seq0. Let us denote
Si and Sj as the sites which got synchronized and let us assume that op ∈ Hi and seq0 ∈ Hj. Since seq0 and op
are consecutive in the resulting history, then there was, during some merging step: Hi = HC.op… and Hj =
HC.seq0… . Since the result was HC.seq0.op, then, according to the P3 property: ∀opk ∈ seq0, Sopk

 < Sop.

The sequence seq0 increased with some further operations and finally became equal to seq as a result of the
next synchronizations. If an operation opl was added to seq0, which constituted a new sequence denoted as
seq1, then, during some merge, operations opl and opm (with opm ∈ {seq0.op}) were defined on the same state
and opl was integrated before opm (i.e. opl →H opm). More precisely, let us suppose that Si and Sj are the sites
which got synchronized and that seq0 = seqx.opm.seqy, then:

 Hi = HC.seqx.opm.seqy.op ...

 Hj = HC.seqx.opl ...

Since the result of the merge was opl →H opm then Sopl
 < Sopm

. As Sopm
 < Sop, after having integrated opl into

seq0, we still have the property: ∀opk ∈ seq1, Sopk
 < Sop. By repeating this reasoning for every operation

added to seq0, the property can finally be stated: ∀opk ∈ seq, Sopk
 < Sop. CQFD.

A5. Proof of Theorem 5

Two cases must be considered according whether operations opk and opl that belong to histories Hi and Hj
are concurrent or not.

 - 19 -

1) opk and opl are not concurrent

The operations were ordered according to the causality relation. One of the operations, let us say opl, was
generated at site Sopl

 after execution of the other one at this site. In the history of Sopl
, according to definition

2, we can state: opk →C opl. As from the P1 property, merging preserves the precedence (and therefore the
causal ordering precedence), in all the histories there will be: opk →C opl.

2) opk and opl are concurrent

The operations were generated independently of each other in distinct histories. As a result of synchronizing
sites, operation opk which was generated at site Sopk

, got propagated to other histories, denoted Hk. In the
same way, operation opl which was generated at site Sopl

 got propagated to other histories, denoted Hl.
Operations opk and opl are joined together in the same history when some site from Hl and some site from Hk
get synchronized. We will demonstrate that in any case opk and opl will be ordered by MOT2 in the same
way. There are again two situations according whether opk and opl were generated either from the same state
or from different states of the copies.

2.1) opk and opl were generated from the same copy state

As opk and opl were generated from the same state, then: ∀opc: opc →C opk then opc →C opl

 and conversely: ∀opc: opc →C opl then opc →C opk.

When synchronizing some site Si from Hk and some site Sj from Hl, MOT2 execution will lead to one of the
two following intermediate situations:

either (case 2.1.1): Hi = HC.opk.... and Hj = HC.seq.opl....

or (case 2.1.2): Hi = HC.seq.opk.... and Hj = HC.opl....

Since ∀opc: opc →C opk then opc →C opl and conversely: ∀opc: opc →C opl then opc →C opk, in both cases we
get: ∀opc: opc →C opk or opc →C opl, opc ∈ HC. Then: ∀op ∈ seq: op // opk and op // opl.. Hereafter, we have
to show that, in both cases, synchronization will produce the same result. Let us suppose that Sopk

 < Sopl
 (the

same reasoning holds for Sopk
 > Sopl

).

In case 2.1.1, according to the P2 property, in the resulting history H, we necessarily get: opk →H opl.

In case 2.1.2, according to the theorem 3, we get: ∀op ∈ seq, Sop < Sopk
. Based on Sopk

 < Sopl
 and taking

property P3 into account, in the resulting history H, we necessarily get: seq →H opk →H opl.

Finally, we obtain the following result.

Two concurrent operations opk and opl, which were generated from the same copy state, are ordered in the
resulting history according to their generator site:

 if Sopk
 < Sopl

 then opk →H opl

 if Sopl
 < Sopk

 then opl →H opk

Therefore, they are ordered in the same way in all the histories.

2.2) opk and opl were generated from different copy states

In this case, opk and opl are said to be partially concurrent. This means there is an operation opm such that:

either: opm →C opl and opm and opk were generated from the same state,

or: opm →C opk and opm and opl were generated from the same state.

Let us consider the first case (similar reasoning is required for the second one). Since opm and opk are con-
current and were generated from the same state, according to the framed result obtained in 2.1, they will be
ordered in the resulting history according to their generator site. Two cases thus have to be investigated
depending on the respective values of Sopk

 and Sopm
.

2.2.1 Case where Sopk
 < Sopm

 - 20 -

In this case, we get: opk →H opm. By hypothesis, we also have opm →C opl. As any history containing opl also
contains all operations which causally precede opl, we deduce that any history of Hl contains opm. Conse-
quently, when synchronizing any site of Hl with any site of Hk, in the resulting history we get: opk →H opm
→C opl and therefore opk →H opl.

Finally, by applying a similar reasoning to the second case, we obtain the following result.

Two partially concurrent operations opk and opl (i.e. which were generated from different states) are ordered
in the resulting history in the following way:

 if ∃ opm: opm →C opl and opm and opk were generated from the same state

 and if Sopk
 < Sopm

 then opk →H opl;

 if ∃ opm: opm →C opk and opm and opl were generated from the same state

 and if Sopl
 < Sopm

 then opl →H opk.

As any history containing an operation also contains all operations which causally precede it, we deduce that
any history containing opl [resp. opk] also contains opm. Therefore, opk and opl are ordered in the same way
in all histories.

2.2.2 Case where Sopk
 > Sopm

In this case, we get in the resulting history: opm →H opk. More precisely, execution of the MOT2 algorithm
will produce the intermediate result:

firstly, Hi = HC.opk.... and Hj = HC.opm....opl....

then, Hi = HC.opm.opk.…and Hj = HC.opm....opl.... where opk has been forward transposed with opm

The opk operation obtained after being forward transposed is defined from the state HC.opm, as if it had been
generated from this state. Hereafter, the problem is to determine the respective positions of this new opera-
tion opk and opl. We are then led again to the beginning of case 2. The reasoning is iterated until obtaining a
relation between opk and opl relevant to case 2.1 or case 2.2.1. CQFD.

The characterisation of two operations to be concurrent and generated from the same state, or partially
concurrent, changes with the algorithm execution. Two operations which are initially partially concurrent,
may later become concurrent by the effect of successive transpositions.

A6. Proof of the Correct Integration of an Operation in MOT2

We have to prove that the integration of an operation meets the validity conditions of SOCT4 (conditions (a)
and (b) of section 2.5).

During execution of MOT2, when two sites Si and Sj are synchronized, the integration procedure is called to
integrate an operation op of Hi into Hj under the following circumstances: Hi = HC.op.seqi, Hj = HC.opk.seqj
and Sop < Sopk

; op is then integrated into Hj after HC and before opk.

Condition (a) is verified since op is defined from the state produced by HC.

In order to verify condition (b), we must show that:

∀ opl ∈ opk.seqj, opl // op (i.e. not (op →C opl) and not (opl →C op)).

1. Let us suppose that: ∃ opl ∈ opk.seqj such that op →C opl. It turns out that op also belongs to Hj and then
we get more precisely: Hj = HC.opk.seqj1

.op.seqj2
.opl.seqj3

. We deduce that: ∀ opm ∈ opk.seqj1
, opm is concur-

rent to op, and therefore according to theorem 3, ∀ opm ∈ opk.seqj1
,

Sopm

 < Sop. Here there is a contradiction
with the hypothesis Sop < Sopk

.

2. Let us consider an operation opm such that: opm →C op. Since any operation which causally precedes op
belongs to HC, opm belongs to HC and therefore: ∀ opl ∈ opk.seqj, not (opl →C op). CQFD.

 - 21 -

7. References
[ACD03] Aberer K., Cudré-Mauroux P., Datta A., Despotovic Z., Hauswirth M., Punceva M., Schmidt R.;

P-Grid : a self-organizing structured P2P system; ACM SIGMOD Record, vol.32, n°3, pp.29-33, 2003.
[Be90] Berliner B.; Parallelizing software development; Proc. USENIX, Washington D.C., 1990.
[BP98] Balasubramaniam S., Pierce B.; What is a file Synchroniser; Proc. 4th Annual ACM / IEEE Interna-

tional Conference on Mobile Computing and Networking (MobiCom’98), pp.98-108, 1998.
[CG97] Chawathe S., Garcia-Molina H.; Meaningful change detection in structured data; Proc. ACM Inter-

national Conference on Management of Data (SIGMOD'97), pp.26-37, 1997.
[CMH02] Clarke I., Miller S. , Hong T., Sandberg O., Wiley B.; Protecting free expression online with

Freenet; IEEE Internet Computing, vol.6, n°1, pp.40-49, 2002.
[CW98] Conradi R., Westfechtel B.; Version models for software configuration management; ACM Com-

puting Surveys (CSUR), vol. 30, n°2, pp.232-282, 1998.
[Do95] Dourish P.; The parting of the ways: divergence, data, management and collaborative work; Proc.

4th European Conference on Computer Supported Cooperative Work (ECSCW'95), pp.215-230, 1995.
[EG89] Ellis C.A., Gibbs S.J.; Concurency control in groupware systems; Proc. ACM International Confer-

ence on Management of Data (SIGMOD'89), Seattle, pp.399-407, May 1989.
[Es00] Estublier J.; Software configuration management: a roadmap; Proc. International Conference on

Software Engineering (ICSE'00), Limerick, Ireland, pp.279-289, June 2000.
[FVC04] Ferrié J., Vidot N., Cart M.; Concurrent undo operations in collaborative environments using

operational transformation; Proc. 12th International Conference on Cooperative Information Systems
(CoopIS'04), Cyprus, pp.155-173, October 2004.

 [IN04] Ignat C., Norrie M.C.; Operation-based versus state-based merging in asynchronous graphical
collaborative editing; Proc. 6th International Workshop on Collaborative Editing Systems, Chicago, No-
vember 2004.

[IN04b] Ignat C., Norrie M.C.; Grouping in collaborative graphical editors; Proc. ACM International Con-
ference on Computer Supported Cooperative Work (CSCW'04), Chicago, November 2004.

[IMO03] Imine A., Molli P., Oster G., Rusinowitch M.; Proving correctness of transformation functions in
real-time groupware; Proc. 8th European Conference on Computer Supported Cooperative Work
(ECSCW'03), Helsinki, Finland, September 2003.

 [KRS01] Kermarrec A.M., Rowstron A., Shapiro M., Druschel P.; The IceCube approach to the reconcilia-
tion of divergent replicas; Proc. 20th ACM Symposium on Principles of Distributed Computing (PODC),
Newport R.I., August 2001.

[MD94] Munson J.P., Dewan P.; A flexible object merging framework; Proc. ACM International Conference
on Computer Supported Cooperative Work (CSCW'94), pp.231-242, 1994.

[MOS03] Molli P., Oster G., Skaf-Molli H., Imine A.; Using the transformational approach to build a safe
and generic data synchronizer; Proc. ACM International Conference on Supporting Group Work
(GROUP'03), November 2003.

[MSO02] Molli P., Skaf-Molli H., Oster G.; Divergence awareness for virtual team through the Web; Proc.
6th Biennial World Conference on Integrated Design & Process Technology (IDPT'02), Pasadena, June
2002.

[RNG96] Ressel M., Nitssche-Ruhland D., Gunzenhäuser R.; An integrating, transformation-oriented ap-
proach to concurrency control and undo in group editors; Proc. ACM International Conference on Com-
puter Supported Cooperative Work (CSCW'96), Boston, pp. 288-297, November 1996.

[SCF97] Suleiman M., Cart M., Ferrié J.; Serialization of concurrent operations in a distributed collabora-
tive environment; Proc. ACM International Conference on Supporting Group Work (GROUP’97), Phoe-
nix, pp.435-445, November 1997.

[SCF98] Suleiman M., Cart M., Ferrié J.; Concurrent operations in a distributed and mobile collaborative
environment; Proc. 14th IEEE International Conference on Data Engineering (IEEE / ICDE'98), Orlando,
pp.36-45, February 1998.

[SE98] Sun C., Ellis C.S.; Operational transformation in real-time group editors : issues, algorithms and
achievements; Proc. ACM International Conference on Computer Supported Cooperative Work
(CSCW'98), Seattle, pp.59-68, November 1998.

 - 22 -

[SS05] Saito Y., Shapiro M.; Optimistic replication; ACM Computing Surveys, vol.37, n°1, pp.42-81, 2005.
[SXS04] Sun D., Xia S., Sun C., Chen D.; Operational transformation for collaborative word processing;

Proc. ACM International Conference on Computer Supported Cooperative Work (CSCW'04), Chicago,
November 2004.

[SYZ97] Sun C., Jia X., Yang Y., Zhang Y.; A generic operation transformation schema for consistency
maintenance in real-time cooperative editing systems; Proc. ACM International Conference on Support-
ing Group Work (GROUP’97), Phoenix, pp.425-434, November 1997.

[Ti85] Tichy W.F.; RCS - A system for version control; Software-Practice and Experience, vol.15, n°7,
pp.637-654, 1985.

[TKS03] Torii O., Kimura T., Sego J.; The consistency control system of XML documents; Proc. Symposium
on Applications and the Internet, January 2003.

[VCF00] Vidot N., Cart M., Ferrié J., Suleiman M.; Copies convergence in a distributed real-time collabo-
rative environment; Proc. ACM International Conference on Computer Supported Cooperative Work
(CSCW'00), Philadelphia, Pennsylvania, pp.171-180, December 2000.

[We88] Weihl W. E.; Commutativity-based concurrency control for abstract data types; IEEE Transactions
on Computers, vol. 37, n° 12, pp.1488-1505, December 1988.

 - 23 -

	Abstract
	Keywords
	Introduction
	Objectives and Underlying Model
	2.1 Synchronizer Principle
	2.2 Synchronous Collaborative Algorithms and Operational Tra
	2.3 Forward Transposition
	2.4 Relationships between Operations and Histories
	2.5 Principle of Integration in SOCT4

	3. Synchronizer with a Master Site
	3.1 Principle
	3.2 The MOT1 Algorithm

	4. Synchronizer without a Master Site
	4.1 Limitations of MOT1
	4.1.1 Arbitrary role assignment to sites
	4.1.2 Role assignment depending on a predetermined site ord

	4.2 General Principle of MOT2
	4.3 The MOT2 Merge Algorithm
	4.4 MOT2 Properties and Proof

	5. Conclusion
	6. Appendix
	A1. Proof of the MOT1 Algorithm
	A2. Proof of Property P3
	A3. Proof of Theorem 1
	A4. Proof of Theorem 3
	A5. Proof of Theorem 5
	A6. Proof of the Correct Integration of an Operation in MOT2

	7. References

