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Abstract 
Reconciling divergent copies is a common problem encountered in distributed or mobile systems, asynchro-
nous collaborative groupware, concurrent engineering, software configuration management, version control 
systems and personal work involving several mobile computing devices. Synchronizers provide a solution 
by enabling two divergent copies of the same object to be reconciled. Unfortunately, a master copy is gener-
ally required before they can be used for reconciling n copies, otherwise copy convergence will not be 
achieved. This paper presents the principles and algorithm of a Synchronizer which provides the means to 
reconcile n copies, without discriminating in favour of any particular copy. Copies can be modified (concur-
rently or not) on different sites and the Synchronizer we propose enables them to be reconciled pairwise, at 
any time, regardless of the pair, while achieving convergence of all copies. For this purpose, it uses the 
history of operations executed on each copy and Operational Transformations. It does not require a central-
ised or ordering (timestamp, state vector, etc.) mechanism. Its main advantage is thus to enable free and lazy 
propagation of copy updates while ensuring their convergence – it is particularly suitable for P2P environ-
ments in which no copy should be favoured.  
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1. Introduction 
Users involved in mobile computing, concurrent engineering or distributed collaborative work, generally 
work on copies of shared objects. For instance, in mobile computing a user can replicate an object (calendar, 
file, address book, etc.) on mobile devices (Laptop, PDA, etc.) before disconnection and then manipulate 
these copies in disconnected work and on different devices. In asynchronous or multi-synchronous [Do95] 
collaborative groupware and distributed engineering, each user manages its private copy of the shared object 
(document, map, etc.) and propagates its updates to the others (or makes them public) when connected. In 
both cases, as each copy of the same object can be modified separately and independently of the others, 
copies could diverge and therefore have to be reconciled [SS05]. 

In this context, a Synchronizer is a tool that enables two copies of the same object to be reconciled in order 
to obtain an integrated view of the object. It takes two divergent copies of the object as an input and then 
returns  the copies in the same state, after somehow merging the updates. For this merging, Synchronizers 
use a mechanism based on the state of copies or on the history and semantic properties of operations exe-
cuted on these copies. 

File Synchronizers (Microsoft’s Briefcase, Power Merge, Windows File Synchronizer, Unisson [BP98], etc.) 
consider the object to be a file hierarchy. They allow create/delete actions on files and directories, and also 
updates, except when they concern two copies of the same file to be propagated from one copy of the file 
system to another. Solving the conflict is delegated to the user when updates concern two copies of the same 
file. Data Synchronizers (Palm Pilot Hotsync, Puma Technology Intellisync, Microsoft ActivSync, Apple 
I-Sync, etc.) allow reconciling and merging of updates relative to two copies of the same file (calendar, 
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address book, etc.), while delegating to the user conflicting situations which generally correspond to non-
commutative actions. Several merge tools [MD94] presently used in the field of collaborative work and also 
in software engineering can be considered as Data Synchronizers – they allow two copies of the same file to 
be reconciled in accordance with the data type (text [Be90, Ti85], UML or XML [TKS03]), after having 
detected divergences using, for instance, Diff algorithms [CG97, MD94]. In another context, a reconciliation 
platform called IceCube [KRS01], was proposed in order to reconcile divergent copies and to merge (in a 
combinatory manner) their histories using semantic properties of operations executed on these copies and 
also using two kinds of constraints, i.e. static (e.g. when concerning non-commutative operations) and dy-
namic (e.g. when referring to object state). All of these merging and synchronizing tools, which were ini-
tially designed for reconciling two copies, can also be used for reconciling n copies (with n > 2), on condi-
tion that a master copy exists and that each copy is reconciled with the master copy, otherwise copy conver-
gence will not be achieved. 

Synchronizing multiple copies of the same object can be obtained in a synchronous or asynchronous mode. 
In synchronous methods, all the copies play the same role and no copy is favoured. Among these, methods 
based on Operational Transformations [EG89], and developed for collaborative (CSCW) and real-time 
environments [RNG96, SYZ97, SCF97, SCF98, SE98, VCF00, SXS04, FVD04] maintain copy consistency 
of the same object by memorizing operations in histories and exploiting their semantic properties. In these 
environments, every operation generated by a user is immediately executed on his copy before broadcasting 
to all the other copies in order to be executed on them. As concurrent operations are not necessarily executed 
in the same order on each copy, they need to be ordered (by means of timestamps, state vectors or se-
quencer) and then transformed before being executed using, for instance, Operational Transformation, to 
achieve copy convergence. These methods used to synchronize n copies are limited because of their syn-
chronous aspect and because some ordering mechanisms (timestamps, state vectors, etc.) must be available. 
Hence, they are not suitable for P2P environments. 

With asynchronous methods, synchronizing multiple copies involves pairwise copy synchronization. To our 
knowledge, all published methods require a master copy, also called primary or public copy. Every copy 
therefore must be separately resynchronized with the master copy to achieve copy convergence. Examples of 
such methods are given by Configuration Management Environments [Be90, CW98, Es00], most of which 
are based on the Copy/Modify/Merge paradigm. Briefly, the master copy of the object is stored in the public 
space. Two (or several) users can simultaneously work on their private copy of the object, provided it has 
been copied in their private workspace. User U1 can then modify his copy and propagate modifications to the 
master copy by committing, provided that no user has committed from the time when user U1 downloaded 
the object copy into his workspace and the one he wants to commit. If this is not the case, user U1 needs to 
synchronize his copy with the last committed version and to download the latter into his workspace before 
merging his modifications with this last committed version using merge tools [MD94]. Version control 
systems based on these principles were specified to synchronize text files [Be90, Ti85], XML files [TKS03] 
or graphical objects [IN04, IN04b]. Copies are reconciled using state of their representation [Be90, Ti85, 
TKS03, IN04] and more recently history and semantic properties of operations [IN04b]. 

A Synchronizer actually has the same objective as an asynchronous method. From this standpoint, a generic 
data Synchronizer was proposed in [MSO03] to synchronize updates on n copies (pairwise) using the same 
master copy. This Synchronizer is built on an adaptation of an algorithm which was initially proposed in the 
context of distributed real-time collaborative (synchronous) environments [VCF00]. It exploits semantic 
properties and histories of operations executed on the copies and merges two histories using Operational 
Transformations [EG89]. 

The fact that a master copy is required to (pairwise) synchronize updates of n copies of the same object is 
incompatible with a P2P environment in which no copy should be favoured. Indeed, a P2P environment 
offers a completely decentralised approach for sharing objects by permitting replication of copies of the 
same object from site to site. Unfortunately, in existing P2P systems, there is only partial or no copy consis-
tency, i.e. when a copy is updated the modification is not propagated to all the other copies. Although this 
aspect is not important for musical files, it may be for other applications. In popular P2P systems involving 
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millions of users, i.e. Gnutella and Kazaa, manipulated objects are read-only files, so updates are not taken 
into account. In Freenet [CMH02], updates are partially taken into account insofar as they are propagated 
from origin sites to neighbour sites when connected. In P-Grid [ACD03], update propagation is ensured by 
an algorithm offering probabilistic guarantees for copy consistency. However, the main drawback is that 
updates on copies of the same object can only come from the origin site of this object, i.e. from a master 
copy. 

In this paper, we present a Synchronizer that allows copy consistency, without discriminating in favour of 
any particular copy. Even though the copies may have been modified (concurrently or not) on different sites, 
the Synchronizer we present, can reconcile them pairwise, regardless of the pair, and copy consistency is 
always ensured. The main advantage of this Synchronizer is that it allows free and lazy propagation of 
updates originating from the different copies; so, it is particularly suitable for P2P environments in which no 
copy is favoured. It uses the history of operations executed on each copy and is based on Operational Trans-
formations. 

The paper is set up as follows. Section 2 reviews the Synchronizer principle as well as the model, based on 
synchronous collaborative algorithms and on Operational Transformations, that inspired our proposal. Sec-
tion 3 presents the algorithm of a Synchronizer, called MOT1, that ensures copy reconciliation while requir-
ing a master copy. Section 4 highlights the limits of MOT1 when no master copy is available. Then we 
outline the principles and the algorithm of an original Synchronizer, called MOT2, which enables any two 
copies to be reconciled and therefore any number of copies, without favouring any particular copy, but while 
ensuring their convergence. Finally, some properties of histories produced by MOT2 are described and 
MOT2 proof is provided.  

2. Objectives and Underlying Model 

2.1 Synchronizer Principle 

In the following, we consider an object (i.e. text, graphics, file, file system, XML tree, calendar, etc.) can be 
handled using definite operations {op} and is replicated on different sites. With each copy C of the object, 
the history H of operations that have been executed on C is associated. Initially, the copies are identical and 
they correspond to the same object state, then they progress independently of each other on their own site, 
which causes them to diverge. A Synchronizer (see Figure 1) is able to reconcile two divergent copies of the 
same object. As an entry, it takes both copies to be reconciled as well as their associated histories, thus 
producing both identical copies as well as their corresponding histories which have become equivalent. A 
couple (C, H), where C is the copy and H its associated history, is indicated by the name S of the site that 
manages the copy C – so we may talk about synchronizing either some copies or some sites. Synchronizing 
sites Si and Sj is denoted Synch(Si, Sj). 

Synch (Si , Sj )

Si : (Ci , Hi ) Sj : (Cj , Hj ) Before synchronization :
Ci  ≠ Cj

Hi  ≠ Hj

Si : (Ci , Hi ) Sj : (Cj , Hj )

After synchronization :
Ci  = Cj     identity of copies
Hi  ≡  Hj  equivalence of histories  

Figure 1. Synchronizer principle  

Two kinds of synchronizers are considered. A Synchronizer with a master site assumes the existence of a 
particular site, called the master site, and only permits synchronization between any site and the master site. 
On the contrary, a Synchronizer without a master site permits synchronization between any two sites. 

The Synchronizers we present here rely on an algorithm that can merge the histories Hi and Hj associated 
with copies and obtain two identical histories. This algorithm can be either centralised (so it runs on a single 
site) or distributed (so it runs on two sites, each one managing one copy and the associated history). 
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The following sections review the different principles underlying this algorithm: copy synchronization using 
synchronous collaborative algorithms, especially using SOCT4 as well as Operational Transformations. 

2.2 Synchronous Collaborative Algorithms and Operational Transformations 

Collaborative work often relies on the use of shared objects that are concurrently accessed by different users. 
In order to conciliate both availability and reactivity constraints when the environment is distributed, objects 
are generally replicated so that a copy is associated with every site or user. Therefore, the purpose of syn-
chronous collaborative algorithms is to maintain the consistency of these copies in real-time. The real-time 
aspect means that an operation generated by a user is immediately executed on his copy and integrated as 
soon as possible on the other copies. Copy consistency involves three properties: (1) causality preservation 
among users' actions, (2) user intention preservation, and (3) copy convergence. 

The difference between the various algorithms [EG89, RNG96, SYZ97, SCF97, SCF98, SE98, VCF00] 
concerns how they achieve integration of an operation. From a general standpoint, the history of operations 
whose execution leads to the current state is required for each object. When an operation op is generated at a 
site, it is immediately executed on the current state of the copy at this site and appended to the history, then 
broadcast to the other sites. The reception of an operation op by a site and its integration into the history at 
this site must take operations which are concurrent to op and already executed on the copy into account in 
order to determine the operation op' whose execution on the current state of the copy realises the same 
intention as the operation op. The transformation of op into op' is achieved using transposition functions, 
forward transposition and backward transposition [SCF97, SE98], called Operational Transformations. 
However, to guarantee copy convergence, Operational Transformations must meet two conditions called C1 
and C2 [EG89, RNG96]. We can distinguish two kinds of collaborative algorithms: 

1. algorithms [SCF98, SE98] for which the histories associated with the copies can be different (i.e. 
concurrent operations may be ordered in different ways according to the sites) while being equiva-
lent. These algorithms use both forward transposition and backward transposition and conditions C1 
and C2 must be met. 

2. algorithms [SYZ97, VCF00] for which the histories associated with the copies are identical (i.e. 
concurrent operations appear in the same order on all the sites). In this class, the SOCT4 algorithm  
[VCF00] has a twofold advantage. It only uses forward transposition, and secondly condition C2 
does not have to be met. 

2.3 Forward Transposition  

Forward transposition is used when concurrent and non-commutative operations are executed on copies in 
different orders. To illustrate this concept, let us consider two copies of an object, O1 and O2, that are in the 
same initial state. Let us suppose that operation op1 [resp. op2] executed on copy O1 [resp. O2] leads to the 
state O1.op1 [resp. O2.op2]. Later, the execution of op2 [resp. op1] on copy O1 [resp. O2] leads to the state 
O1.op1.op2 [resp. O2.op2.op1]. When operations are not commutative1, the resulting states are not equivalent 
(O1.op1.op2 ≢ O2.op2.op1). In these conditions, the forward transposition allows transformation of an opera-
tion before its execution so that it takes all concurrent operations serialized before it into account. In short, 
the forward transposition function, denoted in the following as Transpose-forward(op1, op2), is specific to a 
couple of concurrent operations (op1, op2) which are defined from the same object state. As a result, it gives 
the operation op2' (also written as op2op1) which has the same effect as op2 but which is defined from the 
state resulting from the execution of op1, and op2' is called the forward transposition of op2 with op1. To 
guarantee copy convergence, Operational Transformations and particularly forward transpositions must meet 
condition C1 [EG89, RNG96] which is summed up by state equivalence: ∀Oi, Oi.op1.op2' ≡ Oi.op2.op1'. It 
generally must meet a further condition C2 which is not detailed. 

Example 1. Let us assume that object O is represented as a string of characters and the operation in-
sert(p, c) inserts character c at position p in the string. Copies O1 and O2 are in the same initial state 

                                                      
1 That concerns the "forward" commutativity [We88], as opposed to the "backward" commutativity.  
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"efect". The operation op1 = insert(2,'f') executed on copy O1 adds 'f' at position 2, whereas operation 
op2 = insert(6,'s'), which is concurrently executed on copy O2, adds 's' at the end of the string. Execu-
tion of these operations in different orders leads to copies in divergent states: O1.op1.op2 ≡ "effecst" 
and O2.op2.op1 ≡ "effects". To guarantee copy convergence, operation op2 [resp. op1] has to be forward 
transposed with op1 [resp. op2] before being executed on copy O1 [resp. O2] so as to take the concur-
rent operation op1 [resp. op2] serialized before it into account, in order to obtain: O1.op1.op2' ≡ 
O2.op2.op1' ≡ "effects". The transposition function to be used and meeting condition C1 is as follows: 

Transpose-forward(insert(p1, c1), insert(p2, c2)) = 
  case  p1 ? p2  of 
   p1 < p2 : return  insert(p2 +1, c2) ; 
   p1 > p2 : return  insert(p2 , c2) ; 
   p1 = p2 : if c1 = c2  then  return  id ; 
     elsif  pr(c2) > pr(c1) then   return  insert(p2 , c2) ; 
     else  return insert(p2+1 , c2) ; endif ; 
  endcase. 

The forward transposition of op2 = insert(6,'s') with op1 here would be op2' = Transpose-
forward(insert(2,'f'), insert(6,'s')) = insert(7,'s'), whereas the forward transposition of op1 = insert(2,'f') 
with op2 would give the operation op1' = op1 as a result. 

2.4 Relationships between Operations and Histories 

By convention, we will say that an operation is executed on a site, when it is executed on the copy located at 
this site.  

Definition 1. The history Hi, associated with the copy Ci at site Si, memorizes the sequence of operations 
that transforms the copy Ci from its initial state into its current state, when executed in this order on copy Ci. 
More precisely, a history Hi is constituted by elements such as <Idop, Sop, op> where op is an operation 
executed on the copy associated with Hi, Sop the site where the operation was generated and Idop the opera-
tion identifier. Operations stored in the history Hi at site Si have been either generated at Si and therefore 
immediately executed on Si, or were generated at another site Sj and executed on Si as a result of synchroniz-
ing Si with Sj or with another site. 

Two operations are related by a causal ordering relation or are  concurrent. 

Definition 2. Given any two operations opk and opl, generated at sites Sopk
 and Sopl

 we say that opk causally 
precedes opl (noted opk →C opl) iff: (i) Sopk

 = Sopl 
and opk was generated before opl, or (ii) Sopk

 ≠ Sopl
 and opl 

was generated after the execution of opk by site Sopl
, or (iii) there is an operation opm such that opk →C opm 

and opm →C opl. 

Therefore, any new operation op generated at Si and executed on the current state of the copy Ci is such that: 
∀opi ∈ Hi, then opi →C op. 

Definition 3. Operations opk and opl are said to be independent or concurrent (noted opk // opl) iff: not (opk 

→C opl) and not (opl →C opk). 

The relation →C expresses the potential causality between the operations. When opk causally precedes opl, 
opl is assumed to be dependent on the effects of opk. In other words, the generation of opl takes the effects 
produced by the execution of opk into account. Conversely, when opk and opl are concurrent, then these 
operations are completely independent and neither one has been affected by the other.  

The order of operations in Hi expresses precedence. 

Definition 4. Given two operations opk and opl in the history Hi, opk is said to precede opl (noted opk  →Hi
 

opl) iff opk appears before opl  in Hi. 

 - 5 -  



  

Let us note that precedence is compatible with the causal ordering relation, i.e. if opk →C opl  then 
opk →Hi

 opl. However, two operations may belong to the same history as a result of a synchronization, with-
out having a causal precedence relation between them. 

2.5 Principle of Integration in SOCT4 

This section details the integration procedure of SOCT4 [VCF00], which is the basis of our synchronizer 
proposal. In SOCT4, operations are memorized in the histories associated with the copies according to a 
global unique order. To this end, a timestamp delivered by a sequencer is associated with each operation, 
and determines its position in every history. The integration procedure is executed by a site whenever an 
operation generated and broadcast by a remote site is received (reception is sequential in the timestamp 
order). It determines the operation to be executed on the current state of the local copy and inserts the re-
ceived operation into the history at the position corresponding to its timestamp (see Figure 2). 

 

...
1 

History H   
before integration 

s 

op 
remote operation 
with timestamp t ... ...

op op op
2 t-1

concurrent operations

seq

...
1 

Integration  
of op 

... ...
op op op

2 t-1

forward transposition of 
 the concurrent operations

op seq

forward transposition of op 

...
1 

History H   
after integration

s ... ...
op op op

2 t-1

forward transposed 
concurrent operations

op

op
C1

op
Cm

op
C1

op
Cm

op  '
C1

op  '
Cm

      operation 
   to be executed 
on the current state 

 
Figure 2. Integration of an operation in SOCT4  

The integration of operation op, with timestamp t, in position t, is based on the assumption that op is defined 
on the state resulting from the execution of operations op1 to opt-1 and that all operations located from posi-
tion t (sequence seq) are concurrent to op. 

The Integration procedure defined below is called to integrate the remote operation op, received as a triplet 
<Idop, Sop, op>, in position t in history HS of site S. 

Notations:  

CS    : copy of the object on site S 
HS : representation of the history by a table of items in the form <Idop, Sop, op> ; 
       HS[k].operation corresponds to the field op of HS[k] 
sizeofHS : number of items in HS

 
procedure Integration (HS, t, <Idop, Sop, op>) ; 

-- Step 1. shift the history to insert <Idop, Sop, op> in position t 
for k:= sizeofHS downto t do HS[k+1]:= HS[k] ; end for ;                  
HS[t]:= <Idop, Sop, op> ; sizeof HS:= sizeofHS +1 ;      
-- Step 2. determine the operation to be executed on the current 
-- state and transform operations that follow op in HS  
for k :=t+1 upto sizeofHS do                    

  opk:= HS[k].operation ;                    
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  HS[k].operation:= Transpose-forward(op, opk) ;         
  op:= Transpose-forward(opk, op) ;       

end for ; 
-- Step 3. execute the obtained operation on the copy of S 
execute(op, CS) ;         

end  Integration ; 

Step 2 is the essential integration step. Along this step, the operation op is forward transposed with each 
operation of seq; the resulting operation, noted opseq, is executed on the current state of the copy. During the 
calculation of opseq, each operation of seq is transposed to take the insertion of op in HS into account. More 
precisely, considering seq=opc1

.opc2
….opcm

, each operation opci
 of seq is forward transposed with opseq

i-1, 
where seqi-1= opc1

.opc2
….opci-1

 is the sequence of operations in seq that precede opci
. So, operation opci

 is 
replaced in HS by opci

op seqi-1 with opseq
0 =op. In the Integration procedure, Transpose-forward(op, opk) is the 

function that delivers opci
opseqi-1 and Transpose-forward(opk, op) is the function that delivers opseq

i, assuming 
that i=k-t.  

The memorized history HS does not correspond to the real history (i.e. the sequence of operations actually 
executed on the local copy) but it is equivalent to it. The advantage of SOCT4 is that the histories memo-
rized on the different sites converge towards the same history and are finally identical when all operations 
have been integrated within all sites. 

Note that the integration of an operation in the last position in HS does not require any transposition. It only 
involves memorizing a new item. For clarity, we introduce the Append procedure, which in the following 
enables us to distinguish the integration with transposition from the integration without transposition. 

procedure Append (HS, <Idop, Sop, op>) ; 
  sizeofHS:= sizeofHS +1 ; 
  HS[sizeofHS]:= <Idop, Sop, op> ;      
  execute(op, CS) ;     

end Append ; 

The validity conditions of the SOCT4 integration procedure may be expressed independently of timestamps 
as follows. Given a history HS = HC.seq, the integration of operation op into HS, after HC and before seq, is 
correct if conditions (a) and (b) have been met: 

(a) : op is defined from the state produced by the execution of operations in HC; 

(b) : ∀ op’ ∈ seq,  op’ is concurrent to op (i.e. not (op →c op’) and  not (op’→c op)). 

The history resulting from the integration of op is HC.op.seq', where seq' means that seq operations have 
been forward transposed with op to take the insertion of op into account. 

3. Synchronizer with a Master Site 

3.1 Principle 

A Synchronizer with a master site using Operational Transformation was derived from SOCT4 [MOS03]. 
The master site, that we designate by R, maintains the master copy as well as the history HR of the operations 
applied to it from the initial state to obtain the current state. By construction, the master copy is the most up-
to-date copy among all copies of the object. Any site S that wants to resynchronize its copy absolutely must 
merge its history HS with the history HR of the master copy. The following describes the merging principle. 

Before the merge, the histories HR and HS are identical until index kS, where kS corresponds to the last opera-
tion of the history obtained from the most recent merge of sites R and S. So we have: HS[j] = HR[j], ∀j : 1 ≤ j 
≤ kS. Let us call HC this common sub-history (common prefix) of HR and HS and let us designate by hR [resp. 
hS] the part of HR [resp. HS] that follows HC. So we get:   

HR = HC.hR    and   HS = HC.hS  
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More precisely, hS corresponds to the sequence of operations generated at S since the last synchronization of 
S with R and hR corresponds to the operations generated at R or at another site that was synchronized with R. 
The hR operations are concurrent to the hS operations. 

Merging of histories HR and HS involves two phases (see Figure 3). Each one is a direct application of 
SOCT4. 

Phase (1): it proceeds on site S and it makes the history HS progress. It involves importing hR and integrating 
it into HS from position kS +1. The obtained history is: HS = HC.hR.hS' where hS'  is the sub-history hS modi-
fied by forward-transposition to take hR operations into account. 

Phase (2): it proceeds on site R and makes the history HR progress. It involves importing hS' and appending 
(integrating without transposition) it to HR so as to finally obtain HR.hS'.  

 

Phase (2) 

Phase (1) 

History HR  
before merge 

1 op op 
2 op

ks+1

. .. 
op 

ks 

...

History HS  
before merge 

1 op op 
2 hS

. .. 
op

ks 

... History HS  
after merge 

1 op op 
2 

. .. 
op

ks 

...

... 

... History HR  
after merge 

1 op op 
2 

. .. 
op

ks 

...

hR

hR

hS'

hR

hS'

ks+1 op

ks+1 
op

 
Figure 3. Merging of histories HS and HR 

In the history resulting from the synchronization of HR and HS, note that the sub-history hR derived from the 
master site stayed unchanged whereas the sub-history hS generated at site S was forward transposed with hR. 
In fact, every operation present in HR before the merge is already in a definitive form (shown in black in the 
figure), and after the merge it remains in the same range in history HS. The hS' operations integrated at the 
end of HR are also in a definitive form after the merge. 

3.2 The MOT1 Algorithm 

The principle of the Synchronizer with a master site described above is fulfilled by the history merging 
algorithm MOT1 (“Merge based on Operational Transformation”). MOT1 here corresponds to a centralized 
algorithm, and it accepts both couples (CR, HR) and (CS, HS) as inputs and reconciles the copies CR and CS by 
merging the histories HR and HS. As output, it produces both couples (CR, HR) and (CS, HS), which are iden-
tical. To illustrate the fact that MOT1 is above all an history merging algorithm, we voluntarily overlooked 
copies that are only accessed in the Integration and Append procedures.   
   procedure MOT1 (HR , HS) ;      

-- Look for the prefix common to HR and HS: determine the index kS reached after the most recent 
-- merging of sites R and S 

      k := kS + 1 ; 
while  k ≤ sizeofHR  loop      -- Phase (1): integrate hR into HS       

< Idop, Sop , op  > :=  HR[k] ; 
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Integration (HS, k, < Idop, Sop , op  >) ;         -- HR[k]  HS[k] 
k := k + 1 ; 

    endloop ; 
while  k ≤ sizeofHS  loop      -- Phase (2): append hS' to HR      

< Idop, Sop , op  > :=  HS[k] ; 
Append (HR, < Idop, Sop , op  >) ;         -- HS[k]  HR[k] 
k := k + 1 ; 

    endloop ; 
   end MOT1 ;    

The history resulting from phase (1) is the final history. Phase (2) only expresses the necessary evolution of 
HR from its initial state. So, the processing to be performed on the history of each site is emphasized, thus 
making the distribution of MOT1 on both sites easier. 

We observe that phases (1) and (2) in MOT1 are not symmetrical. When distributing the MOT1 algorithm, 
phase (1) corresponds to the processing to be performed on site S, whereas phase (2) corresponds to the 
processing to be performed on site R. So, with MOT1, the roles of sites R and S can be considered as not 
symmetrical during the synchronization. Moreover, their roles are fixed once and for all in-so-far as the 
master site stays the same for all synchronizations. 

The proof of MOT1 is given in Appendix A1. Beyond the fact that it is presented as a centralized algorithm, 
MOT1 differs from [MOS03] by the fact that no sequencer is used. A sequencer is needed in SOCT4 to 
timestamp and thus to globally order operations broadcast by the various sites. In [MOS03], operation time-
stamping enables the master site to control concurrent synchronizations. In MOT1, timestamping is unneces-
sary as the merge procedure is executed in a critical section. The operation order naturally corresponds to the 
order of their integration into the master site history HR.  

Example 2 illustrates a succession of synchronizations of sites S2 and S3 with the master site S1, by using 
MOT1. The following notations are used. Synch(Si, Sj) means synchronization of sites Si and Sj, where Si is 
the master site; Synch(Si, Sj) ⇒ introduces the history resulting from synchronization of Si and Sj. The 
sequence of operations generated at site Si between its (n-1)th and nth synchronization is designated by hi[n]; 
hi[n]' means that operations in hi[n] have been forward transposed during the synchronization of Si with 
another site (merging hi[n] with another history). 

Example 2. Initially, all copies of the object are in the same state; then sites progress independently 
from each other (see Figure 4). The history resulting from the first synchronization between S2 and S1 
is: Synch(S1, S2) ⇒ h1[1].h2[1]' (italics are used to highlight sequences of operations that have been 
modified by transposition during the synchronization). Then S2 and S1 continue to progress independ-
ently. Further synchronization of S3 and S1 leads to the resulting history: Synch(S1, S3) ⇒  
h1[1].h2[1]'.h1[2].h3[1]', where h3[1] has been forward  transposed with the master site history. Just be-
fore resynchronizing S2 and the master site S1, the respective histories of S2 and S1 are :  

H2 = h1[1].h2[1]'.h2[2]   and    H1 = h1[1].h2[1]'.h1[2].h3[1]'.h1[3].  

Synchronizing S1 and S2 leads to the result: Synch(S1, S2)⇒ h1[1].h2[1]'.h1[2].h3[1]'.h1[3].h2[2]'. 

All copies converge towards the same state and will be identical when, in the absence of newly gener-
ated operations, all sites get resynchronized with the master site S1 (after S3 has been resynchronized 
with S1, in the absence of new operations generated by S2, S3 and S1). 
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Figure 4. An example of synchronization by MOT1 with the master site S1

In summary, the following features can be retained for MOT1. 

Input histories:   HR = HC.hR

                 and    HS = HC.hS            
where  hS is a sequence of operations generated at site S and 
           hR is a sequence of operations generated at other sites than S. 
Resulting history:      Synch(R, S)  ⇒   HC.hR.hS'   
where hS' means that operations of sub-history hS have been forward transposed with respect to hR opera-
tions. 

4. Synchronizer without a Master Site 

4.1 Limitations of MOT1  

The principle of a Synchronizer without a master site assumes that sites get synchronized and merge their 
histories, in pairs, regardless of the pair associations, while finally ensuring copy convergence. To be able to 
use the MOT1 algorithm to achieve this, it is necessary to define the role of each Si and Sj site, before each 
synchronization Synch(Si, Sj), since this role is not symmetrical. The role assigned to a site is temporary and 
only set for the duration of the synchronization. We will provide examples to illustrate the effect on the form 
of the resulting history and demonstrate the impossibility of obtaining copy convergence. 

As a convention in the following, the notation Synch(Si, Sj) means that when synchronizing sites Si and Sj, 
the first Si site serves as the master site (R). 

4.1.1  Arbitrary role assignment to sites 
In this section, we assume that each time two sites get synchronized, the site that serves as the master site is 
chosen arbitrarily.  

Example 3. Let us consider sites S1, S2 and S3 whose copies are initially identical and which progress 
independently (see Figure 5). When assigning the role of master site to the S1 site, the history resulting 
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from synchronizing S1 and S2 is: Synch(S1, S2) ⇒ h1[1].h2[1]'. Note that if the role assigned to sites 
were different, the history resulting from their synchronization would be different: Synch(S2, S1) ⇒  
h2[1].h1[1]'. Further synchronization of sites S3 and S1 results in the following history: Synch(S3, S1) 
⇒ h3[1].h1[1]'.h2[1]''.h1[2]'. As in Example 2, the first two synchronizations are made with S1. How-
ever S1 plays the role of master site in the first synchronization but not in the second. The histories 
produced are then different. As no master site is required, it is now possible to directly synchronize S2 

and S3. Before synchronization we have:  

          H2 = h1[1].h2[1]'.h2[2] and       H3  = h3[1].h1[1]'.h2[1]''.h1[2]' 

Note that H2 and H3 have no common prefix. Their last common state is the initial state. However, 
some operations are present in both histories although they appear under different forms because they 
have been transposed; the sequences h1[1].h2[1]' in H2 and h1[1]'.h2[1]'' in H3 (shown in bold) exem-
plify this; they involve operations with the same identity (field <Idop> is identical), but under different 
forms (field <op> is different). In these conditions, it is no longer possible to synchronize S3 and S2 
(by either Synch(S3, S2 ) or Synch(S2, S3)) when using MOT1 since the input histories do not fulfil the 
required property (common prefix HC). Applying the MOT1 merge algorithm would result in a history 
in which some operations (operations of h1[1].h2[1]' and h1[1]'.h2[1]'') would each appear twice – 
which of course is incoherent. 

h1[1].h2[1]'.h1[2]

h3[1].h1[1

 

 

 

 

Synch (S1, S2) ⇒  h1[1].h2[1]'
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Figure 5. Synchronizing attempt using MOT1 without a mast

In the following, sequences consisting of operations that are identical in their ide
in their form (<op>) and that appear in the same order are called avatars. 
h1[1].h2[1]' in H2 and h1[1]'.h2[1]'' in H3 are avatars. Note that avatars are characte
are not defined from the same state in both histories.  

4.1.2  Role assignment depending on a predetermined site order 
To assign their role to sites that achieve synchronization, we use a predetermined
When a synchronization Synch(Si, Sj ) between two sites Si and Sj occurs, the Si
site is such that Si < Sj. It could be thought that by totally ordering the synchroni
tions would be defined from the same state in histories to merge. The following 
the case. 
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Example 4. Let us consider the four sites S1, S2, S3 and S4 represented in Figure 6. The order used is: 
S1 < S2 < S3 < S4. With this convention, the following histories result from successive synchroniza-
tions: 

Synch(S1, S3 ) ⇒ h1[1]; 
Synch(S2, S4 ) ⇒ h2[1]; 
Synch(S2, S3) ⇒ h2[1].h2[2].h1[1]'.h3[2]'; 
Synch(S1, S4) ⇒ h1[1].h2[1]'.h4[2]'. 

Again it can be noted that histories H1 and H3 have no common prefix and contain avatars (shown in 
bold), i.e. some operations are present in both histories (field <Idop> is identical), while they appear 
under different forms (field <op> is different) because they are not defined from the same state. More-
over, it can be noted that the avatars of h1[1] and h2[1] appear in different orders in each history. Con-
sequently, it is not possible, for the same reasons as previously outlined, to synchronize S3 and S1 (by 
either Synch(S3, S1) or Synch(S1, S3)) when using MOT1 – applying this merge algorithm would 
make each avatar of h1[1] and h2[1] appear twice in the resulting history. 
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Figure 6. Using MOT1 with a predetermined order between synchronizing sites  

To sum up, the use of MOT1 to synchronize a pair of any sites, without favouring any one, is useless since 
various problems due to characteristics of the produced histories have not finally been solved, namely: (i) 
the impossibility of guaranteeing the existence of a common prefix in histories that have common sub-
histories, (ii) the presence of avatars, and (iii) the possibility for avatars common to several histories to 
appear in different orders. 

4.2 General Principle of MOT2 

In the absence of a master site, the MOT2 merge algorithm presented in the following ensures copy conver-
gence while permitting any pair of copies to be synchronized. To obtain this property, MOT2 merges the 
histories by using an order between the sites that generate the operations instead of using an order between 
the sites that achieve synchronization. A unique global order can thus be built without requiring a centraliz-
ing or ordering mechanism (timestamp, state vector, sequencer, etc.). As a result, histories produced by 
MOT2 are such that the common sub-histories appear in the same order. Moreover, in MOT2, the role of 
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sites is totally symmetrical when synchronizing. In particular, the history produced by Synch(Si, Sj) is iden-
tical to that produced by Synch(Sj, Si) (i.e. Synch(Si, Sj) ⇒ identical to Synch(Sj, Si) ⇒). 

The basic principle of MOT2 is as follows. Given the input histories: Hi = HC.opi  and  Hj = HC.opj   where 
opi and opj are operations generated by sites Sopi

 and Sopj
, respectively, the resulting history when synchro-

nizing Si and Sj is:       

    if Sopi
 < Sopj

  then Synch(Si, Sj)  ⇒   HC.opi.opj'   

    if Sopi
 > Sopj

  then Synch(Si, Sj)  ⇒   HC.opj.opi'   

where opi' [resp. opj'] means that operation opi [resp. opj] has been forward transposed with operation opj 
[resp. opi]. 

More generally, given the input histories:  Hi = HC.opi.seqi  and  Hj = HC.opj.seqj   where  opi and opj are 
operations respectively generated by sites Sopi

 and Sopj
, seqi and seqj are sequences of operations generated 

by any sites, the choice of the operation (opi or opj) to integrate after HC depends on the generator sites and 
involves the following effects:       

          if Sopi
 < Sopj

  then integration of opi in Hj, which gives:  
                                       Hi = HC.opi.seqi      (Hi unchanged)   and   Hj = HC.opi.opj'.seqj'      

          if Sopi
 > Sopj

  then integration of opj in Hi, which gives: 
                                       Hi = HC.opj.opi'.seqi'   and   Hj = HC.opj.seqj   (Hj unchanged)   

where opi'.seqi' [resp. opj'.seqj'] means that operations opi.seqi [resp. opj.seqj] have been forward transposed 
with the operation opj [resp. opi]. 

The following example illustrates the application of this principle in the execution of Example 4. 

Example 5. As in Example 4, we have: Synch(S1, S3 ) ⇒ h1[1] and Synch(S2, S4 ) ⇒ h2[1]. We will 
now detail the next two synchronizations Synch(S2, S3) and Synch(S1, S4) when using MOT2. We re-
call that the order of the sites is: S1 < S2 < S3 < S4. 

1. Detail of Synch(S2, S3). Before synchronization, the histories of sites S2 and S3 are: H2 = h2[1].h2[2] 
and H3 = h1[1].h3[2]. Note that HC is empty. Synchronizing S2 and S3 according to MOT2 successively 
achieves the following. 

a. Integrate operations of h1[1] into H2 as S1, generator site of h1[1], and S2, generator site of 
h2[1], are such that S1 < S2. The result is:  

H2 = h1[1].h2[1]'.h2[2]' and  H3 = h1[1].h3[2].   

(We underline the resulting common sub-history and write the operations modified by forward 
transposition in italics).  

b. Integrate operations of h2[1]' into H3 as S2, generator site of h2[1]', and S3, generator site of 
h3[2], are such that S2 < S3. The result is:  

H2 = h1[1].h2[1]'.h2[2]'  and  H3 = h1[1].h2[1]'.h3[2]'. 

c. Integrate operations of h2[2]' into H3 as S2, generator site of h2[2]', and S3, generator site of 
h3[2]', are such that S2 < S3. The result is:  

H2 = h1[1].h2[1]'.h2[2]'  and  H3 = h1[1].h2[1]'.h2[2]'.h3[2]''. 

d. Append (integrate without transposition) operations of h3[2]'' into H2 as the end of H2 has 
been reached. The final result is:  

H2 = H3 =  h1[1].h2[1]'.h2[2]'.h3[2]''. 

2. Detail of Synch(S1, S4). Before synchronization, the histories of sites S1 and S4 are: H1 = h1[1] and 
H4 = h2[1].h4[2]. Synchronizing according to MOT2 achieves the following. 

 - 13 -  



  

a. Integrate operations of h1[1] into H4 as S1 < S2. The result is:  

H1 = h1[1]  and  H4 = h1[1].h2[1]'.h4[2]'. 

b. Append (integrate without transposition) operations of h2[1]' and h4[2]' into H1 as the end of 
H1 has been reached. The final result is:  

H1 = H4 = h1[1].h2[1]'.h4[2]'. 

After these synchronizations it should be pointed out that operations common to histories H1, H2, H3 
and H4 (i.e. h1[1].h2[1]') appear in the same order and constitute their common prefix.  

In Example 5, the application of MOT2 produced histories that have common contiguous sequences of 
operations corresponding to their common prefix. We will see later that this may produce histories that have 
common non-contiguous sequences of operations, and we will note that these common sequences appear in 
all histories in the same order.  

4.3 The MOT2 Merge Algorithm  

The principle described in the previous section is achieved by the MOT2 history merging algorithm. MOT2 
accepts any two couples (Ci, Hi) and (Cj, Hj) as inputs and reconciles copies Ci and Cj by merging histories 
Hi and Hj. As an output, both couples (Ci, Hi) and (Cj, Hj) are identical. As for MOT1, we voluntarily over-
looked copies only accessed in the Integration and Append procedures. 

procedure MOT2  (Hi , Hj) ; 
     -- Look for the prefix HC common to Hi and Hj: determine the index kS of the last operation of HC

     k := kS + 1 ; 
while  (k ≤ sizeofHi) and (k ≤ sizeofHj)  loop   

< Idopi , Sopi , opi > :=  Hi[k] ; 
< Idopj , Sopj , opj > :=  Hj[k] ; 
case Sopi

 ? Sopj
  of 

Sopi
 < Sopj : Integration (Hj , k, < Idopi , Sopi , opi >) ;           -- Integrate opi into Hj   

Sopj
 < Sopi : Integration (Hi, k, < Idopj , Sopj , opj >) ;            --Integrate opj  into Hi   

Sopj
 = Sopi :  ;                                                            -- Operation is present in Hi and Hj

endcase ;  
k := k + 1 ; 

       endloop ;     -- The end of Hi or Hj has been reached 
 while  k ≤ sizeofHj  loop -- End of history Hi: append the remainder of Hj to Hi  

 < Idopj
 , Sopj

, opj > :=  Hj[k] ; 
 Append (Hi, < Idopj

, Sopj
, opj >) ;  

 k := k + 1 ; 
     endloop ; 

 while  k ≤ sizeofHi  loop -- End of history Hj: append the remainder of Hi to Hj  
 < Idopi , Sopi , opi > :=  Hi[k] ; 
 Append (Hj , < Idopi

, Sopi , opi >) ;  
 k := k + 1 ; 

        endloop ; 
end MOT2 ; 
 

MOT2 begins by determining the prefix common to Hi and Hj. Then, the generator sites of operations that 
follow the common prefix in Hi and Hj are compared in order to determine the operation to be integrated. 
After integration, the common prefix is augmented by one operation and the process is repeated until the end 
of one of the histories. The remaining operations of the history which is not terminated are then appended to 
the other history. When the compared operations opi and opj are such that Sopi

 = Sopj
, they have the same 

generator site and are therefore identical (i.e. Idopi
 = Idopj

 and opi = opj), which means that the operation is 
common to both histories Hi and Hj. Therefore, one directly skips to integrate the next operation. MOT2 can 
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thus be applied to two histories that are defined from the same initial state, without explicitly providing their 
last common state, which will be automatically determined by the algorithm.  

The following example illustrates processing of the algorithm and presents a situation where histories pro-
duced by MOT2 have common non-contiguous operation sequences. 

Example 6. Let us again consider the execution of Example 3 (see Figure 5) completed by adding the 
S4 site. Figure 5 slightly modified (h2[1] is empty and h3[2] has been added) is visible inside the dotted 
frame in Figure 7. The site order is: S4 < S3 <  S2 < S1. 

The histories produced by the MOT2 algorithm after successive synchronizations are now given be-
low.  

  Synch (S2, S1) ⇒ h1[1] 
  Synch (S3, S1) ⇒  h3[1].h1[1]'.h1[2]' 
  Synch (S2, S3) ⇒  h3[1].h1[1]'.h2[2]'.h1[2]''.h3[2]' 
  Synch (S4, S1)  ⇒  h4[1].h3[1]'.h1[1]''.h1[2]''.h1[3]' 

Note that the impossibility of achieving Synch (S2, S3) using MOT1 (see Example 3) is overcome by 
using MOT2. Before once more synchronizing sites S2 and S1, their histories are as follows: 

H1 = h4[1].h3[1]'.h1[1]''.h1[2]''.h1[3]'      and      H2 = h3[1].h1[1]'.h2[2]'.h1[2]''.h3[2]'.h2[3] 

Note that H2 and H1 contain several avatars (shown in bold), and these appear in the same order. Syn-
chronizing S2 and S1 using MOT2 successively achieves the following statements. 

a. Integrate h4[1] into H2, which gives:  

        H1 = h4[1].h3[1]'.h1[1]''.h1[2]''.h1[3]'  (unchanged) and  

        H2 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'; 

b. Integrate h2[2]'' into H1, which gives:  

        H1 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h1[3]'' and  

        H2 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]' (unchanged); 

c. Integrate h3[2]'' into H1, which gives: 

        H1 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h1[3]'''  and 

        H2 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'  (unchanged); 

d. Integrate h2[3]' into H1, which gives: 

        H1 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'.h1[3]''''  and 

        H2 = h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'  (unchanged); 

e. Append h1[3]'''' into H2, which gives: 

        H1 = H2 =  h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'.h1[3]''''; 

Finally we get: Synch (S2, S1)  ⇒ h4[1].h3[1]'.h1[1]''.h2[2]''.h1[2]'''.h3[2]''.h2[3]'.h1[3]''''. 

In Example 6, we observe that the common sequences of operations, either contiguous or not, appear in the 
same order in all histories. This is actually the main feature of MOT2. While allowing free propagation of 
histories, since a site may at any time synchronize its copy with any site, MOT2 guarantees that sub-histories 
common to various histories appear in the same order (see Theorem 5). By means of successive synchroni-
zations, a global order is built without requiring any centralized mechanism. MOT2 thus guarantees that 
copies will converge towards the same state. For this reason, MOT2 is particularly well suited to P2P envi-
ronments where copies may be concurrently modified without discriminating in favour of any copy or site. 
As MOT2 uses Operational Transformations (i.e. forward transposition) and SOCT4 to merge histories, it 
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achieves automatic copy reconciliation while respecting causality precedence between operations when this 
exists. 
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Figure 7. Example of synchronization using MOT2 

4.4 MOT2 Properties and Proof  

This section presents the properties and theorems that enable us to prove the correction of the MOT2 merge 
algorithm. Demonstrations of the theorems are given in the Appendix.  

The subsequent results we are interested in concern the operation order. Consequently, although the opera-
tions may appear under different forms because of the transpositions, we will combine the operation and its 
various transposed forms in the notation. In other words, the notation opk will represent either the generated 
operation opk or its forward transposed forms opk', opk'', etc. The fact that an operation got transformed 
through transpositions therefore no longer appears in the formulations.  

Property P1. Given Hi, ∀opk and ∀opl ∈ Hi  such that: opk →Hi
 opl, after merging Hi with another history 

using MOT2, the precedence in the resulting history H is still: opk →H opl. 

As (see Definition 4) the precedence is compatible with the causal ordering relation, merging preserves both 
the precedence (→H) and the causal precedence relation (→C). 

Let us now consider the histories Hi and Hj of sites Si and Sj with a common prefix HC. Let us call opi and opj 
the operations belonging to histories Hi and Hj, respectively, and defined from the same state (the state left 
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by HC). Then we have: Hi = HC.opi.seqi and Hj = HC.opj.seqj, where seqi and seqj are sequences of any opera-
tions. Merging Hi and Hj using the MOT2 algorithm will produce two new histories Hi and Hj that are 
identical. H designates the history resulting from the merge of Hi and Hj. The precedence between opi and 
opj in H is determined by the order between their generator sites. Property P2 expresses this result.  

Property P2. Given opi and opj such that:  Hi = HC.opi.seqi  and  Hj = HC.opj.seqj, after merging Hi  and Hj 
using MOT2, the precedence in the resulting history H is such that: 

if   Sopi
 < Sopj      then opi →H opj 

  if   Sopi
 > Sopj     then opj →H opi . 

Property P3 generalizes property P2 to the case of a sequence of operations. 

Property P3. Given opi ∈ Hi  and a sequence seq ∈ Hj, defined from the same state and such that Hi = 
HC.opi.seqi  and  Hj = HC.seq.seqj, after merging Hi and Hj using MOT2 the precedence in the resulting 
history H is such that: 

if    ∀op ∈ seq:   Sop < Sopi      then    seq →H opi. 

The proof is given in Appendix A2. 

Given two operations opk and opl that occur consecutively in a history H produced by MOT2, the following 
theorem specifies that if they are concurrent then they are ordered according to their generator site.  

Theorem 1. Given two operations opk and opl that occur consecutively in a history H produced by MOT2 
and such that opk →H opl: 

if    opk // opl  then    Sopk
 < Sopl

. 

The demonstration is given in Appendix A3. Theorem 2, obtained by contraposition, specifies that if the 
operations are both consecutive and ordered in the history according to the inverse order of their generator 
site, then they are related by a causal precedence relation. 

Theorem 2. Given two operations opk and opl that occur consecutively in a history H produced by MOT2 
and such that opk →H opl: 

if    Sopk
 ≥ Sopl    then    opk →C opl. 

These theorems are illustrated by Example 6, when each sequence hi[n] corresponds to a single operation. 
The considered final history is: 

  Synch (S2, S1)  ⇒ h4[1].h3[1].h1[1].h2[2].h1[2].h3[2].h2[3].h1[3]. 

We observe that consecutive concurrent operations (h4[1] and h3[1], h3[1] and h1[1], h2[2] and h1[2], h2[3] 
and h1[3]) are actually ordered according to their generator site order (recall that in this example the site 
order is: S4 < S3 < S2 < S1). Concerning consecutive operations that are ordered according to the inverse 
order of their generator site (h1[1] and h2[2] on one hand, h1[2] and h3[2] on the other), they are actually 
related by a causal precedence relation: h1[1]→C h2[2] and h1[2]→C h3[2]. 

The following theorem is a generalization of Theorem 1. Its demonstration is given in Appendix A4. 

Theorem 3. Given the sequence seq.op in a history H produced by MOT2, where seq is constituted from 
operations concurrent  to operation op, then:      

∀opk ∈ seq    ⇒   Sopk
 < Sop. 

Theorem 4 is deduced by contraposition.  

Theorem 4. Given the sequence seq.op in a history H produced by MOT2 where seq = op0....opn. If se-
quence seq contains an operation opk such that Sopk

 ≥  Sop then:  

∃ opl ∈{opk....opn}  ⇒   opl →C op. 
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These theorems can be illustrated by the same example as given previously, still considering that each se-
quence hi[n] corresponds to a single operation. The final history considered is: 

  Synch (S2, S1)  ⇒ h4[1].h3[1].h1[1].h2[2].h1[2].h3[2].h2[3].h1[3]. 

Let us consider the underlined sequence seq with op = h3[2]; h2[2] (i.e. opk) and  h3[2] (i.e. op) are such that  
S2 > S3 (i.e. Sopk

 >  Sop), although h2[2] is concurrent to h3[2] (i.e. opk // op); we actually observe that h1[2] 
(i.e. opl) exists such that: h1[2] →C  h3[2] (i.e. opl →C op). 

Theorem 5 states that, when histories Hi and Hj produced by MOT2 contain common operations, then these 
appear in the same order. 

Theorem 5. Given opk and opl ∈ Hi, opk and opl ∈ Hj, where Hi and Hj are histories produced by MOT2:    

                                 if   opk →Hi
 opl      then   opk →Hj

 opl . 

The proof is given in Appendix A5. This theorem underlies the proof of the MOT2 algorithm. Indeed, as 
operations common to histories produced by MOT2 appear in the same order in these histories, we are sure 
that, whatever successive synchronizations occur, the histories which have integrated the same operations 
are identical. In other words, by means of synchronizations, histories associated with each copy integrate 
new operations and therefore converge towards the same history. So the MOT2 algorithm dynamically 
guarantees operation ordering according to a unique global order without requiring a centralising or order-
ing (timestamp, state vector, sequencer, etc.) mechanism. 

Finally, the proof that the integration of an operation meets the validity conditions of SOCT4 (conditions (a) 
and (b) in section 2.5) is given in Appendix A6. 

5. Conclusion 
This paper has studied problems involving reconciliation of multiple divergent copies of the same object by 
means of a Synchronizer when using Operational Transformation. In this setting, we have proposed an 
original Synchronizer, i.e. MOT2, that enables the users to reconcile copies while ensuring their conver-
gence and respecting the potential causal precedence between operations, without favouring any copy. 
MOT2 is particularly suitable for a P2P environment as it enables pairwise copy reconciliation, with any pair 
association, and without requiring a master site. Each site can thus synchronize its copy, when it wants, with 
any other site that owns a copy of the object. While permitting free propagation of update operations, MOT2 
guarantees that they will appear in the same order in all the histories. It thus ensures, through successive 
synchronizations, the construction of a global order without requiring any ordering mechanism (timestamps, 
state vectors, sequencer). Finally, the Operational Transformation used (forward transposition only) necessi-
tates verification of condition C1 only, which is easily met. The MOT2 algorithm can be centralized (it then 
runs on a single site) or distributed (it runs on two sites, each one owning a copy and the corresponding 
history). Here we have proposed a centralized version of the MOT2 algorithm in order to present its func-
tioning principle and provide proof of its correction. It can be used as such in a distributed P2P environment 
by supplying each site with a version of MOT2. The algorithm is the same on all sites, with no site playing a 
specific role. Two sites only need to transmit their history to each other and then run MOT2 to achieve 
synchronization.  
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6. Appendix 

A1. Proof of the MOT1 Algorithm 

MOT1 is verified by checking that the integration of operations in each phase meets the SOCT4 validity 
conditions (conditions (a) and (b) of section 2.5). In phase (1), the operation opk (with opk = HR[k].operation) 
to be integrated at the same position k into HS is such that: (a) it is defined from the state left by the HS[k-
1].operation since ∀j: 1≤ j ≤ k-1, HS[j] = HR[j] and (b) ∀j: k < j ≤ sizeofHS, op = HS[j].operation is concur-
rent to opk, because op has been generated at site S after the last synchronization of S with R. In phase (2), 
the operation opk (with opk = HS[k].operation) which is added to HR at the same position k is such that: (a) it 
is defined from the state left by HR[k-1].operation since ∀j: 1 ≤ j ≤ k-1, HR[j] = HS[j] and  (b) ∄ op with op = 
HR[j].operation, ∀j: k < j ≤ sizeofHR since k = sizeofHR. 

A2. Proof of Property P3 

Let Hi = HC.opi.seqi and Hj = HC.seq.seqj with seq = op1.op2..... oph. As Sop1
 < Sopi

 , according to the P2 
property, we have: op1 →H opi. As op1 is integrated into the history Hi, after the first iteration of the algo-
rithm we get: Hi = HC.op1.opi'.seqi', where opi'.seqi' is the forward transposition of opi.seqi with op1. If we 
only consider operation ordering, then Hi = HC.op1.opi.seqi. Now, let us consider opi ∈ Hi and op2 ∈ Hj 

which are defined on the same state (the one left by HC.op1). As Sop2
 < Sopi

 according to P2 we get: op2 →H 
opi. After successive iterations, it turns out that oph →H opi. Finally, op1 →H op2 →H.....→H oph →H opi then 
seq →H opi. 

A3. Proof of Theorem 1 

The operations opk and opl are concurrent, so we can deduce that they were joined together in the same 
history when synchronizing two sites. Let us call these sites Si and Sj. Moreover, the operations opk et opl are 
consecutive. We can thus deduce that when histories Hi and Hj were merged, there was an integration step 
with: Hi = HC.opk... and Hj = HC.opl.... Since the result of this step was HC.opk.opl..., then, according to the 
P2 property: Sopk

 < Sopl
. CQFD. 

A4. Proof of Theorem 3 

Operations of the sequence seq are concurrent to op, i.e. they were joined together in the same history as op 
as result of synchronizations. Let us consider the first synchronization when operation op and all or part of 
the sequence seq were joined together in the same history. Let us call this initial sequence seq0. Let us denote 
Si and Sj as the sites which got synchronized and let us assume that op ∈ Hi and seq0 ∈ Hj. Since seq0 and op 
are consecutive in the resulting history, then there was, during some merging step: Hi =  HC.op… and Hj = 
HC.seq0… . Since the result was HC.seq0.op, then, according to the P3 property: ∀opk ∈ seq0, Sopk

 < Sop. 

The sequence seq0 increased with some further operations and finally became equal to seq as a result of the 
next synchronizations. If an operation opl was added to seq0, which constituted a new sequence denoted as 
seq1, then, during some merge, operations opl and opm (with opm ∈ {seq0.op}) were defined on the same state 
and opl was integrated before opm (i.e. opl →H opm). More precisely, let us suppose that Si and Sj are the sites 
which got synchronized and that seq0 = seqx.opm.seqy, then:  

    Hi = HC.seqx.opm.seqy.op ... 

    Hj = HC.seqx.opl ... 

Since the result of the merge was opl →H opm then Sopl
 < Sopm

. As Sopm
 < Sop, after having integrated opl into 

seq0, we still have the property: ∀opk ∈ seq1, Sopk
 < Sop. By repeating this reasoning for every operation 

added to seq0, the property can finally be stated: ∀opk ∈ seq, Sopk
 < Sop. CQFD. 

A5. Proof of Theorem 5 

Two cases must be considered according whether operations opk and opl that belong to histories Hi and Hj 
are concurrent or not. 
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1) opk and opl are not concurrent 

The operations were ordered according to the causality relation. One of the operations, let us say opl, was 
generated at site Sopl

 after execution of the other one at this site. In the history of Sopl
, according to definition 

2, we can state: opk →C opl. As from the P1 property, merging preserves the precedence (and therefore the 
causal ordering precedence), in all the histories there will be: opk →C opl.  

2) opk and opl are concurrent  

The operations were generated independently of each other in distinct histories. As a result of synchronizing 
sites, operation opk which was generated at site Sopk

, got propagated to other histories, denoted Hk. In the 
same way, operation opl which was generated at site Sopl

 got propagated to other histories, denoted Hl. 
Operations opk and opl are joined together in the same history when some site from Hl and some site from Hk 
get synchronized. We will demonstrate that in any case opk and opl will be ordered by MOT2 in the same 
way. There are again two situations according whether opk and opl were generated either from the same state 
or from different states of the copies. 

2.1) opk and opl were generated from the same copy state  

As opk and opl were generated from the same state, then: ∀opc: opc →C opk then opc →C opl

  and conversely: ∀opc: opc →C opl then opc →C opk. 

When synchronizing some site Si from Hk and some site Sj from Hl, MOT2 execution will lead to one of the 
two following intermediate situations:  

either (case 2.1.1): Hi = HC.opk....    and Hj = HC.seq.opl....    

or (case 2.1.2):   Hi = HC.seq.opk.... and Hj = HC.opl....     

Since ∀opc: opc →C opk then opc →C opl and conversely: ∀opc: opc →C opl then opc →C opk, in both cases we 
get: ∀opc: opc →C opk or opc →C opl, opc ∈ HC. Then: ∀op ∈ seq: op // opk and op // opl.. Hereafter, we have 
to show that, in both cases, synchronization will produce the same result. Let us suppose that Sopk

 < Sopl
 (the 

same reasoning holds for Sopk
 > Sopl

). 

In case 2.1.1, according to the P2 property, in the resulting history H, we necessarily get: opk →H opl. 

In case 2.1.2, according to the theorem 3, we get: ∀op ∈ seq, Sop < Sopk
. Based on Sopk

 < Sopl
 and taking 

property P3 into account, in the resulting history H, we necessarily get: seq →H opk →H opl.  

Finally, we obtain the following result. 

Two concurrent operations opk and opl, which were generated from the same copy state, are ordered in the 
resulting history according to their generator site: 

   if   Sopk
 < Sopl

  then   opk →H opl 

   if   Sopl
 < Sopk

  then   opl →H opk 

Therefore, they are ordered in the same way in all the histories. 

2.2) opk and opl were generated from different copy states 

In this case, opk and opl are said to be partially concurrent. This means there is an operation opm such that: 

either:  opm →C opl   and   opm and opk were generated from the same state, 

or:   opm →C opk  and   opm and opl were generated from the same state. 

Let us consider the first case (similar reasoning is required for the second one). Since opm and opk are con-
current and were generated from the same state, according to the framed result obtained in 2.1, they will be 
ordered in the resulting history according to their generator site. Two cases thus have to be investigated 
depending on the respective values of Sopk

 and Sopm
. 

2.2.1 Case where Sopk
 < Sopm 
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In this case, we get: opk →H opm. By hypothesis, we also have opm →C opl. As any history containing opl also 
contains all operations which causally precede opl, we deduce that any history of Hl contains opm. Conse-
quently, when synchronizing any site of Hl with any site of Hk, in the resulting history we get: opk →H opm 
→C opl and therefore opk →H opl. 

Finally, by applying a similar reasoning to the second case, we obtain the following result. 

Two partially concurrent operations opk and opl (i.e. which were generated from different states) are ordered 
in the resulting history in the following way:  

   if  ∃ opm: opm →C opl   and   opm and opk were generated from the same state 

   and if   Sopk
 < Sopm

 then  opk →H opl; 

   if  ∃ opm: opm →C opk    and   opm and opl were generated from the same state 

   and if   Sopl
 < Sopm

  then  opl →H opk. 

As any history containing an operation also contains all operations which causally precede it, we deduce that 
any history containing opl [resp. opk] also contains opm. Therefore, opk and opl are ordered in the same way 
in all histories. 

2.2.2 Case where Sopk
 > Sopm 

In this case, we get in the resulting history: opm →H opk. More precisely, execution of the MOT2 algorithm 
will produce the intermediate result: 

firstly,     Hi = HC.opk....      and      Hj = HC.opm....opl.... 

then,    Hi = HC.opm.opk.…and    Hj = HC.opm....opl....   where   opk has been forward transposed with opm

The opk operation obtained after being forward transposed is defined from the state HC.opm, as if it had been 
generated from this state. Hereafter, the problem is to determine the respective positions of this new opera-
tion opk and opl. We are then led again to the beginning of case 2. The reasoning is iterated until obtaining a 
relation between opk and opl relevant to case 2.1 or case 2.2.1. CQFD. 

The characterisation of two operations to be concurrent and generated from the same state, or partially 
concurrent, changes with the algorithm execution. Two operations which are initially partially concurrent, 
may later become concurrent by the effect of successive transpositions.  

A6. Proof of the Correct Integration of an Operation in MOT2 

We have to prove that the integration of an operation meets the validity conditions of SOCT4 (conditions (a) 
and (b) of section 2.5). 

During execution of MOT2, when two sites Si and Sj are synchronized, the integration procedure is called to 
integrate an operation op of Hi into Hj under the following circumstances: Hi = HC.op.seqi,  Hj = HC.opk.seqj   
and  Sop < Sopk

; op is then integrated into Hj after HC and before opk.   

Condition (a) is verified since op is defined from the state produced by HC.  

In order to verify condition (b), we must show that: 

∀ opl  ∈ opk.seqj,  opl  // op (i.e. not (op →C opl) and not (opl →C op)). 

1. Let us suppose that: ∃ opl ∈ opk.seqj such that op →C opl. It turns out that op also belongs to Hj and then 
we get more precisely: Hj = HC.opk.seqj1

.op.seqj2
.opl.seqj3

. We deduce that: ∀ opm ∈ opk.seqj1
, opm is concur-

rent to op, and therefore according to theorem 3, ∀ opm ∈ opk.seqj1
,
 
Sopm

 < Sop. Here there is a contradiction 
with the hypothesis Sop < Sopk

. 

2. Let us consider an operation opm such that: opm →C op. Since any operation which causally precedes op 
belongs to HC, opm belongs to HC and therefore: ∀ opl ∈ opk.seqj, not (opl →C op). CQFD. 
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