
Comparison of Minisatellites

Sherine B&at-d
LIRMM, UMR CNRS 5506

161, rue Ada, F34392 Montpellier Cedex 5
France

berard @I lirmm.fr

ABSTRACT
In the class of repeated sequences that occur in DNA, min-
isatellites have been found polymorphic and became useful
tools in genetic mapping and forensic studies. They consist
of a heterogeneous tandem array of a short repeat unit. The
slightly different units along the array are called variants.
Minisatellites evolve mainly through tandem duplications
and tandem deletions of variants. Jeffreys et al. devised a
method to obtain the sequence of variants along the array in
a digital code, and called such sequences maps. Minisatel-
lite maps give access to the detail of mutation processes at
work on such loci. In this paper, we design an algorithm
to compare two maps under an evolutionary model that
includes deletion, insertion, mutation, tandem duplication
and tandem deletion of a variant. Our method computes
an optimal alignment in reasonable time; and the alignment
score, i.e., the weighted sum of its elementary operations, is
a distance metric between maps. The main difficulty is that
the optimal sequence of operations depends on the order in
which they are applied to the map. Taking the maps of the
minisatellite MSYl of 609 men, we computed all pairwise
distances and reconstruct an evolutionary tree of these indi-
viduals. MSYl (DYF155Sl) is a hypervariable locus on the
Y chromosome. In our tree, the populations of some hap-
logroups are monophyletic, showing that one can decipher a
micro-evolutionary signal using minisatellite maps compar-
ison. .

Categories and Subject Descriptors
G.4 [Mathematical software]: [algorithm design and anal-
ysis, efficiency, certification and testing]; 1.5.3 [Pattern recog-
nition]: Clustering-algorithm, similarity measures; 1.5.4
[Pattern recognition]: Applications--text processing; G.2.1
[Discrete Mathematics]: Combinatorics-combinatorial
algorithms; 5.3 [Life and Medical Science]: [biology and
genetics]

RECOMB ‘02, April 18-21, 2002 Washington, D.C.. USA

Copyright 2002 ACM ISBN l-58113-498-3-02/04 . ..$5.00

Eric Rivals
LIRMM, UMR CNRS 5506

161, rue Ada, F34392 Montpellier Cedex 5
France

rivals@ lirmm.fr

General Terms
Algorithms, measurement

Keywords
Alignment, bioinformatics, dynamic programming, evolu-
tion, minisatellite, overlap graphs, sequence comparison, tan-
dem repeats

1. INTRODUCTION
Repeated sequences represent a large part of eukaryotic ge-
nomes. Among repeats, the class of tandem repeats, whose
duplicated units are adjacent along the chromosome, have
also been found in other species including bacteria. This
class is subdivided further by decreasing order of repcat unit,
size into satellites, mini-satellites and micro-satellites.

Minisatellites (ms) consist of tandem arrays of short repeat
units. Tandem repeats classifications vary and the repeat
unit length of ms is considered to be between 7 and 100
bp [15] or 10 and 50 bp [ll]. Due to a lack of a precise
definition of ms, these structures are usually not annotated
in sequence data. Nevertheless, amongst the community of
biologists there has grown a large interest in ms because of
their polymorphism; Variable Number of Tandem Repeats
(VTNR) is a synonym for polymorphic ms. This variability
is due to tandem duplication, an event that adds a dupli-
cated copy next to the original one, and to the reverse event,
tandem deletion. Slippage of DNA polymerase during repli-
cation and unequal crossing-over have been hypothesized as
mechanisms for these events. As for microsatellites, length
variations of ms have been found to be involved in several
diseases like diabetes, epilepsy and cancer and there is ev-
idence for other contributions to genome function (see [6,
151).

Specific studies reveal that most human ms contain subtly
varying repeat units [9]. In 1991, Jeffreys and colleagues de-
signed a PCR reaction to type Minisatellites Variant Repeat,
the MVR-PCR [lo]. Each different unit is a variant. This
method provides the sequence of variants along the array
in a digital code, where each variant is encoded by a sym-
bol. Such sequences are called internal or minisatellite
maps. This technology has led to major improvements in
the knowledge of ms instability processes, among which are:
the model of mutation initiation by double strand breaks,
the role of flanking sequences, the differences between mei-
otic and somatic mutations and the phenomenon of polar-
ized variability (see [9, 151 for reviews).

iPad de Gouat

Because of their length variability, minisatellites have proven
useful in genetic mapping, forensic studies, and the explo-
ration of genetic diversity and population structure. But ms
maps give access to the mutation processes of ms at a more
detailed level. For instance, they allowed Armour et al. to
investigate the Out-of-Africa hypothesis of human origin [2].

The human minisatellite MSYl, the most variable locus
on the Y chromosome, is an ideal tool to investigate the
evolution of this haploid chromosome and decipher pater-
nal lineages in human [ll]. In [ll], the authors typed by
MVR-PCR the MSYl maps of 690 men sampled in vari-
ous human populations. Their aim was to survey MSYl
diversity in haplogroups and populations. They studied the
average maps diversity in some populations, but the lack
of a computer-based comparison method impeded a more
in-depth study (like reconstructing an evolutionary tree of
these individuals.)

To fully exploit the evolutionary information contained in
these sequcnccs of variants, it is critical to be able to com-
pare automatically ms maps. In this paper, we provide an
alignment algorithm which considers the events of tandem
duplication and deletion of a variant and is specific for ms
maps. We hypothesize a symmetrical single-step evolution-
ary model for ms, which we present in Section 2. In Sec-
tion 3, we detail the algorithm. In Section 4, we apply our
method to compare the MSYl maps from [ll) and recon-
struct an evolutionary tree from the resulting distance ma-
trix.

Notation. As minisatellite maps can be modeled by se-
quences of symbols, also called strings, we introduce a nota-
tion for strings. Let C be a finite alphabet of variants and
u its size. A map s of length n is a string of n symbols of C
indexed from 1 to n. We denote the length of s by Is] and its
i-th symbol by s[i] for all i with 1 5 i 5 n. For any integers
1:, j, 1 < i < j < n, sj := s[i] . . . s[j] is called a substring of
s. We denote the concatenation of two strings r and s by
rs. Throughout the article, let r, s be two maps over C of
length m and n, respectively.

2. SINGLE-STEPEVOLUTIONARY MODEL
FOR MINISATELLITES

In this section we describe our evolutionary model for min-
isatellites and introduce the notion of arches.

Our model considers five types of evolutionary events on
variants. mutation, insertion, deletion, amplification andL.
contraction. Mutation, insertion and deletion are the same
events <as those considered traditionally in sequence align-
ments except that they apply to a variant instead of a single
residue. Here is an illustration on the sequence abc:

delete b: abc + ac
insert d at pos. 3: abc + abdc
mutate b in d: abc -+ adc

The two specific events are amplification and contraction
(These are shorter names for tandem duplication and tan-
dem deletion.) For example, the sequence abc undergoes an
amplification of variant b and then its contraction:

amplification: abc -+ abbe
contraction: abbe + abc.

In the map s, the amplification of the variant s[i] results in
the insertion of a new copy of s[i] at position i + 1. The con-
traction is the dual operation: if s[i] occurs at two successive
positions, i.e., s[i] = s[i+l], the contraction at position i+ 1
removes s[i + 11. Our model is termed single-step because
amplification, resp. contraction, adds, resp. removes, a sin-
gle variant at a time. A future direction of research is to
consider a multiple-step model where, e.g., a triplication or
a quadruplication of a variant may happen in a single event.

To complete our model, we need a quantitative criterion to
judge map similarity. For this, each operation is associated
with a real positive cost. A sequence of events that trans-
forms s into r is called an alignment. The alignment cost is
the sum of its operations costs where aligning two identical
variants costs zero. We designate each cost by the upper-
case initial of the corresponding event: M, I, D, A and C.
Here, we consider a symmetrical model where dual events
have the same cost I = D and A = C. The observed
much higher relative frequency of amplifications and con-
tractions compared to other events is translated by the fact
that they have lower costs: A, C < M, D, I. To unify the
notation for a mutation and a match we use M(a, b) that
is equal to 0 if a = b and to M otherwise. For the sake
of simplicity, we consider that all possible mutations cost
the same regardless the nucleotidic sequences of the vari-
ants. This is a reasonable assumption for the application
to minisatellites since variants are long and differ from each
other by a few base pairs (see the case of MSYl in Sec-
tion 4.) As in general, a deletion can also be obtained by a
mutation plus a contraction and an insertion by an ampli-
fication plus a mutation, we have either (D > it4 + C and
I>A+M)or(DsM+CandI<A+M). Withoutloss
of generality we assume the first hypothesis (denoted Hl).
This influences the cost of arch generations/compressions
(see Lemma 1) and modifies slightly the algorithm. With
Hl, at any position except the first one, a variant can be
“inserted” by an amplification+mutation, or “deleted” by a
mutation+contraction. We denote these operations by AM
and MC, resp. and they cost A+M and M +C, resp. Under
these conditions, the alignment cost is a metric; this is im-
portant when reconstructing an evolutionary tree from maps
data. The proof that the alignment distance is a metric is
in the appendix.

2.1 The Concept of Arch
Let us look step-wise at an artificial example of evolution
of the same minisatellite in two individuals (Figure 1). The
alphabet of variants is {a, b, c, d, e}, the ancestor state has
map aaaaa, the resulting maps in Individuals 1 mtl 2 are
r := aeaaa and s := aaabbcbddba, rcspectivcly. An align-
ment is given Figure 2. In Individual 2, the variant h is am-
plified five times. These amplified variants further mutate
and then undergo additional amplifications. This results in
a substring whose variants all come from the same ancestor
variant, which we call the seed of the substring. We can de-
limit such a substring by the fact that its extremal variants
are identical. In our example, the substring of s is bbcbddb
from position 4 to 10, its seed b is at posit,ion 4. During the
evolution of this substring, the final variant at each position

does not appear in the order of the sequence: at some stage,
position 8 has still the ancestor state b and not its final state
d, while position 10 is already a b. Thus, such substrings can
be obtained by many series of operations, but the optimal
way may be order-dependent. If we compute incrementally
alignment for longer and longer prefixes, i.e., adding one op-
eration at a time, we cannot find the optimal order of events.
For our example substring, if the 9th position first becomes
a d, it is not possible to obtain a b at the 10th position by an
amplification. So, to recover the optimal series of operations
that leads to such a substring, we need to consider it as a
whole and not each variant one after the other. This leads
to the notion of arches.

DEFINITION 1. Let s be a map of length n and i, j be two
integers such that 1 5 i < j < n. sj is an arch of s if
s[i] = SE].

In an arch, not all variants need to be the same and an arch
may recursively contain other inner-arches with different
seeds as its, like dd in bbcbddb. Indeed, once a position with
a seed has been mutated into a non-seed variant, it may
undergo an amplification which creates an inner-arch.

Individual 1 Individual 2

Event Sequence Event Sequence
a a a a a a a a a a

m u t a e a a a m u t a a a b a
5*amp a a a b b b b b b a
m u t a a a b b c b b b a
m u t a a a b b c b d b a
amp a a a b b c b d d b a

Figure 1: Example of evolution of a minisatellite in
2 individuals.

In the alignment Figure 2, one sees that none of the po-
sitions corresponding to bbcbddb in s exist in r except the
seed position. To mimic evolution, we want to align an arch
of s with a single variant of I-, the one at the original seed
location. In other words, we want to align this seed with
a single variant of r and expand additional variants of the
arch from its seed. We may see the advent of an arch as
a single evolutionary step with a special cost function. De-
pending on the direction we observe evolution, from s to r or
from r to s, we named this an arch compression or gener-
ation. In our dynamic programming (DP) approach, arch
generation/compression are viewed as single operations that
express dependencies between two non-neighboring entries
of the DP matrix (see Figure 4.)

Generation and compression of an arch are symmetrical.
Generation corresponds to a series of amplifications and mu-
f,ations (this depends on hypothesis Hl, see above) that gives
rise to the associated substring from the seed variant, while
compression is a series of contractions and mutations that
rewinds the substring into its seed. Suppose an arch in s,
as no character from r plays a role in such series of events,
its optimal cost can be computed independently of r. We
dcnot,e by G(t) and K(t) respectively the generation and

1 2 3 4 5 6 7 8 9 1 0 1 1
r a e a a - - - - - - a

I 1 I 1 \ (\ (\ \ I
s a a a b b c b d d b a

Figure 2: Alignment of the maps of individuals 1 & 2
(see Figure 1). The arch bbcbddb and its inner-arches
are drawn by curved lines under s. In the middle
line, ‘I’, ‘I’, ‘\‘, ‘(’ denote resp. a match, a mismatch,
an amplification, and an amplification+mutation.

compression costs of an arch t. From now on, we will con-
sider only arch compressions because of the symmetry. In
Section 3.2, we explain how to compute the cost of an arch
compression and show that it provides an economy of at
least M over all other series of operations.

A question arises: as for arches, do we need to consider
sequences of operations in which order matters for a submap
whose extremal variants are not identical? For we want to
recover all possible most parsimonious histories, the answer
is yes. It leads to the definition of a phantom arch.

DEFINITION 2. Let s be a map of length n and i, j be two
integers such that 1 5 i < j 5 n. si is a phantom arch of
s if s[i] # SE].

To distinguish between the two classes of arches, we qual-
ify a non-phantom arch as visible. We show in Lemma 2
that phantom arch compressions/generations are optimal
depending with which variant of the other map the seed
is aligned. Compared to visible arches, the compression of
a phantom arch requires an additional mutation. In a case
where considering a phantom arch is optimal, it exists an-
other series of operations that is also optimal.

2.2 Order of Events in an Alignment
The discussion on arches and the example of Figure 1 raise
several issues. First, in a single column of an alignment, scv-
era1 events, usually no more than two, may occur. This is the
case of column 6 in Figure 2 which is created by an amplifi-
cation of the neighboring variant ‘b’, and a mutation is then
needed to transform this b into c. The two operations on the
same position are illustrated in the detail of the evolution of
Individual 1 in Figure 1. Second, it is clear from this exam-
ple that the order of events matters. Another example is the
following: the amplification that creates the b at position 10
has to be performed before the mutation that turns the b
at position 8 into a d. In mathematical terms, we say that
the operations are not commutative. Third, alignments do
not represent well all these informations that are contained
in an history. Actually, listings, as defined in [13], are bet-
ter representations for our evolutionary model. Given two
maps, our algorithm does recover all possibles optimal list-
ings. Fourth, the non-commutativity forces us to consider

the order of operations to compute the optimal compression
or generation of an arch, It explains why we need a specific
procedure to compute an arch compression/generation cost,
and why this procedure not only consider the arch variant
after variant, but uses the submap of the arch as whole.
In fact, the non-commutativity increases the computational
difficulty.

2.3 Related Works
Traditional global alignment methods do not consider tan-
dem duplication and deletion. The first work that extended
the evolutionary model to include such events is the sequence
alignment algorithm under the Duplication, Substitution,
Indel or DSI-model from Benson [3]. It aims at aligning se-
quences that may contain tandem repeats. To take into ac-
count possible duplication events, the algorithm must iden-
tify local repeats in the sequences, which leads to high com-
plexities. Our approach is different since it compares already
identified minisatellites. In practice, there exist in-silica and
experimental methods for minisatellites detection [4]. More-
over in our model, possible duplicated patterns are the vari-
ants, which are known in advance. Another and fundamen-
tal difference lies in the treatment of arches. In the DSI
model, the cost of a duplication is computed by comparing
the new unit to a unit in the other sequence. In a case like
individual 2 in oar example, the variants b or c, which do not
occur in individual 1, would be considered as duplications
of the variant a of individual 1. Thus, the DSI model does
not reflect the fact that a duplicated unit and its copies are
in the same sequence, and cannot cope with the evolution
of an arch. On the other hand, Benson provides algorithms
for both the single- and multiple-step models ([3]). Our ap-
proach provides more details on the mutation process. In
some way, one could say that it deciphers partly the history
of each map to better compare it with the other map. This
is related to the problem of reconstructing the duplication
Iristory of a tandem repeat sequence. This problem has been
proposed by Benson & Dong [5] and investigated recently for
tandemly repeated gents in [7, 141.

3. THE ALIGNMENT ALGORITHM
In t.his work, we want to compute the optimal global align-
ment of two minisatellite maps under the single-step model.
In Section 3.1, we present our dynamic programming ap-
proach assuming that arch generation and compression are
single operations. In Section 3.2, we show how to compute
the cost of an arch generation or compression for which we
need a maximal set of compatible arches. We describe a
preprocessing that computes these sets for all arches con-
sidered during computation. We finish by establishing the
algorithm complexity.

3.1 The Dynamic Programming Computation
We denote by A the (n+ 1) x (m+ 1) dynamic programming
matrix. Its lines and columns are indexed from 0 to n and
0 to m rap. Entry d(i, j) gives the alignment distance
between the prefixes of a and r of length i and j resp., i.e.,
between s: and r;, and entry J((n,m) gives the distance
betmeeo maps s := si and r := v-k. Remember that maps
s and r are indexed respectively from 1 to n and from 1
to m. Figure 3 displays the recurrence formula under the
hypothrsis I-11.

First, note that deletion and insertion we used only to com-
pute d(l,O) and d(0, 1). This is because an amplification
is not allowed in an empty string and a contraction is not
allowed in a one-variant string. For all other entries, when
an insertion or a deletion is needed Ann OI MC are used
because of Hl. The DP recurrence takes the minimum be-
tween terms that express the dependencies shown in Fig-
ure 4. The first five terms are due to elementary operations
and the others to arch generations and compressions. The
latter terms depends on the beginning position l’, rap. 1,
of the arch being generated, resp. compressed. The set of
positions for l’, resp. I, are given and thus each line rep-
resents multiple terms. Compressions, resp. generations,
of phantom arches are divided into two subcases depend-
ing on which extremal variant match the variant of the
other map; this requires that j > 0, rap. i > 0. Fur-
ther explanations of the lines concerning phantom arches
are given in the proof of Lemma 2. An arch of length 2 can
be compressed by a single contraction and a phantom arch
by a mutation+contraction. Symmetrically, generations of
arches of length 2 are reducible to a single clcmcntary opcra-
tion. Such arch compressions and generations are therefore
not considered in the recurrence. This is why the ending
position of an arch is required to be in [l,i - 21 with i > 2
for compressions and in [l, j - 21 with j > 2 for generations.
A match or a mutation cannot occur in the first row or first
column of the matrix; it follows that i > 0 and j > 0. For
any term involving a contraction, rap. an amplification, it
is required that there are two adjacent identical variants,
which is possible only if i > 1, resp. j > 1.

*
r

I’ j-l j

Figure 4: Dependencies in the dynamic
programming matrix.

3.2 Costs of Arch Generation and Compres-
sion

The arches considered in the main recurrence are sequences
of variants whose extremal variants are identical. One ex-
tremal variant is assumed to be the ancestor variant of the
whole arch. Let us consider first the arch compression of a
simple arch of length k > 1: an arch that contains no innrr-
arches. There arc two ways to rewind this arch. Thrsc pos-

Initialization: d(O,O) := 0, A(l,O) := D and d(O, 1) := I.
For all other entries the recurrence is:

d(i, j) := min (
d(i, 1’) + G(+].r;+‘)

d(i, 1’) + G(r;-,.r[Z’]) + M

A(& j) + K(d)

d(Z,j) + K(s[i].sf+‘)

d(Z,j) + K(sf+s[i]) + M
\

’ d(i - 1,~’ - 1) + M(s[i], +I) Mutate or Match if i > 0 and j > 0
d(i - 1, j) + C Contract if i > 1, s[i - 11 = s[i]
d(i - 1, j) + M + C Mutate & Contract if i > 1
d(i,j - 1) +A Amplify if j > 1, rb - l] = rb]
d(i,j - 1) + A + M Amplify B Mutate if j > 1
d(i, 1’) + G(r;) Generate arch

if j > 2,VZ’ E [1, j - 21 : r[Z’] = r[j]
Generate phantom arch (type 1) if j > 2, i > 0,
and s[i] = rb],VZ’ E [l,j - 21 : r[Z’] # r[j]
Generate phantom arch (type 2) if j > 2,i > 0,
and s[i] = r[Z’],VZ’ E [l,j - 21 : r[Z’] # rb]
Compress arch
if i > 2,VZ E [l, i - 21 : s[Z] = s[i]
Compress phantom arch (type 1) if i > 2,j > 0,
and s[i] = r[j], VZ E [l, i - 21 : s[Z] # s[i]
Compress phantom arch (type 2) if i > 2, j > 0,
and s[Z] = rb], VZ E [l, i - 21 : s[Z] # s[i]

Figure 3: Recurrence.

sibilities are illustrated in Figure 5. Option (i) mutates and
contracts the end variant, then removes the k - 2 internal
variants at optimal cost R, while option (ii) first removes the
k - 2 internal variants at optimal cost R and contracts the
now adjacent extremal variants in one. In both cases, we are
left with a single seed variant. Option (i) costs R + M + C
and option (ii) R+C; thus, option (ii) is optimal. The econ-
omy obtained by choosing the arch compression, i.e., option
(ii), is M.

Event Sequence
(9

s[i - k + l] s[i - k + 21 . . . s[i - 11 s[i]
mut .s[i - k + lj sji -k + 2j . . . s[i - lj sji-- 11
con s[i - k + l] s[i - k + 21 . . . s[i - l]
rcmA s[i - k + 11

(ii)
Event Sequence

s[i-k+l] s[i-k+2] . . . s[i - l] s[i]
remA s[i - k + l] s[i]
con s[i - k + l]

Figure 5: Two ways to rewind the arch .sek+‘, with
i > k. Note that s[i - k + l] = s[i] and remA is an
abbreviation for “remove all the internal variants
(those in the rectangle) at optimal cost R”.

Now, consider a complex arch of length k; it encloses inner-
arches. The optimal compression would be to recursively
use option (ii) to compress all arches, i.e., the outer-arch
and the inner-arches. But not all arches can be compressed.
Indeed, when two arches, say U, 21, overlap, the seed of u is an
internal variant of w and it is not possible to compress v and

u, since it would require deleting the seed of u which cannot
then be contracted when compressing u. So the optimal
compression of a complex arch should maximize the number
of arches that are compressed. For this we need to compute
the maximal set of arches that can be compressed together;
we term them compatible. Note that there is no phantom
inner-arch.

a c a c d e f d a

Figure 6: Arches ~11, c and d are simple, while
a2 and a3 are complex. The following pairs of
arches are incompatible: (al, c), (a~, a:~), (c, az), (az, WS),
while (a3, c), (uz, d), (al, az), (al, 4, (a2,4, (c, 4 are corn-
patible.

DEFINITION 3. ARCH INCOMPATIBILITY Two arches arc
incompatible if they overlap by strictly more than one variant
and are not contained in each other, or if they share the same
first or the same last position. Compatible is the opposite of
incompatible.

Simple, complex, compatible and incompatible arches arc
illustrated by Figure 6.

LEMMA 1. Ancir COMPRESSION COST Let, u be anarch of
k oarinnts and p the maximum number of compatible arches
among all arches including u. Then the optimal compression
costofuis(k-l)xC+(k-l-p)xM.

PROOF. In the arch, all variants are contracted except the
seed; thus, the costs for contractions is (/c-l) XC. Of the two
extremal variants of a compressed arch, one is contracted in
the seed and the other is the remaining seed. Thus, the
number of mutations is at most Ic - 1 - p. Clearly, each
mutated variant is either internal to a compressed inner-
arch or a remaining seed after compression of all compatible
inner-arches or an unpaired variant (i.e., one that is not
the extremal variant of any compatible arch). To see that
remember that after compression of all compatible inner-
arches a complex arch is a simple arch. Therefore, we need at
least k- 1 -p mutations and their total cost is (k- 1 -p) x M.
This gives a total cost of (k - 1) x C + (k - 1 - p) x M as
claimed. Cl

Here we exhibit the conditions under which phantom arch
compressions/generations lead to an optimal alignment. We
dcmonstratc the lemma only for phantom arch compression,
the case of generation is symmetrical.

LEMMA 2. Let i, j be two integers such that i > 2 and j >
0. To compute A(i,j) under hypothesis Hl, it is necessary
to consider the compression of a phantom arch si, with 1 E
[l, i - 21, ifl s[i] = r[j] xor s[l] = rb].

PROOF. We examine the several ways to compress a phan-
tom arch si in a single variant either s[l] or s[i], which is
aligned with r[j]. There are 3 alternatives:

s[i] = r[j] which corresponds to a compression of type
1.

s[l] = r[j] which corresponds to a compression of type
2 .

s[i] # r[j] and s[Z] # rb] which leads to a non-optimal
compression and is not considered at all in the recur-
rence.

s[i] = r[j]: We align s[i] with r[j], and there are 2
options

(a) mutate s[l] in s[i], optimally remove the i - 1 - 1
internal variants at cost R, and contract s[l] in
s[i]. The whole cost is R + M + C.

(b) or mutate and contract s[l] in s[l + 11, and opti-
mally remove the i - 1 - 1 internal variants at cost
R. The cost is R + M + C.

Options (a) and (b) cost the same. However in option
(a), the order in which operations are applied mat-
ters, like for a visible arch. So, option (a) is what we
call phantom arch compression of type 1. In the main
recurrence, the mutation is already accounted for in
d(Z, j) and the term K(s[i].sf+‘) computes the cost of

the arch compression after the mutation; this is why
the sequence inside the parentheses begins with s[i]
and not with s[Z].

s[Z] = rb]: This case is symmetrical to case 1. where
1 plays the role of i and vice versa. The cost is R
+ M + C. As for the previous case, the remark on
the recurrence is also valid for compressions of type 2,
except that the mutation is not accounted for in d(Z, j)
since it applies to s[i]. This is why a term +M appears
on that line in the recurrence.

s[i] # r[j] and s[Z] # rb]: We can optimally remove
the i - I- 1 internal variants at cost R, then we have
two symmetrical possibilities as we choose s[Z] or s[i]
to be mutated in r[j] and the other to be mutated and
contracted. In both case, the cost is R + 2M + C.

As stated in the lemma, compression of phantom arches are
optimal iff s[i] = rfj] xor s[Z] = r[j], 0

Computing the maximal set of compatible arches. As
a substring, an arch is associated to an interval of indices.
The incompatibility relationship defines an overlap rclation-
ship between these intervals (not an overlap+containmcnt
relationship). Let G := (V,E) be the graph such that V is
the set of intervals associated to arches, and an edge links
two intervals if the arches are incompatible. G is an over-
lap graph. The problem of finding the maximal number of
compatible arches is equivalent to finding the max stable
set, also known as maximum independent set, of G. By
slightly modifying the intervals associated with arches we
can enforce that no two intervals have the same endpoints;
the number of intervals is then in the order of O(k’) for an
arch of length k. Under this condition, Apostolic0 et al. [l]
reports a O(lVl x (d+log(lVI)) algorithm for the max stable
set of an overlap graph, where [VI denotes the cardinal of V
and d the density of the interval model of G. This algorithm
also computes for any interval 1, the max stable set for the
graph G restricted to all intervals included in 1. We could
therefore get the max number of compatible arches for all
visible arches in one run, but not for the phantom arches.

Set of useful arches. Let 1 < i < n and 1 < j < m. We
compute the entry d(i,j) of the matrix with the recurrence.
The set of starting positions of visible arches of s ending at
position i is Ci := (0 < 2 < i : s[Z] = s[i]}. This set is
independent of j and thus, visible arches that need to be
evaluated are the same for all entries on line i of the matrix.
The set of starting positions of phantom arches is PQ :=
{O<l<i : s[Z] # s[i] and ((s[i] = rb]) or (s[Z] = rb]))}.
For the Pi,j, the condition ((s[i] = r[j]) or (s[Z] = r[j]))
ensures that different positions are considered for different
rb]. It means that for all pairs j, j’ with j # j’: 7’i,j nPi,j, =
8 if r[j] # rb’]. M oreover, Ci and Pi,j are disjoint for all
j : 0 < j < m, and their union is a subset of [l, i - 11.
This means that there are at most i - 1 possible arches to
consider to compute entries of line i of d, which implies a
maximum n2 arch compressions and symmetrically m2 arch
generations for the whole matrix A.

Computation of the compression cost of a phantom
arch going from position 1 to i, with 0 < 1 < i 5 n in s.
The two types of phantom arches are symmetrical; so here
and in Lemma 3, we consider only phantom arches type 1.
For type 1, the arch sequence considered for compression is
not sf, but s[i].si+‘. I.e., the first variant is changed to s[i],
which is also the end variant. This change creates exactly
as: many arches as there are other occurrences of s[i] in si”.
We show that knowing the maximal set of compatible arches
corresponding to si”
to S[i].Sff’.

we can deduce the set corresponding

)-&+,
s[il s[il S(i]

kl kh kP

SKiI
k

P

Figure 7: Illustration of the two cases of Lemma 3:
plain-line arches belong to the maximum sets while
dashed-line arches do not.

LEMMA 3. PIIANTOM ARCH MAXIMALSETCOMPUTATION
(FOR TYPE 1). Let Y, 2 be the maximal sets of compatible
arches of si”, s[i].sf+’ respectively. Let p > 1 be an integer
and ICI := 1 < . . . < k, := i be the ordered positions of
variant s[i] in s[i].sa+‘. For any h, h’ in [l,p] such that h <
h’, let us denote the arch going from kh to kh’ by Hk,,,k,, .
WC have two possible cases illustrated in Figure ‘7:

1. Either it exists h : 1 < h < p such that Hk,,,kp E y
and then 2 := Y U {Hk,,k,,} and Hk,,k, $! 2,

2. or for all h : 1 < h < p Hk,,,k, $! y and thus 2 :=
Y u {~fk,,k,}.

PROOF. First, we need the following hint.

HINT 1. From the arches that are in s[i].sf+’ and not in
,!+I , i.e., H,+,,k,, for all h : 1 < h < p, only one can be
aided to 2 since they are all pairwiseincompatible.

Now, let us note that for any position h : 1 < h < p, either
both or none of Hk,,k,,, Hk,,,kp belong to 2. Indeed, if one
of them does not, it is because an incompatible arch is in
2. This incompatible arch must have one extremal variant

on the left of kh and the other on the right and then be
incompatible with both Hkl,k,,, Hkh,kP. Thus, the latter do
not belong to 2. In the opposite case, the same reasoning
shows that Hkl,kh and Hk,,,kp belong to 2. This dcmon-
strate the Hint.
Now we prove the lemma. In the first case of the lemma,
Hk,,,k, E Y, then by the previous argument and by 2 max-
imality, we can set 2 := y U {Hkl,k,,}. Then by Hint 1
Hkl,k, $! 2. In the second case of the lemma, we have the
opposite situation and we can then set 2 := y U {Hklrkp}.
This is correct since none of H.+,,kp for h : 1 < !L < p is in
Y and these arches are the only incompatible arches with
Hh&. 0

Generalization of the max stable set problem. For
the sake of clarity, we assume that visible arches are mapped
to subintervals of the integer subset [l, n] and neglect here
the constraint of intervals having distinct end-points. We
qualify these subintervals of real. As mentioned above,
the algorithm of [l] builds the associated overlap graph and
computes recursively the max stable set for each subinterval
(with the corresponding restricted overlap graph) and then
for the whole [l, n]. In our problem, to compute the costs of
all arch compressions or generations, we need the max stable
set for all subintervals of [l, n], i .e. , also for subintervals that
are not mapped to an arch and that we call virtual. In an
other work [12], we extend the max stable set problem to the
problem of computing the max stable set for each possible
subinterval, and report an O(lVl”) time algorithm to solve
it. To save place, we do not present this algorithm here.
Applying this algorithm to map s, we can store in an n2
matrix the max stable set for each subinterval/substring of
s. We need the pendant matrix for the arch generations in r.
This calculation is made during preprocessing. Storing the
max stable set of arches for any substring allows us, first, to
compute them only once, and second, to calculate the cost
of arches compressions and generations in O(1) during the
computation of the DP matrix.

THEOREM 4. ALGORITHM COMPLEXITY Our algorithm re-
quires O(max(m, n)4) time and O(max(m, TX)~) space.

PROOF. ALGORITHM COMPLEXITY

Matrices of max stable sets : For the map s, we com-
pute a matrix whose entry on the ith line and jth
column stores the maximum set of compatible arches
of the substring sj. We need the same matrix for the
other map, r. There are at most n2 arches in s and
each becomes a node in the overlap graph, such that
IV1 := O(n2). Applying our extended algorithm re-
quires time @(/VI”), i.e., O(n4). As each matrix ele-
ment stores a maximal set of compatible visible arches
there are at most O(n) arches in each set because of the
compatibility definition. An implementation as ran-
domized search trees or balanced search trees requires
O(n) memory and allows searches in O(logn) time.
These matrices for maps s and r requires O(n3 + m3).

Dynamic programming computation : The matrix A
occupies O(n x m) memory unit. Any entry depends

on three neighboring entries and at most on all pre-
vious entries on the same line and the same column.
The computation for the different dependencies can
be done in O(1) time units except for phantom arches.
Applying Lemma 3 for the phantom arch s[i].si+’ re-
quires to test i - 1 times for set membership in a set
in the preprocessing matrix for s. This takes O((i -
1) log(i - 1)) time. As mentioned in Section 3.2, there
are at most i - 1 arches to consider for the computation
of the i-th line of A. Thus, it takes Ci:=l..n i2 log i =
O(n3 log rz) for all lines, and O(m3 log m) for all columns.
Added up this gives O(m x n + n3 log n + m3 log m) =
O(mx~(m,n)~ log(maa:(m,n)).

If p denotes maz(m,n), the overall complexities are O(p4)
t,ime and O(p3) space. cl

4. APPLICATION TO THE MINISATELLITE
MSYl.

MSYl is an hypervariable ms locus on the human Y chro-
mosome. Its repeat unit is 25 base pairs long and five dif-
ferent variants have been typed by PCR; they differ from
each other by at most 3 substitutions. Known minisatellites
are usually GC-rich. In MSYl, the nucleotidic sequences
of the variants are 75 to 80% AT-rich and have the ability
to form an hairpin structure. This structure may hinder
the progression of the DNA polymerase and promote tan-
dem amplification and contraction through slippage during
replication. The restricted allele length diversity and the
observed modular structures advocate in favor of single-step
amplifications and contractions [ll]. The model we choose
seems to be well-suited to MSYl.

M. Jobling provided us with a set of the MSYl maps of 609
men, for most of which the haplogroup is known, and with
an evolutionary tree of the 27 haplogroups. Most individuals
are assigned to a population. We computed with our method
all pairwise comparisons between these maps and obtained
a 609 x 609 distance matrix. We used a Neighbor-Joining
method, BIONJ [8], to reconstruct an evolutionary tree of
these individuals. The percent of explained variance of the
tree is 95% and confirm that our distances are tree-like. Our
tree does not mirror the structure of the haplogroup tree and
individuals of different haplogroups are neighbors in it. This
reflects the facts that MSYl evolves extremely rapidly and
is constrained in length. The evolutionary signal of the Y
chromosomes evolution is only partly decipherable in the
MSYl maps. At a smaller scale, we can look at the evo-
lution inside an haplogroup. For instance the haplogroup
16 contains chromosomes from the Yakut (8 individuals),
Siberian Yakut (5), Finnish (lo), Mongolian (23) and oth-
ers (6) populations. The four main populations are by a
majority monophylctic: Yakut and Siberian Yakut together
(13/13), Finnish (8/10), Mongolian (20/23). This example
shows that comparisons of MSYl can distinguish between
populations inside an haplogroup. This can serve to ad-
dress micro-evolutionary issues about the Y chromosomes
and assign a putative population to an individual of un-
known origin. More generally, MSYl and other ms can play
a role in forensic studies and identification. Further results
from the MSYl maps comparisons are under investigation
and are not included here.

5. CONCLUSION
In this work, we design the first algorithm for the compar-
ison of minisatellite maps. We utilize this method to com-
pare a large set of human maps from the hypervariable locus
MSYl and reconstruct an evolutionary tree of the individu-
als. Despite the rapid evolution of MSYl, we could distin-
guish between populations inside haplogroups. This argues
in favor of the validity of our approach to address (micro-
)evolutionary issues with minisatellite maps comparisons.

Acknowledgments: We thank M. Jobling for the data, J.
Buard for pointing out the MSYl case and helping us un-
derstanding minisatellite evolution, S. Rahmann, J. Stoye
and T. Mller for discussions. S.B. & E.R. are supported by
a grant for the French Ministry of Research, the Genopole of
Montpellier and the Inter-EPST program for Bioinformat-
its.

6.
PI

PI

[31

PI

[51

161

VI

PI

PI

PI

REFERENCES
A. Apostolico, M. J. Atallah, and S. E. Hambrusch.
New clique and independent set algorithms for circle
graphs. Discrete Applied Mathematics, pages l-24,
1992.

J. A. Armour, T. Anttinen, C. A. May, E. E. Vega,
A. Sajantila, J. R. Kidd, K. K. Kidd, J. Bertranpetit,
S. Paabo, and A. J. Jeffreys. Minisatellite diversity
supports a recent african origin for modern humans.
Nat Genet, 13(2):154-60, 1996.

G. Benson. Sequence Alignment with Tandem
Duplication. J Comput Biol, 4(3):351-67, 1997.

G. Benson. Tandem Repeats Finder: a Program to
Analyze DNA Sequences. Nucleic Acids Res,
27(2):573-80, Jan 1999.

G. Benson and L. Dong. Reconstructing the
Duplication History of a Tandem Repeat. In
Proceedings of the 7th ISMB, pages 44-53, Heidelberg,
Germany, 1999.

J. Buard and A. J. Jeffreys. Big, bad minisatellites.
Nat Gene& 15(4):327-8, 1997.

0. Elmento, 0. Gascuel, and M.-P. Lefranc.
Reconstructing the duplication history of tandemly
repeated genes. Molecular Biology and Evolution,
2002. in press.

0. Gascuel. BIONJ: an improved version of the NJ
algorithm based on a simple model of sequence data.
Mel Biol Evol, 14(7):685-95, Jul 1997.

A. J. Jeffreys, P. Bois, J. Buard, A. Collick,
Y. Dubrova, C. R. Hollies, C. A. May, J. Murray,
D. L. Neil, R. Neumann, J. D. Stead, K. Tamaki, and
J. Yardley. Spontaneous and induced minisatellite
instability. Electrophoresis, 18(9):1501-11, 1997.

A. J. Jeffreys, A. MacLeod, K. Tamaki, D. L. Neil,
and D. G. Monckton. Minisatellite repeat coding as a
digital approach to DNA typing. Nature,
354(6350):204-g, 1991.

PI

WI

1131

P41

P51

M. A. Jobling, N. Bouzekri, and P. G. Taylor.
Hypervariable digital DNA codes for human paternal
lineages: MVR-PCR at the Y-specific minisatellite,
MSYl (DYF155Sl). Hum Mol Genet, 7(4):643-53,
1998.

E. Rivals. Extension of the Max Stable Set Problem
for Overlap Graphs. Technical Report 01-183,
LIRMM, 2001.

D. Sankoff and J. B. Kruskal, editors. Time Warps,
String Edits and Macromolecules : the Theory and
Practice of Sequence Comparison. CSLI Publications,
second edition, 1999.

M. Tang, M. Waterman, and S. Yooseph. Zinc Finger
Gene Clusters and Tandem Gene Duplication. In
Proc. of the 5th RECOMB, pages 297-304, Montral,
Canada, 2001. ACM Press.

G. Vergnaud and F. Denoeud. Minisatellites:
mutability and genome architecture. Genome Res,
10(7):899-907, 2000.

Appendix
In this appendix, we include a proof for the distance metric
and a proof for the algorithm correctness.

PROOF. DISTANCE METRIC PROOF Wewanttoshowthat
our alignment cost is a mathematical distance, i.e., that it
satisfies if the non-negative property, ii/ reflexivity iii/ sym-
mctry and iv/ the triangle inequality. We build our proof on
the analysis of metric properties of alignment distances in
[13, Chapter 9, p. 307-3081. Some properties of the elemen-
tary costs are directly transmitted to the distance between
maps: i/ the non-negative property, since all elementary
costs are non-negative, ii/ reflexivity, since only the match
costs zero and iii/ symmetry, since the cost of all dual op-
erations are the same. It remains to prove iv/ the triangle
inequality. Let r, s, t be three maps. Let us denote by d(., .)
our alignment distance between any two maps. We need to
show that d(r, t) < d(r, s) + d(s, t). The triangle inequality
might be violated if we cannot combined the alignment from
r to s and from s to t into a cheaper alignment from r to t.
This can only be the case if any two successive elementary
operations that apply to the same position in the alignment
cost less than a single operation. So we need to check this for
all possible pairs of elementary operations. For this, slightly
more complex notations than the ones used in the rest of the
paper are useful. First, the alignment alphabet is C U {-}
where - is the symbol for the absence of variant. If E is an
elementary operation, we denote by E(a, 6) the operation E
that transforms the source symbol, a, into the destina-
tion symbol, 6, with a, 6 E C U {-}. So, if a,b, c are three
distinct variants of C, we denot,e by A(-,a) the amplifica-
tion (it transforms - into a from an adjacent a), by C(a, -)
the contraction, by AM(-,b, a) the amplification+mutation
[it amplifies the adjacent a then mutates it into a 6, here
the third argument is the adjacent variant on the left), by
Mc(6, -, a) the mutation+contraction (it mutates a 6 into
an a and contracts the position into the adjacent a, which
yields an -), by M(a, 6) the mutation if a # 6 and the match
if a = 6, by I(-, u) the insertion of an a, and by D(a, -) the

deletion of an a. Now, some ordered pairs of two successive
operations on the same alignment position are impossible:

once a position has been inserted, amplified, or am-
plified + mutated from r to s, it cannot be inserted,
amplified, or amplified+mutated again from s to t;
once a position is present, i.e., after a match or a mu-
tation, the position cannot be inserted, amplified, am-
plified + mutated again;
once a position has been removed from r to s, it cannot
be removed again from s to t; thus, neither two succes-
sive deletions, contractions, or mutation+contractions,
nor one of the former followed by a mutation or a match
are possible;
A(-,a)Mc(a, -,b) is impossible since to amplify an a
requires an a on the left position and to mutate and
contract an a into a 6 we need a 6 on the left; for the
same reason, AM(-,b, a)C(b, -) is not allowed.

In Table 1, we show that all remaining possible pairs can
be replaced by a single operation or no operation at all.
In such pairs, the destination symbol of the first operation
must be equal to the source symbol of the second operation.
This proof is independent of the Hl hypothesis and thus,
we include pairs that are not always optimal, nor possible
depending on the neighboring variants. It is straightforward
to check that single operation costs less than the pair, which
proves the triangle inequality and completes the proof. 0

PROOF. ALGORITHM CORRECTNESS PROOF
Initialization. The optimal alignments between two empty
maps costs 0, between an empty map and a one-variant map
costs I or symmetrically D.
Induction hypothesis: We assume that VZ, I’ : (1 2 i) and
(I’ 5 j) and (I # i or 1’ # j), d[Z, 1’1 equals the optimal
alignment cost between s/ and r:,. We prove that the re-
currence equation (given p.) correctly computes for d[i, f.
Any alignment between sj and rj can be decomposed into
an alignment of smaller prefixes plus one ending operation.
The recurrence takes the minimum between all such possible
alignments.

To complete the proof, we need to prove that for substrings
other than arches, it is useless to consider another ordering
of elementary operations than the one induced by the DP
computation. Assume that when we compute d[i, j] we need
to consider the compression for the substring si with 1 : 1 5
1 < i. The compression removes the last variant c of .si by
either:

a contraction into the adjacent variant, then the com-
pression cost cannot be better than d[i - 1, j] + C,
or a contraction into a non adjacent variant, then this
is the case of an arch compression,
or a mutation + contraction, then it cannot improve
on d[i - 1,f + M + C, since it can be contracted in
the previous variant at the same cost.

All these cases are already taken into account in the recur-
rence. This concludes the proof. 0

First Second
A(-, a) CC% -)
A(--, a) Mb, b)

AM (-, h a) M(b, c)
AMC~,~;~ MC@, -,a)

I(-: :,
Cb, -1
M(o, b)

D(a, -) I(-, b)
D(a, -) Avr(-,b,a)
CC% -) I(-,a)
CC% -1 Av(-,h4

Mc(a, -,b) I(-, a)
Mc(a, -, b) I(--, 4
Mc(a, -, b) Azw(--, a, b)

M(a, b) D@, -1
M(a, b) Mc@, -, 4
M(a, b) M@, cl

Single
none

br(-,b,a)
AM(-,c,~)

none
none

I(-, b)
Mb, b)
M(a, b)
M(a, a)
Ma, b)
Mb, a)
M(a, c)
M(a, a)
D(a, --I

Mc(a, -,c)
M(a, cl

Avr(-,b,a)
I(-, a)
I(-, a)
D(a, -1
D(a, -1
C(a, -)
(3% -)

Mc(a, -,b)
Mc(a, -,b)
Mcb, -,b)
Mb, b)
Mb, b)
M(a, b)

First Second
A(-, a) D(a, -1

Av(-,ha) D(b, -)
M(h a)
D(a, -)

Mc(a, -> b)
A(-, a)
I(-, a)
A(-,a)
I(-, b)
A(--, b)
I(-, b)

A$>$4

&&,a)
M@, a)

Single
none
none

A(-, a)
none
none

M(a, a)
M(a, a)
M(a, a)
M(a, b)
M(a, b)
M(a, b)
M(a, c)

Mcb, -,b)
C(a, -1
Ma, a)

Table 1: This table shows all the possible combinations of pairs of elementary operations.

