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C 55060

Rapport de Recherche

'

&

$

%

Implementing Statically Typed
Object-Oriented Programming

Languages

Roland Ducournau

5 novembre 2002 R.R.LIRMM 2002–174

161, Rue Ada – 34392 Montpellier Cedex 5 – France
Tél: (33) 04 67 41 85 85 – Fax: (33) 04 67 41 85 00



2 · Roland Ducournau

RR LIRMM 2002–174



Implementing Statically Typed Object-Oriented
Programming Languages

ROLAND DUCOURNAU

LIRMM – CNRS et Université Montpellier II, France

In statically typed object-oriented languages, message sending, or late binding, is implemented
with tables often called virtual functions tables (VFT). Those tables reduce method calls to

function calls, with a small fixed number of extra indirections. The overhead is more or less

important, whether inheritance and subtyping are single or multiple.
In this paper, we survey the various implementation schemes available in separate compilation,

in the three cases of single inheritance, multiple inheritance, and single inheritance but multiple
subtyping, e.g. Java. Many works have been done recently in the framework of global compilation,
mostly for dynamically typed languages but also applied to the Eiffel language in the Small

Eiffel compiler. We examine how global compilation can improve the implementation and pro-
pose some way to use global techniques—coloring and type analysis—in a separate compilation
framework.

Categories and Subject Descriptors: D.3.2 [Programming languages]: Language classifica-
tions—object-oriented languages; C++; Java; Eiffel; Theta; D.3.2 [Programming languages]:
Processors—compilers; memory management

General Terms: Languages, Performance, Theory

Additional Key Words and Phrases: casting, coloring, contravariance, covariance, genericity, late

binding, method dispatch, object-oriented languages, static typing, type analysis, separate com-
pilation, virtual function tables

1. INTRODUCTION

In separate compilation of statically typed object-oriented languages, method calls—
often named message sending or late binding—are generally implemented with ta-
bles called virtual function tables (VFT) in the C++ jargon. Method calls are then
reduced to function calls with a small fixed number of extra indirections. An object
is laid out as an attribute table, with a header pointing to the class table and some
added information, e.g. for garbage collection. The cost of such an implementation
depends on inheritance: with single inheritance, the overhead is reasonably small,
but it is larger in the case of multiple inheritance. This paper aims to describe the
various schemes generally used together with some alternatives, and to evaluate
and compare them.

1.1 Object-oriented mechanisms

Two primary mechanisms are at the focus of implementation: read and write ac-
cesses to attributes and message sending, i.e. selection (also called dispatch) and
call of the method corresponding to the receiver’s dynamic type. A number of sec-
ondary mechanisms must also be considered. They are more or less explicit in the
language design, but are all necessary and not so simple as one could expect:
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—inclusion polymorphism—i.e. the fact that an entity of a given static type may
be bound to a value of a dynamic subtype—may need special attention as an
object reference, e.g. self1, may depends on its static type;

—attributes and methods overriding may be type invariant or not and, in the
latter case, it can be type safe or unsafe (which is known as the covariance-
contravariance problem);

—dynamic type checking is a need for constructs like downcast or typecase, as for
unsafe overriding;

—class attributes, shared by all instances of a class, but reachable from the instance
dynamic type in case of overriding, unlike static variables in C++ and Java;

—call to super, a way for the overriding method to call the overridden one;
—null value, for uninitialized variables and attributes;
—parameterized classes, in a bounded genericity framework.

Only method selection on a single receiver will be considered here: multiple se-
lection, as it is realized in Clos [Steele 1990] and theorized by Castagna [1997], can
use techniques connected to single selection, but the combinatory in the cartesian
product of types may be explosive.

We shall no more consider the various mechanisms which, under various names as
encapsulation, protection, visibility or export, rule the access rights of some entity
by the other ones: they actually are only access rights to existing implementation.
Anyway, an exception will be done for Smalltalk encapsulation which reserves
for self all accesses to attributes [Goldberg and Robson 1983]: this will reveal of
interest for implementation.

Primitive types issue will be also evaded, particularly concerning the question
of calling a method on a receiver statically typed by the universal type, common
super-type of primitive types and object classes. Such a universal type, any in
Eiffel, does not exist neither in C++, nor in Java. We consider also that a
value is either an immediate value of a primitive type, or the address of an object
instance of some class. Thus we exclude the fact that an attribute value could be
the object itself, as in C++ or in Eiffel with the keyword expanded: indeed,
objects as immediate values forbids polymorphism for attributes.

As for types and subtyping, we shall keep a common point of view: type safety is
assumed but we will also consider the effect of a covariant policy on implementation
[Castagna 1995; Meyer 1997; Ducournau 2002b]. Static type checking, at compile-
time, is out of the scope of this paper: only dynamic type checking will be examined.

1.2 Evaluating efficiency

There are two basic criteria for efficiency: time and space. Time efficiency can
be judged on average but the ideal thing is constant time mechanisms. Space
efficiency is evaluated by the complete memory needed for run-time. Space and
time efficiencies vary in opposite directions: a single criterion is impossible and
a compromise is always needed. Eventually, run-time efficiency is the main goal

1 Self is the reserved word used in Smalltalk to name the message receiver: it corresponds to

this in C++ and Java and current in Eiffel. An occurrence of self in a method of a given
class has this class as its static type.
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but compile-time efficiency must not be forgotten: attention should be payed to
NP-hard optimizations.

1.2.1 Space efficiency. Three kinds of memory ressources must be considered.
The dynamic part consists of the objects themselves, implemented as an attribute
table, with one or more pointers to class tables: the use of a garbage collector must
be envisaged for this part. The static part consists of the data structures associated
to classes, which are read only and can be allocated in the code area, together with
the code itself, where a given mechanism is handled by some number of instructions.

A static memory analysis has been done in the framework of global techniques
which need to compact large tables [Driesen et al. 1995; Ducournau 1997], but it
has not been done for separate compilation and static typing. As for dynamic mem-
ory, commonly used techniques may have a large overhead. First, some langages
like Java may implement some mechanism through a constant dynamic overhead
[Bacon et al. 2002]. Second, dynamic space may be sacrified for time efficiency, by
putting part of static tables in dynamic tables: therefore dynamic overhead may
need special optimizations [Eckel and Gil 2000].

1.2.2 Time efficiency and processor architecture. With classic processors, a mea-
sure of the time efficiency of a mechanism is the number of machine instructions
needed for it. Modern processors make this measure obsolete since they have a pipe-
line architecture together with capabilities for parallelism (super-scalar processors)
and branch prediction. In counterpart, memory access and unpredicted branch
cause a multi-cycle latency. Thus the time spent for one instruction is no more one
cycle. Moreover, composing two mechanisms may follow a law of the maximum
instead of the sum. The instruction number remains only a space measure.

Implementing method calls with direct access in method tables has been for long
considered as optimal: the effective overhead w.r.t. function calls seemed unavoid-
able. However, branching prediction of modern processors seems to have better
performance with the technique, known as inline cache or type prediction, which
consists in comparing the receiver’s effective type with an expected type, the method
of which is statically known. Such a test, statistically well predicted for whole pro-
grams, makes this technique very efficient [Driesen et al. 1995; Zendra et al. 1997].
Table-based techniques could be considered out of date. Nevertheless, two argu-
ments are opposite to this thesis. Branching prediction favorizes type prediction
as the former is restricted to conditional branching: but it could be extended, in
future processors, to indirect branching, putting both techniques on an equal step
[Driesen 1999]. Moreover, type prediction is not adapted to separate compilation.

We base our evaluation of time efficiency on an intuitive pseudo-code, mostly
borrowed to [Driesen and Hölzle 1995; Driesen et al. 1995; Driesen 1999]. Each code
sequence will be measured by an estimate of the number of cycles, parameterized
by memory latency—L whose value is 2 or 3—and branching latency—B whose
value may run from 3 to 15. More details can be found in the works by K. Driesen.

1.3 Notations and conventions

Uppercase letters will denote classes or types, according to the context. The class
specialization relationship is denoted by ≺d: B ≺d A means that B is a direct sub-
class of A. One assumes that ≺d has no transitive edges and its transitive (resp. and
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reflexive) closure is denoted by ≺ (resp. �): the latter is a partial order. Subtyping
is noted <:, this is a pre-order. We consider that classes are types and that class
specialization is subtyping (i.e. � is a subset of <:): even if type theory distinguishes
both relationships, this is a common simplification in most languages. τs and τd,
where τd<: τs, denote respectively the static and dynamic types of an entity: the
static type is an annotation in the program text, whereas the dynamic type is the
class instanciating the value currently bound to the entity. At last, a root is a class
(resp. type) without superclass (resp. supertype). As for properties, i.e. methods
and attributes, we adopt the following vocabulary: a class has or knows a property
if the property is defined in the class or in one of its super-classes. A class intro-
duces a property when the property is defined in the class, not in its superclasses.
We assume that all ambiguities caused by static overloading (à la C++ or Java)
have been solved by renaming [Meyer 2001; Ducournau 2002b]. Thus, the notation
for a method (e.g. m) will denote both the method name and the generic property,
invariant by inheritance and overriding, that this name unambiguously denotes2.
Moreover, we are not concerned here by the inheritance problem itself, especially
when multiple—i.e. which is the method inherited by some dynamic type?—but
only by an efficient way of calling the appropriate method, whatever it is. There-
fore, we will use the terms attribute and method to denote generic properties and,
in some rare cases, we will qualify them with definition to denote the occurrence
of the generic property in some class.

1.4 Context and plan

This paper aims to survey implementation techniques, whether they are effectively
implemented in some language, described in the literature, or merely imagined
as a point in the state space of possible implementations. A difficulty arises as
most effective implementations are not described in the literature, either because
they are not assumed to be novel, or for confidentiality reasons, because they are.
Conversely, many techniques are theoretically described in the literature, without
any known implementation. Language specifications could help to determine if a
technique is adapted to some language, but currently, complete specifications are
not always implemented. Thus, the schemes that we describe are more likely than
real, but principles should not be too far. Moreover, it cannot be excluded that
some techniques described here are novel, though it is not the paper goal.

Language implementation depends also on the way a program runs. Is it inter-
preted or compiled? Is compilation separate or global? Is linking static or dynamic?
Is loading incremental? Our main objective is separate compilation, as it is com-
mon in most of the considered languages, but we will examine the effect of this
choice on the possible techniques.

Structure of the paper. One can classify statically typed languages by their inher-
itance and subtyping relationships, according to whether they are single or multiple.
Moreover, when inheritance is multiple, it may be arborescent, i.e. the superclasses

2 This notion of generic property is missing in most languages: the term was coined on the

model of Clos generic function. In the literature on method dispatch, the Smalltalk term of

method selector is often used, whereas Zibin and Gil [2002] use method family. No term applies
to attributes.
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Table I. Four kinds of languages

subtyping
inheritance single multiple

single Simula, C++ (si) SST MST Java, Theta, Eiffel#, C#

arborescent — AI C++ (non virtual)

multiple — MI C++ (virtual), Eiffel

of every class form a tree. Each of the four resulting categories uses different tech-
niques (Table I). The next two sections present the standard implementation prin-
ciples in the two extreme cases: single subtyping (SST) then multiple inheritance
(MI). Various notions are precisely introduced on the way. In section 4, we examine
some alternatives for multiple inheritance, among which C++ “non virtual” imple-
mentation (NVI) for arborescent inheritance (AI). The next section describes the
median case of single inheritance (SI) but multiple subtyping (MST), illustrated
by Java and DotNet languages. Some applications to multiple inheritance and
the special case of mixins are examined. Section 6 presents some complementary
mechanisms not treated up to there: genericity, type variant overriding, class at-
tributes. Whereas the previous sections consider the case of separate compilation,
section 7 proposes a short survey of the techniques used in global compilation and
dynamic typing. Two global techniques, coloring and type analysis, are sounded
as they seem good candidates for use at link-time in a separate compilation frame-
work. The article ends with a conclusion and some perspectives. Appendix presents
space statistics on common benchmarks and the pseudo-code for all the presented
techniques.

2. SINGLE INHERITANCE AND SUBTYPING (SST)

2.1 Principle

With single inheritance and subtyping, types may be identified with classes. Each
class has at most one superclass. Thus the subclass tables are simply obtained by
adding newly introduced methods and attributes at the end of the superclass tables
(Figure 1). Two invariants characterize this implementation:

Invariant 2.1.1. A reference—method parameter, local variable, attribute or
returned value—on an object is invariant w.r.t. the reference’s static type.

Invariant 2.1.2. Each attribute or method p has a unique offset, noted δp,
unambiguous and invariant by inheritance and w.r.t. the receiver’s static type.

Thus, standard SST implementation is characterized by an absolute invariance
w.r.t. static types. This enhances the basic semantics of object orientation, which
states that dynamic type is the object’s essence and that static types are pure
contingency. Moreover, it realizes the ideal type erasure of type theory.

Method calls are then compiled by a sequence of three instructions:

load [object + #tableOffset], table

load [table + #selectorOffset], method 2L+B
call method

and attribute accesses are as immediate as for a record field:
RR LIRMM 2002–174
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(invariant order)
class methods

"B" "C"

A

A B

A B C

tags for downcast

class id (n1 / n2)

B

A

c

b

a

C

A B C

(invariant order)
attributes

static dynamic

A

A B

Fig. 1. Object layout and method tables in single subtyping: 3 classes A, B et C with their

respective instances, a, b and c.

load [object + #attributeOffset], attribute L

Notice that attribute invariance is due to the fact that attributes have always fixed
size values: when an attribute type has variable size values, the attribute is a pointer
to those values.

Computing the tables, i.e. method and attribute offsets, is a special algorithmic
case of the coloring heuristics (see section 7.4). Single inheritance and static typing,
which avoids definition overloading3, ensure a sound and optimal result: no offset
conflict can occur between inherited properties and there is no need to check that
the next free offset is really free.

Though pure SST languages are not common, this implementation is the basis
of most implementation, as well Java without interfaces (see section 5) as C++

when restricted to single and “non virtual” inheritance (see section 4.1).

2.2 Casting

2.2.1 Principle. The word cast is commonly used to term various mechanisms
close to type coercion, from a source type to a target type. Among the various
interpretations, two are of interest for object-orientation, as they concern the rela-
tionship between static and dynamic types: source and target types are then related
by subtyping.

Upcast is often called implicit because it needs no particular syntax. It simply
consists in a polymorphic assignment (or parameter passing) x := y, when the static
types of x and y are respectively X and Y and when Y is a proper subtype of X
(Y <:X). Such a mechanism should have no name as it is conceptually empty—this
is pure inclusion polymorphism—but its implementation may be non trivial.

Downcast amounts to assume that an entity of a given static type τs = X is
actually an instance of a subtype Y , i.e. τd<:Y and, usually, Y <:X. This is a type

3 We name here definition overloading the fact that a property could be defined in two unrelated

(by specialization) classes, without being defined in any common superclass: with static typing
the two occurrences are no more related than with static overloading but this is no more the case
with dynamic typing, e.g. in Smalltalk.
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unsafe assumption, which cannot be statically checked (without loss of generality):
it thus needs a dynamic type check which may signal an exception if it turns out
that the assumption was false. Downcast is realized by special syntactic constructs
as dynamic cast in C++, parenthesized syntax in Java (not to use in C++),
typecase in Theta [Liskov et al. 1995] or assignment attempts in Eiffel [Meyer
1992; 1997]. Downcast uses are often justified by the fact that covariant models
are implemented in type safe, i.e. contravariant or invariant, languages (see section
6.1). They are also common in Java because of its lack of genericity.

Besides those two opposite directions, casting may also be static or dynamic4,
according to whether the target type is statically known or not. Explicit syntactic
constructs are always static casts: the target type is a constant of the construct.
However, we will see that some mechanisms may need dynamic casts, which impose
that the target type is reachable from the considered object.

2.2.2 Casting in single subtyping. As references to objects don’t depend on
static types, upcast has no more reality in the implementation than as a concept.

Downcast. Due to reference invariance, this amounts to dynamic type checking.
There are two classic ways to implement type checking with SST. The first one
consists in assigning an offset to each class in the method tables of its subclasses:
the corresponding entry of the tables must contain the class identifier. An object
is an instance of a class C iff the object’s method table, noted tabτd , contains at
the offset δC the identifier idC :

τd � C ⇔ tabτd [δC ] = idC (1)

Class offsets are ruled by the same Invariant 2.1.2 as methods and attributes. This
first technique is simple and works in separate compilation: it is time efficient,
but not space optimal. This is again a special case of coloring (see section 7.4),
described by Cohen [1991] and reused by Queinnec [1997].

The second technique is optimal but has a twofold drawback: it does not gener-
alize to multiple inheritance, at least in constant time, and it is not incremental,
thus incompatible with dynamic loading. It is a double class numbering, noted n1

and n2: n1 is a pre-order depth-first numbering of the inheritance tree and n2 is
defined by n2(C) = maxD�C(n1(D)). Then:

τd ≺ C ⇔ n1(C) < n1(τd) ≤ n2(C) (2)

This technique, due to Schubert et al. [1983], is often called Schubert’s numbering
or relative numbering. Only two short integers are needed and the first one (n1)
can serve as class identifier. For the test (2), n1(τd) is dynamic, whereas n1(C)
and n2(C) are static when the cast is static: they may be compiled as constants.
Both techniques have the same time efficiency (2L + 2 cycles). The latter has a
better memory cost in the static tables (worst-case linear instead of quadratic) but
the former has a more compact code (4 instructions instead of 6). Type checking
remains an active topic of research, even in single subtyping [Raynaud and Thierry
2001; Zibin and Gil 2001], but no other technique has such a power of simplicity.

4 Those terms are unrelated with the C++ keywords static cast and dynamic cast which are
both static (see section 4.1).

RR LIRMM 2002–174



8 · Roland Ducournau

2.3 Evaluation

Time efficiency is optimal as everything is done with at most a single indirection
in a table. Even downcasts are constant-time. Dynamic space efficiency is also
optimal: object layout is akin to record layout, with the only overhead of a single
pointer to class method table. Method tables depend only on object dynamic types.
As a whole, they occupy a place equal to the number of valid class-method pairs,
which is the optimal compactness of the class-method tables used by constant-time
techniques in dynamic typing, multiple inheritance and global compilation (see
section 7). Let MC denote the number of methods known (defined or inherited) by
a class C: then the method tables have ΣCMC entries.

This optimal implementation of SST is the reference which serves to measure the
overhead of multiple inheritance or subtyping, for both time and space efficiency.

3. MULTIPLE INHERITANCE (MI)

Multiple inheritance complicates the implementation to a considerable extent, as
[Ellis and Stroustrup 1990, chapter 10] demonstrates it for C++. C++ is all the
more complicated because it offers some unsound features which are aimed to reduce
MI overhead. The keyword virtual, when used to annotate superclasses, is the
way to obtain a sound MI semantics whereas what we will term non virtual multiple
inheritance (NVI), when the keyword is not used, offers a cheaper implementation
but degraded semantics, sound only for arborescent inheritance (AI) (see section
4.1). Therefore, in this section, we consider that, in C++, we would have to use
virtual to annotate every superclass. Those introductory precautions are not
necessary for a langage of sound constitution as Eiffel [Meyer 1992; 1997].

3.1 Principle

In separate compilation and MI, there is no way to assign a minimal and invariant
offset to each method and attribute (Invariant 2.1.2) without causing future con-
flicts. Let B and C two unrelated classes occupying the same offsets: then, it will
always be possible to define a common subclass to those two classes, say D (Figure
2). Two attributes (or methods) respectively of B and C, both present in D, will
conflict for the same offset. Giving up Invariant 2.1.2 leads to do the same for
Invariant 2.1.1, if one wants that method calls take only one indirection in a table.
We will see further how to keep reference invariance, by giving up constant-time
mechanisms (see section 5.4) or separate compilation (see section 7.4).

3.1.1 Object layout and method tables. Offset invariance is thus relaxed, in two
different ways for attributes and methods.

Invariant 3.1.1. Each attribute has an offset, noted δa, unambiguous and in-
variant, in the context only of the static type which introduces the attribute.

Invariant 3.1.2. Each method has an offset, noted δτsm , unambiguous and in-
variant in the context of every static type which knows the method.

The object consists of subobjects, one for each superclass of its class (i.e. for each
static type supertype of its dynamic type) and each subobject is equipped with its
own method tables (Figure 2). Reference invariance is then replaced by:
RR LIRMM 2002–174
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D C A B

A

B A

C A

static

dynamic

methods
tables 

A B C D

C

A

B

D

d

attributes (subobjects)

Fig. 2. Object layout and method tables with multiple inheritance

Invariant 3.1.3. Any entity whose static type is T is bound to the subobject
corresponding to T . Subobjects of different static types are distinct.

A subobject consists only of the attributes introduced by the corresponding static
type, whereas the method table contains all the methods known by it, with values
(addresses) corresponding to methods inherited by the dynamic type. Thus, two
proper instances of different classes will not share any method table of their common
superclasses: thoses tables are isomorphic but don’t contain the same addresses
(Table II). For a given static type, method offsets don’t matter, but it is reasonable
to group methods by introduction classes, as in the figures: this may offer some
local invariance (in case of SI) but this organization has no effect on efficiency.

3.1.2 Method call. Invariant 3.1.3 imposes to recompute the value of self for
each method call where the receiver’s static type τs is different from the class W ,
superclass of τd, which defined the selected method. One needs to know the position
of subobject W , w.r.t. subobject τd, noted5 ∆τs,W (Figure 3). Thus method tables
have double entries for each method, an address and a shift (Figure 6 on top). On
the whole, method calls are compiled by the sequence6:

load [object + #tableOffset], table

load [table + #deltaOffset], delta

load [table + #selectorOffset], method 2L+B + 1
add object, delta, object

call method

Instead of putting shifts in the tables, an alternative consists in defining a small
intermediate function, called thunk7 by Ellis and Stroustrup [1990] or trampoline
by Myers [1995], which shifts the receiver before calling the method:

add object, #delta, object

jump #method

5 The notation ∆T,U , as all the following notations ∆, implies a given dynamic type τd � T, U :

expliciting it would make the notation heavy.
6 Instructions added w.r.t. SST are italicized (see page 5).
7 According to Lippman [1996], thunk is Knuth spelled backwards.

RR LIRMM 2002–174
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Table II. Method tables for Figure 2 example, w.r.t. static and dynamic types. For a same static

type (column), the tables are isomorphic but differ by their contents (method addresses), whereas,
for a same dynamic type (row), isomorphic pieces contain the same addresses but different shifts.

type static→
↓ dynamic

A B C D

A A — — —

B A A B — —

C A — A C —

D A A B A C A B C D

The call sequence is then the same as with SST. Thunks may be shared when the
address and the shift are the same: they may be considered as different entry points
to the same procedure and the thunk with the null shift is the method itself. Thus,
one saves on one access in the table for an extra direct branching. The thunk could
also be inlined in the method table instead of being pointed by it: one could save
on L cycles, but one would lose the null cost of the null shift and the ability to
share thunks with the same shifts.

3.2 Casting

Subobjects make casting real: [Rossie et al. 1996] defines it as a subobject change.
Notice first two basic properties of ∆:

∀τd, T, U, V : τd � T,U, V ⇒ ∆T,V = ∆T,U + ∆U,V (3)
∀τd, T : τd � T ⇒ ∆T,T = 0 (4)

3.2.1 Cast to dynamic type. Because of the reference variance w.r.t. static types,
equality tests between two references need to equal first their types. Without loss
of generality, both references must be reduced to their dynamic type: each method
table must contain a shift ∆τs,τd , noted ∆τs

⇓ . When the two types are in a subtyping
relation, one upcast will be enough.

3.2.2 Upcast. Changing from the current subobject, with type τs, to a statically
known supertype T , needs a shift ∆τs,T , which depends on τd. An extra table, noted
∆↑τs , is needed in every method table: T offset in ∆↑τs is invariant w.r.t. dynamic
type and statically known:

Invariant 3.2.1. Each class has an unambiguous and invariant offset in the
static context of each of its subclasses.

This offset is noted iτs(T ) and it is, unlike ∆s, independant of τd: then ∆τs,T =
∆↑τs [iτs(T )], shortened in ∆↑τs(T ). Instead of being a proper table, ∆↑τs can lie within
method table. Indeed, upcasts can be handled as if every target class introduces a
method for upcast towards itself: but it is more efficient to put a shift instead of
an address in the method table entry.

3.2.3 Accesses to attributes. The table ∆↑τs is also used for accessing attributes
when they are introduced in a superclass of τs. Let δ(p, U) be the position of an
attribut p w.r.t. the subobject of type U , and δp the offset of p in the type Tp
(τs ≺ Tp) that introduces it (Invariant 3.1.1). Then:

δ(p, τs) = ∆τs,Tp + δ(p, Tp) = ∆↑τs(Tp) + δp (5)
RR LIRMM 2002–174
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sτ

receiver’s type 
in caller...

dτ

... static

... dynamic

class introducing ...

class defining ...

... callee

U

W

Fig. 3. Receiver’s types in a method call: a shift ∆τs,W is needed

When an attribute is not introduced in the receiver’s static type (Tp 6= τs), there
is an appreciable overhead in comparison with SST:

load [object + #tableOffset], table

load [table + #castOffset], delta

add object, delta, object 3L+ 1
load [object + #attributeOffset], attribute

In worst case, assignment a.x := b.y needs three upcasts, on a, b and between y
and x types. Some parallelism is likely but the sequence is 5 times longer than in
SST, as well in cycle number (5L+ 3 vs. L+ 1) as in instruction number (11 vs. 2).

3.2.4 Downcast. Shifting from static type τs to a static subtype T needs both a
type check and the value of ∆τs,T . Contrary to SST, a direct access is difficult, at
least in separate compilation (see section 7.4) and some sequential search may be
better. Each class τd has an association structure, e.g. a hashtable, which maps all
supertypes T of τd to ∆τd,T : this structure, noted ∆⇑, can be referenced by each
method table, not only by τd. A downcast from τs to T looks up for T in the table.
If T is not found, a type error is signaled. Otherwise, ∆τd,T is returned and:

∆τs,T = ∆τs,τd + ∆τd,T = ∆τs
⇓ + ∆⇑(T ) (6)

It must be noticed that both tables ∆↑τs and ∆⇑, have the same contents, with
different structures and uses: in the former, τs is statically known, whereas in the
latter, τd is not (Table III). Their contents is also the same as the shifts included
in the method tables or thunks. One can get advantage from static types, by
associating to each subobject a new table ∆τs

↓ , the restriction of ∆⇑ to the classes
between τs and τd: ∆τs

↓ = ∆⇑/[τs, τd] + ∆τs
⇓ . They avoid a two step downcast:

∆τs,T = ∆τs
↓ (T ) (7)

but the temporal advantage is small and at the cost of a memory overhead. With
∆⇑, downcasts may be generalized to side casts (also called cross casts), where the
target type T is a supertype of τd, but not always a subtype of τs (Figure 4, right).

This type checking implementation is costly. Coding the specialization partial
order is difficult in MI and it would not work since the problem is no more boolean:
shifts are needed. A simple solution allowing a direct access is a N × N matrix,
where N is the class number: mat[idT , idU ] contains ∆T,U if U <:T , and otherwise
a distinguished value meaning that there is a type error. Such a matrix needs 2N2

bytes, i.e. 2N bytes per class: this is a reasonable cost when there are N = 100
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Fig. 4. Upcast (left), downcast (center) and side cast (right), to a target type T : the dashed
subtype relation must be checked at run-time before shifting.

classes, but it is not when N >> 1000 (see appendix A). Class identifiers idC must
be computed globally for all classes C: an adequat numbering allows to replace the
matrix by a triangular one, i.e. by one vector per class, using vectU [idT ] instead of
mat[idT , idU ]. This reduces the cost to an average of N bytes per class, which is
the worst-case cost of the coloring scheme as well in SST (see section 2.2.2) as in
MI (see section 7.4) but the average cost of coloring is far lesser.

3.3 Empty subobjects optimization (ESO)

On the basis of this uniform implementation, a simple optimization reduces the
space overhead. Indeed, an exception to Invariant 3.1.3 is possible, when a subob-
ject is empty, i.e. when the corresponding class, say F , introduces no attribute. It
is then possible to merge the F subobject with the subobject of one of its direct
superclasses, say E. Two cases are to distinguish.

In the first case, E is the only direct superclass of F and F introduces no method:
the set of methods of E and F are the same. The F subobject may be merged
into the E subobject as, without merging, the contents of both method tables, i.e.
method addresses, would have been the same. Here, merging works because it is
invariant w.r.t. dynamic type: E and F subobjects are merged in all subclasses
of F . Multiple inheritance problems are avoided because F has no more methods
than E: if another subclass F ′ of E, is in the same case, the subobjects E, F and
F ′ can be merged in any subclass of both F and F ′. In some way, this merging is a
property of F : method tables are shared and shifts between F and E are avoided,
as ∆F,E = 0 and iτs(E) = iτs(F ), for all τd � τs � F ≺d E. The code generated for
all τs � F takes into account the merging of E and F : e.g. accessing an attribute
introduced in E on a receiver typed by F will need no cast.

In the second case, F has either more methods than E, or more than one direct
superclass—the latter condition implies the former, as superclasses imply upcast
methods—, but the method order of E is a prefix of the method order of F , i.e. the
offsets of E methods are the same in F . Therefore, the E and F subobjects may be
merged in the implementation of τd � F , but at the only condition that E is not
already merged with another F ′, in the same τd � F ′. Once again, merging works
in this restricted case because the prefix condition is also invariant w.r.t. dynamic
type: however, E and F will not be merged in all subclasses of F . This means
that merging is neither a property of E, nor of F , but only of some τd � F . In
that case, merging allows to share method tables, not to save on shifts, neither in
the code nor in upcast tables. The code generated for all τs � F cannot consider
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Table III. Cast tables for the class (τd) D of Figure 2: ∆⇓ is a scalar, ∆↑ a vector,

whereas ∆↓ and ∆⇑ are hashtables.

τs ∆⇓ ∆↑ ∆↓ ∆⇑

A ∆AD [0]
[(A, 0)(B,∆AB)
(C,∆AC)(D,∆AD)]

B ∆BD [∆BA, 0] [(B, 0)(D,∆DB)]

C ∆CD [∆CA, 0] [(C, 0)(D,∆CD)]

D 0 [∆DA,∆DB ,∆DC , 0] [(D, 0)]
[(A,∆DA)(B,∆DB)

(C,∆DC)(D, 0)]

that E and F are merged, but the data structures for some τd � F may do that
merging. In particular, accessing an attribute introduced in E, on a receiver typed
by F , needs a cast, but the shift will be likely null.

It is always possible to construct the method order of any class, which is up to
now arbitrary, as an extension of the method order of at least one of its superclasses.
Therefore, almost all empty subobjects can be merged: the only exception will be
when two different subobjects are merged into the same subobject, in the second
case of merging. In that rather exceptional case, only one merging will be possible.

There is some evidence that empty subobjects are quite common and that this
optimization is essential (see appendix A). However, there is also some evidence
that this simple optimization, or at least its effect, has not been noticed, as most of
benchmarks in the literature do not include any information on attribute number
[Sweeney and Burke 1998; Gil and Sweeney 1999; Eckel and Gil 2000].

3.4 Evaluation

Multiple inheritance overhead is rather large.

Dynamic memory. In each object, the overhead is equal to the number of indirect
superclasses of the object class, which introduce at least one attribute.

Static memory. The number of method tables is no more linear in the class num-
ber N , but worst-case quadratic whereas total size is no more quadratic, but cubic:
ΣC(ΣC�DMD). However, the formula must be corrected to take into account the
empty subobjects optimization: ΣD is restricted for those D which are not merged
with some E, with C � D ≺d E. Precise statistics confirm both the overhead of
this implementation and the benefits of empty subobjects. In a context of mainly
“non virtual” inheritance, [Driesen 1999; Driesen and Hölzle 1995] report a ratio
larger than 3 on the table sizes, w.r.t. the size of tables in SST (ΣCMC). Statistics
in appendix show that the ratio may exceed 6 with standard implementation, but
that it is reduced to 4 with ESO. When taking into account the shifts, in the ta-
bles or in the thunks, the ratio climbs again to 6. Thunks seem roughly equivalent
to putting shifts in method tables: there are less thunks than tables entries, they
need two words instead of one and the code sequence is two instructions shorter.
Statistics show that they are more costly for large hierarchies (see appendix A).

Time efficiency. A shift is needed each time an assignment or a parameter pass-
ing is not with constant static types. It imposes an extra access to method table.
The real impact on method calls is more questionable: shifting could be done within
processor’s latencies or in parallel. Experiments by [Driesen 1999] seem to give a
small advantage to thunks. But this conclusion is based on benchmarks mainly
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Fig. 5. Object layout and method tables in “non virtual” inheritance

constituted of classic C++ programs making an heavy usage of “non virtual” in-
heritance: in this particular case, shifts are mostly null and the thunk is the method
itself. So, although it does not allow to conclude about plain MI, it seems that shifts
have a sensible overhead. This is not surprising since, even if the cycle numbers
are almost equal, this is at the price of some parallelism, and it is likely that shifts
take the place of some other code sequence. Furthermore, constant-time downcast
needs very large tables.

The main drawback of this implementation is that the overhead is the same when
one does not use MI: separate compilation is unable to foresee that a given class
will be always specialized in SI.

4. ALTERNATIVES FOR MULTIPLE INHERITANCE

The complexity of the previous implementation explains part of the reluctance to
multiple inheritance as well as some unsound C++ features [Cargill 1991; Waldo
1991; Sakkinen 1992]. Various alternatives have been searched for: the most radical,
proposed by the Small Eiffel compiler that we will examine later (see section
7.3.6), avoids method tables at the price of a global compilation [Zendra et al.
1997]. In this section, we examine some small variations around the standard
implementation. They consist either in searching a MI implementation without
overhead when used only in SI (section 4.1), or various compromises between time
and space efficiencies (sections 4.2 and 4.3). Eventually, attribute implementation
can be reduced to methods (see section 4.4).

4.1 C++ non virtual inheritance (NVI)

As previously noticed, the main drawback of standard MI implementation is that
its overhead does not depend on an effective use of MI. C++ “non virtual” inher-
itance is an answer to this problem. It is expressed by not annotating superclasses
with the keyword virtual. This gives a more efficient implementation but it is
sound only when the superclasses of any class form a tree, i.e. for what we call
arborescent inheritance (AI). Mixing “virtual” and non virtual inheritance may be
quite complicated and it worsens with inheritance protections. Thus we will only
describe pure non virtual inheritance.

NVI is better described by its implementation than by its semantics [Ellis and
Stroustrup 1990]. A class without superclass is implemented as in SST. When
a class has one or more direct superclasses, the instance layout consists of the
concatenation of the instance layouts of all direct superclasses: the attributes and
methods introduced by the class are added to one of the subobjects. Extending the
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Table IV. Method tables, with sharing or non virtual inheritance: a class means a

reference to the table associated to it as a static type, on the same line.

type static→
↓ dynamic

A B C D

A A — — —

B B A B — —

C C — A C —

D C/D D A C A B C D

last subobject allows to make ∆T,U invariant w.r.t. τd8. Thus, the main difference
is that there is no proper subobject for the class itself. However, the generated
code is the same as with standard MI implementation. The only difference is that
the need for shifts is less frequent for upcasts and attributes: only when source
and target, or τs and Tp, don’t share the same subobject. As for method calls, the
shifts are always needed but they are more often null: thunks make most of them
disappear in practice. In case of SI, the layout is exactly the same as with SST,
with only one subobject and there is no shift at all with thunks. In the general case
of arborescent inheritance, the number of subobjects or method tables is equal to
the number of superclasses which are roots, i.e. without superclass.

4.1.1 Arborescent vs. repeated inheritance. The flaw of non virtual inheritance
occurs when inheritance is no more arborescent, i.e. when the inheritance graph
contains undirected cycles, as in Figure 2. It consists in what we call repeated
inheritance, in the sense that some subobject is repeated in the object layout: in
Figure 5, this is the case for A which is present in both subobjects of B and C.
In case of repeated inheritance, the table number of NVI implementation becomes
exponential in the number of superclasses, as it is the number of paths from the
considered class to its root superclasses.

4.1.2 Casting. In case of arborescent inheritance, and at the condition that the
current class data structures extend the structures of the last subobject in the
concatenation, the relative positions of two subobjects whose types are related by
subtyping don’t depend on the dynamic type. Thus upcast is unambiguous and,
when it is needed, the shift is static, without accessing the table. Downcast can also
be made in a very close way to the SST coloring scheme, as ∆τs,T is independant of
τd. One needs only that each subobject implements the coloring scheme reduced to
the types corresponding to the subobjects. Only side casts need the MI technique.

On the other hand, repeated inheritance makes casting ambiguous. For upcasts,
the ambiguity is on the target and intermediate upcasts may be needed to remove
it. As for downcasts, the ambiguity is on the source and checks must be repeated
as many times as the source is. Side and dynamic casts are not always possible.

Mixing virtual and non virtual inheritance makes the problem even more com-
plicated. [Ellis and Stroustrup 1990, section 10.6c] forbids some cases. However,
according to the specifications of dynamic cast [Koenig 1998], the effective imple-
mentation seems to use both ∆τs

↓ (in case of repeated inheritance) and ∆⇑ (for

8 The point is not explicitly noticed, but it seems to be a common assumption [Ellis and Stroustrup
1990; Sweeney and Burke 1998].
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Fig. 6. Standard and compact method tables

sidecast). If the target is unambiguous in one of the two tables, the cast succeeds:
no static prohibition is necessary.

4.1.3 Evaluation. Non virtual inheritance has the great advantage of presenting
an overhead only when one uses MI (as long as thunks are used). But repeated
inheritance is a major semantic drawback. A sound semantics is possible by mixing
virtual and non virtual inheritance, but it is a matter of either hand made opti-
mization, or global analysis. Separate compilation cannot predict that B and C
will not have a common subclass and which one must use the virtual keyword.
Only a subsequent diagnosis, when defining D, is possible, or an automatic devir-
tualization analysis on the whole program (see section 7.3.2). It could be possible
to restrict the use of NVI to AI: defining D would be forbidden. But it would be
a limitation to reusability. Moreover, when the class hierarchy has a root, Object,
the class of all objects, AI reduces to SI.

Besides its semantic flaw, NVI is not less costly than standard MI implementa-
tion, in all generality: NVI complexity is indeed exponential in the worst-case (see
appendix A). Furthermore, empty subobjects optimization does not apply.

4.1.4 Criticizing C++. NVI comes from Simula [Krogdahl 1985]. Multiple
inheritance in C++ has been commented and criticized [Cargill 1991; Waldo 1991;
Sakkinen 1992], often for opposite reasons. [Cargill 1991] criticizes “virtual” inheri-
tance and it is significant that Waldo’s answer [1991] is based on an example which
needs rather MST than plain MI. The main criticism may be that understanding
the language goes through understanding the implementation. NVI gave rise to
some attempts to base its semantics on models of subobjects [Rossie et al. 1996;
Snyder 1991].

4.2 Compact method tables

Another drawback of standard MI implementation is its static space overhead: table
size is cubic instead of quadratic in SST. Two obstacles forbid to share the tables
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of different static types for the same dynamic type: shifts and variant method
offsets. The first point can be reduced by a two step shifting, as for attributes (5)
and downcast (6). The second point is solved by applying to methods Invariant
3.1.1, which rules attributes. Therefore, the method table associated to a static
type contains only the methods introduced by the type, not inherited methods.
A method call must begin with an upcast towards the type which introduces the
method, as with attributes (5), at least when Tp 6= τs. The cost of this technique
is exactly the sum of the costs of upcasts and method calls: thus, the call sequence
has 8 instructions and 4L+B + 2 cycles. Instead of getting the second table from
the cast object, one can use pointers between the different method tables (Figure
6, right). This allows some parallelism and reduces the cost to 3L+B + 1 cycles:

load [object + #tableOffset], table1

load [table1 + #table2Offset], table2

load [table1 + #castOffset], delta1 3L+B + 1
load [table2 + #deltaOffset], delta2

add object, delta1, object

load [table2 + #selectorOffset], method

add object, delta2, object

call method

In that case, the two step shift may indifferently go through either τd (6) or Tp
(5). A minor overhead is that upcast structures are implemented twice, as shifts
between subobjects and as pointers to method tables.

Evaluation. This technique reduces static space overhead to the only cost of
doubling the upcast tables size, together with 3 extra instructions for each method
call such that τs 6= Tp. The objective of this compact implementation is to reduce
table size, i.e. static memory, but it may be hindered by this sensible augmentation
of the code. Only the first case of empty subobject optimization works: merging is
possible when both the subobject and its method table are empty. Moreover, time
efficiency is reduced: L extra cycles underestimates the effective extra overhead.
Anyway, it was worth-while to convince oneself that standard implementation offers,
in some way, the best compromise between time and static memory. Various other
compact schemes exist, but no one is better than this simple one.

4.3 Less indirections

Contrarily to previous variants which try to reduce the static memory cost, some
optimizations aim to reduce time overhead, at the price of dynamic memory. The
best way to do it is to move the upcast tables ∆↑τs from the method tables to the
objects themselves. In a second step, shifts common to all instances may be replaced
by pointers to subobjects, proper to each instance. In the C++ jargon [Ellis and
Stroustrup 1990], they are called virtual base pointers (VBPTR) and, according
to [Sweeney and Burke 1998], this technique is used in several C++ compiler.
As a matter of fact, upcasts are very frequent, as well for accessing attributes
as for polymorphic assignments. They are viewed by standard implementation as
methods, which impose a method table access (see section 3.2.2, page 10). VBPTRs
amount to view upcasts as attributes, but they are implemented in each subobject:

load [object + #castOffset], object 2L
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load [object + #attributeOffset], attribute

There are two kinds of VBPTRs: e-VBPTRs are essential because they reference
direct superclasses, whereas i-VBPTRs are inessential and can be replaced by some
indirections using e-VBPTRs. Implementing only e-VBPTRs in the objects would
not improve much on ∆↑. It is thus consistent to lie all VBPTRs in the objects.

Evaluation and optimizations. As method tables, ∆↑τs tables are, in worst case,
quadratic in number and cubic in size. In each instance, the number of VBPTRs is
quadratic in the number of superclasses, and the worst case occurs with SI: a n class
chain induces n(n− 1)/2 VBPTRs. In constrast, assuming a uniform distribution
of attributes introduced in each class, the number of attributes may be considered
as linear in the number of superclasses: thus, VBPTRs may easily occupy more
space than attributes (see appendix A)! Furthermore, VBPTRs are compatible
only with the first case of empty subobjects merging: indeed, in the second case,
the F subobject would not be empty since it must contain a VBPTR to the E
subobject (see section 3.3).

A similar optimization will consist in replacing ∆⇓ by pointers in object layout
[Sweeney and Burke 1998]. The overhead is smaller, as it is equal to subobject
number, but the gain is also smaller as shifts to the dynamic type are less frequent.

Sweeney and Burke [1998] propose a general framework for analyzing the space
overhead of various object layout, according to the repartition of data between
class tables and object layout. [Gil and Sweeney 1999; Eckel and Gil 2000] present
some statistics on the VBPTR cost in some large benchmarks and they propose
optimizations aiming to reduce VBPTR overhead. Some of them are global and
compare badly with techniques used in global compilation, whether coloring(see
section 7.4) or Small Eiffel (see section 7.3.6), which do not need shifts. Other
optimizations are usable in separate compilation: they use bidirectional tables (see
section 5.1). The dynamic overhead of VBPTRs remains important.

A by-product of VBPTRs is the ability to implement instance classification,
a monotonous special case of instance migration (e.g. change-class function in
Clos) when the target class is a subclass of the source class. Indeed, with VBPTRs,
the object layout needs not to be connected: specializing an object’s class amounts
to add subobjects and change pointers to method tables.

4.4 Attribute accessors

Some languages behave towards attributes and towards methods in a very close way.
In Clos [Steele 1990], attributes are accessed through special read and write meth-
ods (generic functions in the Clos jargon) called accessors. In Sather [Szypersky
et al. 1994], an attribute contributes to the class type by its accessors signatures.
In Eiffel [Meyer 1992; 1997], a method without argument may be overridden as
an attribute. Obviously, attribute implementation can be encapsulated in accessor
methods: when an attribute position change in a subclass, it needs only to override
its accessors. Thus, attribute offsets don’t matter.

Two variants must be considered: either accessors are actually defined as methods
or they are simulated, in which case method table contains attribute offsets instead
of accessor addresses. Simulating accessors avoids a true method call: the access
cost is the same as with standard implementation, in the general case (Tp 6= τs,
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page 10). In a second step, attribute offsets can be factorized if attributes are
grouped by subobjects, with Invariant 3.1.1. Method tables contain the position of
subobjects w.r.t. the object address. The access code is now exactly the same as
in standard implementation, when τs 6= Tp.

In some way, simulating accessors is only a catch since it brings back to a subob-
ject implementation. Moreover, shifts are needed in every case, even when τs = Tp.
In order to save shifts when accessing self, Myers [1995] proposes a double compila-
tion of each class: in the first one, self attributes are compiled with shifts, whereas
in the second one, they are compiled without shifts, assuming that the subobject
position will be preserved in all subclasses (e.g. if the class is only specialized with
SI). The appropriate version is chosen at link-time.

However, true accessors may be needed for some features as redefining a method
without parameter as an attribute (Eiffel) or implementing the full specifications
of the Clos keyword :allocation (see section 6.3).

Nevertheless, accessors are a solution for attributes only when the question of
methods has been solved. If the object layout may be constituted of a table where
attribute offsets don’t matter, a direct access to methods or attribute offsets is
needed. Thus this is not an alternative in itself but we will see different ways to
incorporate accessor simulation in a general framework, either preserving object
reference variance (see section 5.1.3) or recovering SST invariance, with a global
computation (see section 7.4) or a flow of method tables (see section 5.2.2). At-
tribute accessors can be used with any method implementation.

4.5 Comparisons

The main drawback of standard MI implementation is that its overhead does not
depend on the fact that one uses MI, or not. NVI is a way to avoid this drawback,
at the detriment of semantics. A general solution could be that languages allow to
express the fact that a class should not be specialized with MI or, more generally,
with non-arborescent inheritance: it would be at the detriment of reusability.

Accessor simulation coupled with Myers’ double compilation is a better alterna-
tive since there is no detriment at all, but the benefits are only when accessing self
attributes: method calls are not concerned, but thunks would cancel the overhead
in case of SI. It is then a good solution when attributes are mostly encapsulated,
à la Smalltalk. Other alternatives seem hopeless: compact method tables add a
small time overhead but may be unable to effectively gain on static memory, due
to code size increasing, whereas VBPTRs bring a considerable dynamic overhead,
for a small time improvement.

5. SINGLE INHERITANCE AND MULTIPLE SUBTYPING (MST)

Between the two extreme cases, is the middle case where classes are in SI but
types are in MST, whilst class specialization remains a special case of subtyping.
This is typically the case of Java and some other languages have a very close type
policy: Theta [Myers 1995; Day et al. 1995], as well as all languages designed for
the Microsoft platform DotNet, C# [Microsoft 2001] or Eiffel# [Simon et al.
2000]. The specification is the one of Java [Gosling et al. 1996; Grand 1997]: the
extents relation between classes is single, and the implements relation between
classes and interfaces or the extents relation between interfaces is multiple. Only
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Fig. 7. Single inheritance and multiple subtyping: multiple inheritance variant, with 3 classes A,
B, C and 5 interfaces, I, J , K, L, M . In grey, interface tables saved by sharing.

classes may define attributes together with method bodies and may have proper
instances: interfaces are abstract classes and define only method signatures.

In such a framework, the SST invariants 2.1.1 and 2.1.2 cannot be verified by
interfaces: more precisely, a method introduced by some interface will be imple-
mented at different offsets in the different classes which implement the interface.
However standard MI would be too complicated, as both invariants could be veri-
fied by classes. Hence, two kinds of solution can be designed, according to whether
one simplifies MI implementation or one complicates SST one.

5.1 Multiple inheritance variant

Standard MI implementation can be notably simplified in the present case. Of
course, all interface subobjects are empty but as all interfaces are likely to introduce
some method, only the second case of subobject merging can work (see section 3.3).
A more specific presentation is better.

5.1.1 Principle. Starting from standard implementation, the first step consists
in conciliating different method tables with attribute invariance. Due to attribute
invariance, only one method table is needed for the classes. Due to interface spec-
ification, interface subobjects are empty. Therefore all pointers to method tables
can be grouped in a header and object layout is bidirectional: positive offsets are
for the attributes, negative offsets are for interface tables, and offset 0 points to the
class table. Each interface table begins with the offset of the pointer to this table,
which stands for ∆τs

⇓ : this value will serve to shift the receiver in a method call,
when it is typed by an interface. When the receiver is typed by a class, no shift is
needed as any entity typed by a class points to offset 0, whereas entity typed by an
interface points to the offset corresponding to the interface.

In a second step, one can order interface tables, in the header, in such a way that
the superclass implementation is nested inside the subclass one: the subclass add
RR LIRMM 2002–174



Implementing Object-Oriented Languages · 21

A B C

ABC K L MJI table for 
C, I and K

static

dynamic

1 I J K L M
table for

for  J, L and M 

self A B D C

ABD C0

AC 1

static

dynamic

Fig. 8. Theta techniques, for examples of Figure 7 (left) and Figure 2 (right), where B is
considered as primary.

new interfaces at negative offsets and new attributes at positive offsets (Figure 7).

Invariant 5.1.1. Superclass implementation is nested inside subclass imple-
mentation: interface shifts (∆τs

⇓ ) are invariant by inheritance, i.e. w.r.t. τd.

The third step consists in factorizing interface tables. Sharing tables needs to
take a specific convention on the way method tables are built (see section 3.3): each
interface and class orders its super-interfaces in some arbitrary order, e.g. depth-first
one, in such a way that, in case of SST, the superclass order is a prefix of the subclass
order. Methods are also grouped in tables according to this order, and method
offsets are invariant in each group, as with Invariant 3.1.1. Two interfaces may
share the same table when the superinterface order is a prefix of the subinterface
order. In Figure 7, class table is shared by K and interface table of M is shared by
all other interfaces.

Code for accessing attributes is the same as in SST, as well as method calls when
the receiver is typed by a class. When the receiver is typed by an interface, the
code is the same as in MI, with the difference that deltaOffset does not depend
on the method.

5.1.2 Casting. Several cases must be considered:

(1) from class to class, it is done exactly as with SST, and from interface to inter-
face, as with MI;

(2) from class to interface, for an upcast, shift is static (constant and invariant
w.r.t. dynamic type, thus without table access) thanks to nesting; a sidecast
will need the table ∆⇑;

(3) from interface to class, the shift is in the table header, but there are two cases: a
method call to a receiver typed by an interface does not need any type checking,
but downcast needs type check, which is done as in SST.

When a case reduces to MI, ∆⇑, and possibly ∆↑, tables are needed, respectively
in the class and in the interface tables.

5.1.3 Case of Theta. The language Theta uses a very close technique with
some optimizations [Myers 1995]. The basic idea is to extend object layout bidi-
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rectionality to method tables9. The positive part contains methods declared in
interfaces, when negative part contains methods introduced in a class (Figure 8).
On the example, the sharing is not better than with the first variant (Figure 7), but
it is intuitive that bidirectionality might improve sharing: without bidirectionality,
methods introduced by a class forbid any sharing for the subclass interfaces. Myers
[1995] proposes also an optimizing algorithm for computing tables.

5.1.4 Application to multiple inheritance. Myers [1995] proposes two extensions
of his technique to MI. Both are based on the principle that, when a class has more
than one direct superclasses, one of them is considered as primary, and the other
are secondary. Implementation will respect the nesting principle for the primary
superclass only. Obviously, the best choice of the primary superclasses is a matter
of global optimization (see section 7).

Variant with method copy. The first variant is based on the code copy of all
methods and attributes defined in secondary superclasses: code sharing is done only
with direct and indirect primary superclasses (see section 7.3.1). The technique is
sound only for language with a strict attribute encapsulation, à la Smalltalk: if
this is not the case, accessors are needed (see section 4.4). Once attributes and
methods have been copied, secondary superclasses can be treated as if they were
interfaces (Figure 8).

The main advantage is that MI costs only when it is used and it is always as
efficient as standard inheritance, at least from a dynamic point of view: the static
overhead of copying needs some assessment. But copying method code is not com-
patible with separate compilation. According to the author, experiments show a
sensible improvement w.r.t. C++: on the example, the result is as good as with
NVI (Figure 5).

Variant with accessor simulation. Instead of copying attributes, they are accessed
by simulating accessors, and shifts to subobjects are added in the method tables
(see section 4.4). The double compilation saves many shifts but thunks are now
needed since methods may be defined in secondary superclasses. As a whole, this
is certainly a good alternative to standard implementation, as efficient as NVI but
without its flaws.

5.2 Single subtyping variant

The other approach consists in starting from SST implementation and extending it
to interfaces.

5.2.1 Principle. Reference Invariant 2.1.1 is then conserved in any case, whereas
Invariant 2.1.2 is always restricted to class-typed entities. Object layout and class
method tables are the same as with SST, but some data must be added in method
tables to deal with the case of interface-typed entities. For each interface imple-
mented by a class, a data structure is needed to find methods and many techniques
can be envisaged (Figure 9):

9 Bidirectionality is also found in [Eckel and Gil 2000], where a positive or negative direction is

arbitrarily assigned to classes without superclasses: specializing two classes with opposite direction
save VBPTR (see section 4.3). Bidirectionality seems to originate in [Pugh and Weddel 1990].
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Fig. 9. Multiple subtyping and single inheritance: single subtyping variants.

(1) offset conversion tables between interface and class,
(2) first class interface method tables,
(3) if methods are grouped by class and interface, with an invariant order in each

as with Invariant 3.1.1, shifts to each group are sufficient,
(4) shifts of (3) can be replaced by pointers to method groups.

But it does not seem possible to have a constant-time direct access to those data
structures for a given interface. Thus an association structure such as a hashtable,
like ∆⇑, is needed in the class method table.

Starting for this general framework, some optimizations are possible. Time op-
timizations will consist in caching interface tables as long as the reference to the
object does not change: so one access to the hashtable could serve for several method
calls (see section 5.2.2). Space optimizations are based on sharing data, between
interfaces and even between classes (inheritance), for variants 1 and 3. Variant 2
allows sharing only for the same class. Variants 1 and 2 have the advantage that
they deal with all the methods of the interface as a whole, whereas variants 3 and
4 consider only the methods introduced by the interface. Caching will be more
efficient with the former.

As for casting, it is realized mostly as in SST. Due to reference invariance, only
downcasts and dynamic type check must be considered. When the target type is a
class, any SST technique applies. When the target is an interface, one will use the
interface association structure in a boolean way, or any other MI boolean technique.

5.2.2 Constant-time variant, with inline table cache. Most dynamic accesses to
interface tables may be saved by inline caching and static accesses from the current
statically typed values. As a matter of fact, in a method call, when one binds a
value to an interface-typed parameter (which is not the receiver), the question is
that the callee has no direct access to the interface methods, whereas the caller may
have such a direct access since it knows the static type in the callee (unless type
overriding, section 6.1) and since typing rules requires that the type in the caller
is a subtype of the type in the callee. So the idea is to pass not only a reference
to the object, but also the interface table corresponding to its target type. For an
assignment of local variables, it is even simpler since caller and callee are the same.

In this approach, any interface-typed entity x is twofold: x itself which references
an object and the interface structure tablex needed to send method to it, e.g. a
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method table in variant 2. Moreover, each method table, as well interface tables
as class tables, contains pointers on super-interface tables, in the same way as ∆↑

(Figure 9, right). When the return type of a method is an interface, two values are
returned. In the assignment x:=y, there are two cases likened to upcasts in MI. If
y is typed by an interface subtype of x’s type, one gets the appropriate table from
tabley:

load [tabley + #interfaceOffset], tablex

move y, x

if y is typed by a class, one must first get the class table of y:

load [y + #tableOffset], tabley

Method call to x follows:

load [tablex + #selectorOffset], method

call method

The case of interface-typed attributes, which are assumed to be rather rare, is more
difficult: an extra pointer on interface tables in the object layout, would bring a
dynamic space overhead. Thus, it will be better to search for the table when reading
the attribute or at the first need: it would be the only non constant-time accesses.

Evaluation. Maintaining a systematic interface table flow in parallel of interface-
typed data flow seems at first glance an efficient solution. Increasing the code size
with extra parameters is balanced by the fact that there is no more need to access
the object to get its method table when needed: moreover, an optimized compiler
will remove all accesses to tables which are not used.

Application to multiple inheritance. Inline table cache and flow could work in
plain MI: it should be used for all entities, whatever their type is. The object
layout could be a mixing of SST (reference invariance and unique method table)
with MI (attributes grouped by subobjects and accessed by simulating accessors,
section 4.4). The omnipresent shifts of standard implementation would be replaced
by an omnipresent table flow, incuring no specific overhead w.r.t. standard imple-
mentation. However, the case of attributes could be prohibitive: doubling them
would bring an almost 100 % dynamic space overhead, whereas a systematic table
access at each read access would bring an important time overhead. Statistics (see
appendix A) show that standard MI implementation may incur a 100 % overhead
in object layout. However, this overhead does not concern collections (e.g. arrays)
whereas table cache would be very costly for them. Thus, this technique cannot be
used as the main implementation technique. Nevertheless, it could be envisaged as
a secondary technique, for instance for the case of universally-typed entities, whose
value may be an instance of a class or a primitive type. It would be an alternative
to the wrappers of Java.

5.3 Application to Java.

According to its specifications [Gosling et al. 1996; Grand 1997], Java could adopt
either MI variant or SST variant. However, the language implementation seems to
be constrained by the specifications of its run-time environment, the Java Virtual
Machine (Jvm) [Meyer and Downing 1997].
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5.3.1 Interface typed receiver. In the Jvm, a specific operation, invokeinterface,
addresses the case of method call to an interface typed receiver. [Alpern et al. 2001]
present a state of the art of existing implementations, which mostly use dynamic
typing techniques (see section 7.2). As the problem of searching a method on an
interface-typed receiver can be reduced to the problem of searching an interface
table, various techniques come back to the approach of a large class-method ta-
ble, possibly transformed in a smaller class-interface table. This is the case of
virtual machines Cacao [Krall and Grafl 1997] and Sable [Gagnon and Hendren
2001]. Other techniques as inline cache, possibly polymorphic [Hölzle et al. 1991],
are quoted. In Jalapeño, [Alpern et al. 2001] associates to each class a fixed-sized
hashtable containing either a method address, or a decision tree indexed on interface
identifiers.

5.3.2 Subtyping checks. Dynamic class loading forbids the simple approach of
Schubert’s numbering. However, the [Cohen 1991] coloring variant is incremental
and it is used in Jalapeño [Alpern et al. 2001]. When the target type is an interface,
this technique doesn’t work and a boolean class-interface matrix associates to each
class the interfaces implemented by the class. Some virtual machine implementa-
tions seem to have adopted a hashtable technique as well for subtyping test as for
invokeinterface [Meyer and Downing 1997, chapitre 9].

5.3.3 Other Java features. A problem of SI is the implementation of general
system-defined functionalities which require some implementation in the object lay-
out. A typical example is synchronization, which needs locks in the objects. As
the instances of any class may be synchronized, a class Synchronized-Object would
have been incompatible with SI, and an interface would fail to add some implemen-
tation in the objects: so the functionality is introduced in Object. Implementing
locks with attributes would be a simple solution, but this attribute should be de-
fined in Object: the overhead would be for all objects, even when they don’t use
synchronization10. Implementing them in object header would be the same as
an attribute defined in Object. [Bacon et al. 2002] proposes an approach based on
statically distinguishing classes which need synchronization from classes which need
not: locks are then defined as an extra attribute in the former only. In order to
maintain the offset invariance required by the synchronization code, this attribute
is implemented at a negative offset, unlike other attributes. However, as instances
of non-synchronized classes may be synchronized as well, a global data structure,
called a lock nursery, is dedicated for it. Statistics show that most synchronized ob-
jects are instance of synchronized classes, so the gain of locks for non-synchronized
classes more than counterbalances the overhead of the lock nursery.

5.4 Application to multiple inheritance: mixins

Literature on mixins is rather large [Stefik and Bobrow 1986; Bracha and Cook
1990; Ancona et al. 2000; Ernst 2002], but they are still missing a precise definition.
They consist in a variation on the notion of abstract classes, in a less abstract way
than the interface notion of Java. They are often presented as a way, either to avoid

10 According to [Bacon et al. 2002], the average attribute number in a class is small, around 4 or

5: the overhead would be 20 %.
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MI, or to discipline its usage. Our definition is the following. A mixin is an abstract
class, in the Smalltalk sense, i.e. a class without proper instances, but, contrarily
to Java’s interfaces, a mixin may have attributes and method bodies. Mixins
are aimed at defining functionalities which are presumed orthogonal to classes and
which can be mixed to them without conflict risk. We will not discuss here this
hopeless objective but only propose a specification of specialization in a world where
classes and mixins can be mixed. First, classes are in SI: a class cannot specialize
more than one class. Second, a mixin can specialize at most one class, but no
mixins: mixins must be thought of as unrelated functionalities, but some of them
may apply only to instances of some precise class. Third, a class may specialize as
many mixins as one wants. Four, when a class specializes a mixin which specializes
(directly or not) another class, this must not lead to MI: the class specialized by the
mixin must be a direct or indirect superclass of the class. It means that removing
mixins from the transitive closure of specialization must lead to SI.

The mixin approach is thus very close to SI and MST of Java. The difference
is that mixins may have code and attributes, and that their specialization is quite
restricted. To take up a distinction from linguistics, a class is categorematic, whereas
a mixin is syncategorematic: it cannot stand alone by itself [Lalande 1926].

5.4.1 Multiple inheritance variant. There is a striking resemblance between
mixins and the application of MST techniques to MI proposed by Myers [1995]
(see section 5.1.4): classes are primary superclasses, whereas mixins are secondary
superclasses. The approach by method copy applies without any adaptation, even in
separate compilation: it suffices to do with mixins what C++ does with templates,
not compile them (see section 6.2). This connection between mixins and templates
is not fortuitous: mixins are often presented as parameterized heir classes, i.e. as
classes parameterized by the superclass of the class resulting from their instancia-
tion. As a matter of fact, C++ templates allow such usage [Ernst 2002]. Let A
be a class, M a mixin: then, defining a subclass B of both A and M is the same
as defining B as a subclass of M〈A〉 [Bracha and Cook 1990; Ancona et al. 2000].
But there is no way to get an implementation from this analogy: implementation
of genericity proposed in section 6.2 does not allow to make M〈A〉 a subtype of A.

[Myers 1995] second variant applies also: accesses to self attributes are then
optimized in the class methods and no double compilation is needed as classes are in
SI. However, contrarily to SI and MST which allows a more efficient implementation
than plain MI, it does not seem that mixins bring such an improvement. More
generally, the fact that a class C is abstract, i.e. without proper instances, does not
bring any significant optimization: some data structures can be saved for the case
where C = τd, since τd is never an abstract class. In the case of mixins, a basic
point is that concrete classes are in SI, thus allowing Invariant 2.1.2 for classes.
Thus, MI overhead is only within mixins. In some way, the mixin approach can be
likened to NVI: both improve efficiency at the detriment of semantics or reusability.

5.4.2 Single subtyping variant. The section 5.2.1 schema (Figure 9) can be ex-
tended to separate compilation of mixins in the following way. The only differences
with interfaces are attributes and method bodies defined in the mixins. As a mixin
doesn’t specialize another mixin, one can group attributes and methods proper to
the mixin, in the object layout and in method tables. A mixin method needs only
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to know the two shifts correponding to attributes and methods for accessing self.
As self is immutable, those two shifts can be computed only once, when entering
the method. They also may be cached in the same way as interface method tables.
As for attributes and methods inherited from a superclass, they are accessed in the
same way as for a class.

The definition of mixins is rather fuzzy. The examples given by [Bracha and Cook
1990] make them orthogonal to interfaces: they are not aimed to introduce a new
type but to discipline the use of call-next-method (see section 6.4.1). The imple-
mentation proposed here is based on our precise specification which forbids special-
ization between mixins: a unique shift is thus enough. If mixins could specialize
mixins, one shift per specialized mixin would be necessary and this implementation
would be no more justified.

5.5 Evaluation

Two main variants must be considered: à la Java or à la Theta. In both, time
efficiency is the same as SST as long as class-typed entities are concerned. In the
Theta variant, method calls to interface-typed entities is constant-time, as with
MI, with simplified shifts. In the Java variant, the shifts are avoided but either
method calls are no more constant-time, or there is an interface table flow which
has to be experimented. Static space overhead is rather small, due to sharing, and
dynamic space overhead is null in Java and small in Theta.

Both implementations have reasonable and close costs as long as interfaces are
not intensively used as it is probably the case for hand-made programs. However,
when interfaces are numerous, for example when they are automatically computed
[Huchard and Leblanc 2000], the Theta variant could bring a too large dynamic
space overhead. Moreover, the type annotations also can be automatically com-
puted: in such a case, the interface-typed entities might be numerous and the
constant-time variant may be better. A more precise comparison between those
two main variants, as well as between subvariants, would need experiments.

Among the various applications to plain MI, only the approach of Theta by
simulating accessors is convincing: MI overhead is reduced without semantic flaw.
The only extra cost is a double compilation of each class and an easy analysis, at
link-time, to choose the one to use according to the way the class is specialized.
The other approaches are not convincing: method copy is incompatible with sep-
arate compilation and badly compares with other global techniques (see section
7). As for mixins, they are a restriction to MI and reusability which may be not
counterbalanced by efficiency increasing.

6. COMPLEMENTS

6.1 Type variant overriding

It is well known that type safety imposes that the parameter type in the overriding
method must be a supertype of the one in the overridden method, whereas the
overriding return type must be a subtype of the overridden one. The return type
is said covariant, and the parameter type contravariant. As for attributes, they
must be invariant. The fact is that strictly contravariant parameters are not in-
teresting, since the models that one wants to implement are mostly covariant. See
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for example [Cook 1989; Weber 1992; Castagna 1995] for a criticize of covariance
and [Meyer 1997; Ducournau 2002b] for a defence. Combined with the difficulties
of implementation that we will see, this explains why languages as C++ and Java

forbid parameter type variance, otherwise than as static overloading. However, im-
plementing variant overriding comes into question, either for type safe overriding,
or for pure covariant languages like Eiffel. In all cases, type variant overriding
amounts to casting, either upcasts or downcasts.

6.1.1 In single subtyping. With SST, object references are invariant w.r.t. static
type: thus safe overriding need no specific implementation and unsafe overriding
amounts to dynamic type checks.

Covariant parameters. It may be done in the overriding callee, with the drawback
that it would be systematically done, even when the static type of the parameter
in the caller is a subtype of the parameter type in the callee.

In a different context (see section 5.1.3), Myers [1995] proposes to assign an offset
to each method signature, not only to each method name. This looks like static
overloading implementation (which is of course incompatible with type overriding)
but two different offsets may here reference the same method address: offsets express
syntax, whereas addresses in the entries express semantics. The various entries
corresponding to the same method with different signatures and offsets point to
thunks which do the required type checks. For a method mC(t1, ..., tk), overriding
some methods mCi(t

i
1, ..., t

i
k) with different signatures and offsets δi, the C method

table contains, for each offset δi, a pointer to a thunk which type checks parameters
for all j such that tij 6= tj , before jumping to the mC address.

Covariant attributes. Read accesses are as usual, at the condition that write
accesses always check the assigned value. There are two ways to type check it:
either one systematically uses writer methods (see section 4.4) and one reduces the
question to covariant parameters, or one type checks in the caller. One needs then a
dynamic downcast, since the attribute type depends on τd. Thus the type identifier
must be stored in the method table:

load [object + #tableOffset], table1

load [val + #tableOffset], table2

load [table1 + #attributen1Offset], n1cible

load [table2 + #n1Offset], n1source

load [table1 + #attributen2Offset], n2cible 2L+ 4
comp n1cible, n1source

blt #fail

comp n2cible, n1source

bgt #fail

store val, [object + #attributeOffset]

Both techniques have drawbacks. The former imposes a method call for each
attribute writing, but the type check is done by a thunk, only when needed. The
latter avoids a method call but requires an access to the table and a type check
in any case, even when there is no overriding. Dynamic downcasts are clearly less
costly than method calls plus static downcasts (2L+ 4 vs. 4L+B+ 3). As against
this, the code sequence for dynamic downcasts is longer.
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... receiver’s static type
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Fig. 10. Covariant return type: when U ′ 6= W ′, upcast from W ′ to T is dynamic whereas casting
from U ′ to V is static but no more upwards.

Eiffel anchored types. They bring two kinds of optimizations. Firstly, all enti-
ties with the same anchor may share an entry in the method table. Secondly, some
type checks may be avoided, when the compiler can prove that it is safe, typically
when two anchored types are anchored to the same receiver: this is the only case
where an anchored type may be its own subtype. [Meyer 1997] proposes the so-
called catcall rule to ensure type safety by forbiding to access covariant properties
when the receiver is polymorphic (τd 6= τs). This rule does not work in separate
compilation. Moreover, it is too restricted since it forbids calls that a global analysis
might accept.

6.1.2 Multiple inheritance. Even type safe overriding is now costly because of
the shifts between subobjects. C++ allows only return type overriding11: this may
be not only because of type safety and static overloading.

Covariant return type. In multiple inheritance, covariant return type is safe but
a shift is needed, which must be done either in the callee or in the caller. However,
satisfying Invariant 3.1.1 is now a question: what should be the static type of the
returned value? Two alternative invariants can be envisaged.

Invariant 6.1.1. The static type of the return value is the return type in the
class which introduces the method (U ′ in Figure 10).

Invariant 6.1.2. The static type of the return value is the return type of the
callee (W ′ in Figure 10).

The former has the advantage of saving a global invariance: the callee does an
upcast towards U ′. When U ′ is a subtype of the type T of the entity using the
returned value, the caller does a second upcast. Otherwise, a downcast or sidecast
is required, but only if the overriding is visible from the caller, i.e. if U ′ 6= V ′.

11 Ellis and Stroustrup [1990, pages 210 sq. and 421] say that this is part of the ANSI specification,
but that it would complicate method calls. Effectively, it was not compatible with some casting

prohibitions (see section 4.1). Covariant return type is however explicit in the current language
specifications [Koenig 1998].
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Fig. 11. Covariant parameters: a sidecast from τs to W ′′ is needed.

With the latter invariant, the solution will consist in a thunk, which does the
shift ∆↑W ′(V

′), for each pair (V,W ).

add object, #delta, object

call #method

load [return + #tableOffset], table

load [table + #castOffset], delta

add return, delta, return // cast from W’ to V’

A second cast from V ′ to T must then be made in the caller. The main drawback
is that the method call in the thunk is no more terminal, i.e. it is a call, not a
jump. The main advantage is that there is no more downcast, and that it does cost
only when needed, i.e. for pairs (V,W ) such that V ′ 6= W ′.

Variant parameters. When the parameter type is invariant, parameter passing
needs only a static upcast from its static type in the caller to its static type in the
callee: the shift is given by the table ∆↑τs .

With a stricly contravariant overriding, casting is always upwards and safe, but it
is no more static, since the target depends on the receiver’s type. Extending method
tables to parameter shifts would be possible, but very costly in static space: thunks
are certainly more adapted and type overriding would not add more thunks.

The case of covariant overriding is described in Figure 11 and 6 types are implied:

—τs and τd are the static and dynamic types of the parameter in the caller;
—V ′′ and W ′′ are the static types of the parameter in the respective methods of

the receiver’s static and dynamic types.

By construction, 3 subtyping relationships are posed:

τd<: τs polymorphism (8)
τs<:V ′′ compile-time type checking (9)

W ′′<:V ′′ covariant overriding (10)

The goal is to check that τd<:W ′′ and to shift with ∆τs,W ′′ : casting may be
upwards, downwards or sidewards, but it is dynamic. There are two approaches:

∆τs,W ′′ = ∆τs,V ′′ + ∆V ′′,W ′′ = ∆↑τs(V
′′) + ∆V ′′

↓ (W ′′) (11)

∆τs,W ′′ = ∆τs,τd + ∆τd,W ′′ = ∆τs
⇓ + ∆⇑(W ′′) (12)
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In the two cases, a first static shift is done in the caller. A type check and a dynamic
shift are then done, either in a thunk (11), or in the callee (12). The former approach
has the advantage of imposing a casting only when needed. Notice that thunks and
subobjects exempt from the signature indexing of Myers [1995].

Covariant attributes. This is a mixing of return type and parameter type. One
must first choose one of the two invariants 6.1.1 or 6.1.2 to rule the attribute value.
A read access needs then exactly the same casting in the caller as for a method
call. A write access needs first a type check, done with a dynamic downcast: the
target type must be stored in the method table, as in SST. With Invariant 6.1.1,
an extra upcast will be needed. Implementing write access with true accessors may
be a solution (see section 4.4), but it would be of no use for read access.

Thunks balance. Multiple inheritance overhead notably increases—it roughly doubles—
as soon as overriding is not invariant, even in the safe case of return type. However,
covariant method overriding may be implemented within the thunks, without in-
creasing their number—one thunk per pair (τs, τd)—with the advantage that a true
overhead occurs only in case of effective overriding between τs and τd (as in SST
with the technique of Myers [1995], but without needing extra offsets). In this
particular case, thunks gain credence. On the other hand, for attributes, thunks
should be avoided as they impose true accessors and systematic extra method calls.
As against this, downcasts are systematic.

On the whole, for a method introduced by a type U , there is exactly one thunk
for each pair (τs, τd) with τd � τs � U . Each thunk does successively:

—the cast on the receiver (Figure 3), from τs to the type W which defines the
method inherited by τd;

—the possible downcasts on the parameter whose static type inW is a strict subtype
of the type in U (Figure 11),

—the method call itself,

—a possible upcast on the return type (Figure 10).

When τs = W , the thunk is the method itself, without any shift or cast.

With another MI implementation. With other techniques like NVI or compact
tables, type overriding is roughly implemented in the same way. However, as tables
may be shared between several static types, the technique of Myers [1995] consisting
in assigning different offsets to different signatures may be an improvement.

6.2 Genericity

Compiling parameterized classes rises a specific problem. There is a simple way
to elude it: not compile them, as C++ does with templates. In this case, each
instanciation of a parameterized class amounts to the generation of a new non
parameterized class, where actual types have been substituted to formal types. All
arguments in favour of separate compilation urge to compile parameterized classes:
see, for instance, the criticize by Lippman [1996] of C++ templates for their lack
of separate compilation. Moreover, such a compilation allows code sharing between
the different future instanciations of the same parameterized class. This is what
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Odersky and Wadler [1997] call a homogeneous implementation, as opposed to
C++ heterogeneous implementation.

We will mostly consider here bounded genericity, i.e. parameterized classesA〈T <:B〉
where the formal type T is constrained to be a subtype of some bound B: this is
the best way to allow static type checking. Match-bound polymorphism, i.e. replac-
ing subtyping by matching for the bound [Bruce et al. 1997], has no effect on the
implementation.

6.2.1 Instanciation with primitive types. However, a heterogeneous approach
seems better when formal types are instanciated by primitive types, above all in
case of collections which need a particular efficiency. In this case, a homogenous
approach would indeed impose the use of wrappers, as in Java. So, compiling a
bounded parameterized type A〈T <:B〉 where the bound B is a universal type,
will amount to produce an homogeneous code shared by all non primitive classes
plus a specific code for each primitive type. Of course, the instanciation A〈B〉
needs a third kind of technique, e.g. wrappers, and the generally unsafe subtyping
A〈C〉<:A〈B〉 is not possible.

6.2.2 In single subtyping. Invariant 2.1.2 makes bounded genericity implemen-
tation very easy: attribute and method offsets of the formal type are the same
as the bound. Notice that genericity may give implicitly rise to MST as soon as
one accepts the generally unsafe subtyping between different instances of the same
parameterized type (see figure 13-c/d). But this restricted case of MST does not
require special implementation.

6.2.3 In multiple subtyping. When the bound B is a class, SST implementation
still works. On the other hand, when the bound B is an interface, offset invariance
is no more ensured. A solution is extending the parameterized class method table
by a conversion table converting offsets from formal type to actual types. Method
calls need then one extra table access (Figure 12). A shift to method groups of
each supertype may replace conversion. However, pointers to method tables is not
possible, because of polymorphism. If A〈C〉 table contains a C method address, an
entity typed by C could not be valued by a subclass D ≺ C. Method call is then:

load [generic + #tableOffset], table1

load [object + #tableOffset], table2

load [table1 + #selectorOffset], offset 3L+B + 1
add table2, offset, method

load [method], method

call method

In Pizza [Odersky and Wadler 1997], an alternative to bounded genericity is to
pass methods as parameters of the instanciation. This reduces easily to the previous
implementation: method offsets are effectively passed as parameters and assigned
to the conversion table.

More generally, this technique amounts to consider methods of the formal types
as methods of the parameterized type: but it is implemented without explicit extra
method call. It is then a priori adapted to all the techniques described for MST as
long as actual types are classes. When a formal type is instanciated by an interface,
i.e. the bound itself is an interface, some restrictions are needed. In the MI variant
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TA B C

B CAo c

static

dynamic

A[C] C

BA[T<:B]
... formal type... parameterized type ... effective type 

methods of ...

Fig. 12. Parameterized classes: method table with multiple subtyping

(see section 5.1), accessing an interface needs a shift: all method calls will need a
shift, even when the type is instanciated by a class. As for the SST variant (see
section 5.2.1), it does not allow an instanciation by either a class or an interface,
since method calls are realized in a different way, as explicited in the Jvm by
different operations, invokevirtual and invokeinterface [Meyer and Downing
1997]. So, in both cases, an efficient solution is a double compilation, according to
whether the actual type is a class or an interface: this means 2k compilations when
there are k interface-bound parameters.

With bounded genericity, upcasts from the formal type T to the bound B (or to
a bound supertype) must be considered: the problem occurs only with MI variant,
when B is an interface. The static solution is to add an entry in the table of A,
containing the shift from the actual type to B. Other casting from or to T seems
unsound.

Specializing parameterized classes. Two kinds of specialization are to considered
(Figure 13). When A′〈T <:B′〉 ≺ A〈T <:B〉12, then, following the definition,
A′〈C〉 ≺ A〈C〉. The proposed implementation is compatible with such a spe-
cialization: one only needs to extend the method table of A〈T <:B〉 with methods
introduced in A′. Casting between A and A′ is as usual.

When D ≺ C, one may accept that A〈D〉<:A〈C〉: this is the case in Eiffel but
it is type safe only when T is never used in contravariant position [Cook 1989; Weber
1992]. The unsafe cases must be handled in the same way as for unsafe covariant
overriding (see section 6.1). However the implementation imposes some restriction.
There is no problem when C and D are classes: then A〈C〉 and A〈D〉 share the
same method table. When C is an interface, the MI variant rises a problem due to
the possibly different offsets for C and D. Moreover, if D is a class, SST variant
also rises a problem, since method call techniques differ: a low-overhead solution
is that calls to interfaces also work for classes. Thus, combining those two kinds of
specialization does not lead to MI problems, since only the former add some entries
in the method table.

When it is possible, the latter case of specialization gives rise to a downcast
problem: casting from A〈C〉 to A〈D〉 or to A′〈D〉 needs that parameterized classes
keep some information concerning their formal types. A solution is that A’s table

12 This means that A′〈T 〉 ≺ A〈T 〉, for all T <:B′, with B′<:B.
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A’[T<:B’]
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A[D,D]
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Fig. 13. Specializing parameterized classes

points to the table of the types which instantiate its formal types. Then, downcast
from A〈C〉 to A′〈D〉 imposes two type checking, first on the parameterized classes,
then on the parameter.

Genericity in Java. Many generic extensions of Java have been proposed: Pizza

[Odersky and Wadler 1997], Generic Java [Bracha et al. 1998], Nextgen [Cartwright
and Steele 1998] and many other [Agesen et al. 1997; Solorzano and Alagić 1998].
None of them takes the approach presented here because it is not compatible with
Jvm: compatibility would imply to realize method calls to formal types with an
explicit call to self, whereas we only simulate this call with an offset. In practice,
homogeneous propositions replace the formal type with the bound (type erasure)
and add safe downcasts which need no implementation in the SST variant.

6.2.4 In multiple inheritance. Multiple inheritance of parameterized classes is
possible: so they must be implemented as non parameterized classes (section 3). In
each method table, method calls to formal types are the same as in MST. On the
other hand, attributes cannot use neither SST technique for attributes, nor MST
for methods: they are indeed invariant only w.r.t. the static type which introduces
them. An attribute p accessed on the formal type T is necessarily known by the
bound B, thus B � Tp and δp is known and invariant (see page 10). However, the
upcast from T to Tp is not static as T is formal. Thus, for each Tp, an entry of the
method table must contain the position of the shift ∆T,Tp in the ∆↑T table, i.e. the
value of iT (Tp).

load [generic + #tableOffset], table1

load [object + #tableOffset], table2

load [table1 + #castOffset], delta

add table2, delta, table2 4L+ 2
load [table2], place

add object, place, place

load [place + #attrOffset], attribute

Upcasts from T to B need also to add in the method table of A an entry containing
the value of iT (B): one may generalize by adding an entry for each supertype fo B.

However, as in MST with the MI variant, subobject implementation makes the
subtyping A〈D〉<:A〈C〉 difficult: entities typed by C and D don’t point on the
same subobject. Thus substitution is not possible. In fact, the problem is exactly
the same as for variant overriding of attribute and return types (invariants 6.1.1
or 6.1.2). For a type safe language, this is a minor limitation as this specialization
is rarely safe [Day et al. 1995]. For a covariant language as Eiffel, this is more
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problematic: systematic casting is needed (see section 6.1) and the method tables
of A〈D〉 and A〈C〉 are no more shared.

6.3 Shared class attributes

The term of class attributes is fuzzy and at least three different notions are con-
cerned:

—C++ and Java static variables are not relevant to object orientation as they
cannot be selected, in case of overriding, according to the dynamic type of an
object;

—attributes of classes considered as instances of meta-classes, in a reflexive model,
à la Smalltalk or Clos: this notion has no direct equivalent in the languages
that we consider here;

—the fact that an ordinary attribute could be shared by all instances of a class: it
may then be allocated in the class data structure instead of in every instance: this
is the meaning of the keyword :allocation :class in Clos: to avoid ambiguity
we will call them shared attributes.

The two last notions differ by their semantics: we can illustrate the former by
the set of proper instances of a class, which is a property of the class, not of
the instances, and the latter by the side number of polygons, which is 4 for
all instances of quadrilateral, and 3 for all instances of triangle. The dif-
ference is that a class does not share its instance set with another class, whereas
all subclasses of quadrilateral share the same side number, except odd ones as
3.5-side-quadrilateral...

Shared attributes will be implemented in the method table: as several classes,
with different tables, may share the same attribute, an extra indirection by a wrap-
per is needed when the attribute is mutable. The wrapper is needless when the
attribute is read-only. Multiple inheritance does not complicate the case.

Curiously enough, this sound and efficient mechanism is not proposed by com-
monly used languages: C++ and Java offer only static variables. In Eiffel,
constant features amount to read-only13 class attributes: once features are a vari-
ant where the constant is itialized by a first call, subsequent calls returning the
same value. When they are frozen, this is an equivalent of static in C++ and
Java. The keyword :allocation of Clos has actually a more complicated speci-
fication than ours, as it may take two values, :instance or :class, and it may be
overridden. This is against all attribute invariants, whether they are in single or
multiple inheritance. Plain accessors (see section 4.4) is a way to implement it in a
general way, with a dynamic space saving, but at the detriment of time efficiency.
An alternative would be to implement shared attributes in the instances, with a
wrapper to ensure value sharing, thus at the detriment of time. On the whole, the
complete specification of the keyword should be reserved to attributes explicitly
declared at introduction.

13 Notice that this is the binding between the name and the value which is immutable, not the
value itself.
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6.4 Calling super

Almost all languages offer a mechanism for calling the overridden method from
the overriding method: this is a sound way to save a kind of behaviour invariance
in spite of overriding. In Smalltalk and Java, this is realized by the keyword
super—a pseudo-variable as self—which consists in calling the superclass method
on the current receiver, i.e. the self value. Although this mechanism is designed
for calling the overridden method, super syntactically requires the method name:
in fact, it allows to call any superclass method14. In SI, the superclass method
is unambiguously determined as well as the method offset: everything is invariant
w.r.t. dynamic types, and the super call is static.

6.4.1 In multiple inheritance. Super does not work since the superclass method
is not uniquely determined, in the general case. However, there exists at least
three variants of the mechanism: static call (::) in C++, precursor in Eiffel and
call-next-method in Clos.

The C++ operator :: is more general than super as it allows to call any method
as a classic static procedure call: the technique is the same as for a method call,
except that an access to method table may be needed for the shift, not for the
address. The mechanism is quite versatile, but it has an important drawback, liken
to repeated inheritance (see section 4.1): in the diamond example of Figure 2, when
the method m in class D calls methods B::m and C::m, which both call A::m, then
the latter is executed twice when calling D::m.

In Eiffel, precursor differs from super in Java and Smalltalk on two points:
first, the mechanism applies to MI but only when there is no multiple inheritance
conflict, second it applies only on the current method name, which corrects the
super flaw. As the overridden method is unambiguously determined, implementa-
tion is the same as for :: in C++.

Clos call-next-method is more original: it consists in calling the next method
in the linearization order of the superclasses of the receiver’s dynamic type [Ducour-
nau et al. 1994]. The main advantage is to avoid the repeated inheritance problem.
An important drawback is that the next method will depend on the dynamic type,
not only on the static type. In the diamond example, the linearization of D (resp.
B) may be {D,B,C,A} (resp. {B,A}): so, in B, the next method will be in C
(resp. A). This causes some trouble to modularity and it makes implementation
more difficult. A direct static call does not work. A simple solution is to assign an
extra offset in the method tables, for each method. Whereas primary method en-
tries contain the same address for all static type of the same dynamic type (Figure
II), call-next-method entries will contain different addresses. Those extra offsets
are needed only for methods which explicitly use call-next-method, and only in
the method tables of the static type where the method is defined: thus this new
mechanism would cost only when and where it is used.

6.4.2 The case of Beta. The Beta language [Kristensen et al. 1987] differs
from all other object-oriented languages by the way method combination is real-
ized. Instead of calling the overridden method from the overriding method as with

14 In Java, the static type of super is the superclass of the current class.
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super, the overridden method calls the overriding method with the keyword inner.
So there is neither true overriding, nor late binding for method calls which are al-
ways static: method tables are only needed for inner calls. Nevertheless, all the
techniques reviewed here more or less apply.

6.5 Null pointers

Any variable or attribute typed by a class must be explictly initialized. An intrapro-
cedural data flow analysis may detect uninitialized local variables, but this is more
difficult for attributes, which may be initialized some time after creation. Thus,
an initialization with a null pointer is a way to avoid random memory state. The
simplest solution consists in a distinguished value null and in checking at every
object access (method call, attribute access, cast) that the receiver is not null.

Even when those checks are restricted to accesses which are not proved to be
non null, this would add a considerable overhead. There are two general kinds of
alternatives. The first one depends on hardware and operating system: for instance,
in [Alpern et al. 1999] null has address 0, and all offsets are negative as, in the
AIX system, negative addresses rise an interrupt. Software based solutions consist
in a distinguished instance null for each class: all its attributes are initialized to
null and its method table points to methods which signal an exception. This object
must be allocated in the code area, assumed to be read only, in order to prevent any
assignment. However, read accesses are possible, propagating null values, which
may make debugging difficult.

Different null objects may be shared: in SST, a unique null object is even
possible if the method table structure allows it (method tables may contain more
information than method addresses). This object will be constituted by the largest
object layout, with the largest method table. In MI, a unique object is also possible:
it will consists in the unique instance of the class ⊥, subclass of all classes, and will
be constituted by one subobject by class. Of course, those shared null objects
must be computed at link-time (see section 7).

6.6 Garbage collection

Automatic memory handling is an argument for fiability: this has been well un-
derstood by designers of Lisp, Smalltalk, Eiffel and Java. There are many
garbage collection (GC) techniques. All need some information concerning individ-
ual objects: length of memory area, boolean status of the object and possibly a
pointer on a new generation. Those informations may be contained in the object
layout or implemented in separate tables. We will only consider the former case.
[Wilson 1992; Jones and Lins 1996] are reviews of garbage collection techniques.

6.6.1 Single subtyping. Standard SST implementation is well adapted to GC:
all proper instances of a class have the same length, so it may be stored in method
tables. Moreover, reference invariant avoids pointing inside memory areas.

A few marking bits are needed for different status informations during the GC
process: they are partly used for marking living objects, reachable from memory
roots, and are proper to each instance. With static typing, there is no way to dy-
namically distinguish an immediate value from an address. Thus, an easy way to
search for all living objects consists in defining a specific method for this purpose,
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which is automatically generated by the compiler [Colnet et al. 1998]. When mark-
ing is not implemented in this differentiated way, it must conservatively assume
that each field in the object layout is a potential pointer on a living object, which
is slower: the GC is then called conservative [Boehm 1993]. However, GC must be
at least semi-conservative since root extraction from registers and stack requires
such an assumption. In all generality, checking that a memory word is a pointer to
an object may consist in checking firstly that this is a valid address, secondly that
the first field is a pointer to a method table, which is easier since method tables are
static. This is a necessary condition but it is not sufficient. Now calling the marking
method on an address which is not an object may lead to unexpected results: thus,
when marking is implemented by a method, root extraction must be exact and it
requires a more precise condition. An alternative technique will use a mapping of
the heap into a bitstring: each bit represents a word (resp. double-word) allocation,
causing a 3 % (resp. 1.5 %) memory overhead. Allocating objects of different sizes
or types in different areas is also a technique [Colnet et al. 1998] which allows to
reserve only one bit per object but it increases memory fragmentation.

When they are implemented in the object layout, those bits can occupy a field
by itself, but this is a considerable overhead. Bit-stealing is a general way to avoid
the overhead, by implementing them as low or high weigth bits of some field in the
object layout. For instance, when the object size is not shared, it needs only two
bytes and one extra byte is free for marking bits. In the general case, one can use
either the pointer to method table, or the first attribute, for instance when it is
a pointer. In both cases, there is a uniform overhead, with two more instructions
and cycles for removing those extra bits, at each access to the field. [Bacon et al.
2002] present some experimental statistics on this approach in Java, where pointer
to method is used. However, the overhead might be null if the value of those bits
is unchanged between two accesses to the field: only the methods implementing
the GC, or the access to the first attribute, should be compiled in a specific way
to remove the extra bits which are no more at their default value. So the overhead
depends on whether the GC is implemented as a concurrent background task, or as
a blocking task. Using the first attribute field supposes reserving it for an attribute
which don’t use 32 bits, for instance when it is a pointer. The overhead will then
be supported only by one attribute. However, some classes may have only 32 bits
attributes (e.g. integer): GC would then have a dynamic space overhead.

6.6.2 Multiple inheritance. When Invariant 2.1.1 is not verified, the marking
stage is complicated since object references may point inside memory areas. Mark-
ing methods may help to solve the problem but a general alternative exists: each
method table may have an entry which contains a shift towards the first subobject
in the object layout. Moreover, this entry may be the same as for ∆τs

⇓ , if one places
always the dynamic type subobject first. In any case, an extra overhead must be
expected. Notice that VBPTRs (see section 4.3) avoid this complication since the
object layout is made of explicitly linked subobjects. In any case, GC complexity
is a function of subobject number not of object number.
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7. COMPARING WITH GLOBAL COMPILATION

Separate compilation is a good answer to modularity requirements of software en-
gineering: it brings speed of compilation and recompilation together with locality
of errors and protects source code from both infringement and hazardous modifi-
cations. With separate compilation, the code generated for a program unit, here a
class, is correct for all correct future uses. Run-time generation ends with a final
step linking all program units.

7.1 Advantages of global compilation

7.1.1 Hierarchy closure. The first advantage of global compilation is that the
class hierarchy is closed: no extra class can be added after the compilation, unless
a new complete compilation of the whole hierarchy. It is then possible to know if a
class is specialized in single or multiple inheritance, if two unrelated classes have a
common subclass, and so on. Moreover, the schema of each class is known. So, in a
dual way, one knows where methods are defined: methods with a unique definition
may then be treated as classic procedural calls (monomorphic calls). This is known
as the unique name heuristics [Calder and Grunwald 1994]: thought its simplicity,
its effect is not small as this applies to almost 45 % methods in Smalltalk.

With static typing. Hierarchy closure brings even more information: a call is
monomorphic as soon as the method is not overridden in the subclasses of the
static type. Moreover, a hierarchy analysis allows to determine which classes must
be compiled as virtual, and which ones don’t need it [Eckel and Gil 2000] (see
section 4.1). Alternatively, one can decide of primary and secondary superclasses
(see section 5.1.4).

7.1.2 Knowledge of method code. A second advantage is the knowledge of the
code of all methods: when compiling a method, one also knows how the method
is used, and when compiling a method call, one also knows the method codes for
all possible callees. Many optimizations proceed from this knowledge but they all
suppose an underlying general implementation technique.

7.2 Global compilation in dynamic typing

In a dynamically typed language as Smalltalk, the lack of type annotations makes
separate compilation quite unefficient. So, many techniques of global compilation
have been worked out in the framework of dynamic typing: of course, they all apply
to static typing as well.

7.2.1 Dynamic typing and single inheritance. Notice first that, with dynamic
typing, SI is no more a simplification, due to definition overloading (see note 3, page
6): when the same method name is introduced in two unrelated classes, Invariant
2.1.2 is not verified, at least in separate compilation. This concerns also attributes
as soon as they are not encapsulated as in Smalltalk. Java type system may be
understood as the minimal type system required for statically typing Smalltalk:
the interface notion is the way to deal with definition overloading. So, with dynamic
typing, implementation is at least as difficult as with MST, or even with plain MI
when attributes are not encapsulated.

RR LIRMM 2002–174



40 · Roland Ducournau

7.2.2 Compilation techniques. If one puts aside dynamic search (lookup) in the
class hierarchy, method call techniques are either with constant-time direct access
tables or with a group of techniques summarized under the name of type prediction.

Compacted large table. Table-based techniques consist in compacting the large
array obtained by a global and injective numbering of all classes and methods. As
the class number (resp. method number) may reach and even exceed 1000 (resp.
10000), this table is huge, several M-entries, and too large to be implemented as
such. However, the number of valid class-method pairs is far smaller, at most 5 %:
it is the total size of method tables in SST, ΣCMC . Two techniques for compacting
that table have been proposed: row displacement proposed by Driesen and Hölzle
[1995] and method coloring proposed and studied by Dixon et al. [1989], Pugh and
Weddel [1990], André and Royer [1992] and Ducournau [1991; 1997]. The latter
technique will be detailed further.

In both cases, the result is a table each entry of which either contains a unique
class-method pair or is empty. However, the lack of static type checking yields that
a method may be called on a receiver of a wrong type, which may amount to either
an empty entry or a class-selector pair with a different selector: thus a dynamic type
checking is needed but it reduces to a simple equality test between the expected
method and the effective one. Static typing makes this extra test useless. On the
whole, there are few empty entries, less than 10 % in most of the benchmarks, with
a 50 % upper bound for all experiments: compared to standard MI, the total size
remains close to ΣCMC (see appendix A).

Type prediction. Type prediction originates in the idea that a given type may
be considered as more likely for some method call: for instance, type integer
for the method +. So, type prediction consists in compiling a method call by a
comparison between the expected type and the effective receiver’s type: if the test
succeeds, a static call is done, otherwise a call to another technique is done. There
are many variations on this basic idea. The expected type may be the receiver’s
type for the previous call, either on the same call site (inline cache) or globally
(global cache). Prediction may also be polymorphic when the receiver’s type is
tested against several types [Hölzle et al. 1991]: in that case, the call sequence is a
small decision tree which compare the receiver’s type with all the expected types.

The technique is not a priori sufficient since cache defaults must be handled
when the receiver’s type is not amongst predicted types. Therefore some underlying
technique is needed, for instance a dynamic lookup à la Smalltalk. An alternative
is to rule out cache defaults: the decision tree must then exhaust all possible types.
This is easier with static typing as the static type is available. A type analysis may
give a more precise information, the concrete type. At last, it is better to balance
the tree, as the number of expected types may exceed 100 [Zendra et al. 1997].

The entire call sequence is made of conditional branching: [Driesen et al. 1995]
shows that they are statistically very well predicted by modern processors. There-
fore, indirect branching (B latency) and memory accesses (L latency) are avoided.
As against this, the number k of expected types, thus the branch number, may be
large and the search is in O(log2(k)): but a predicted branch has a 1-cycle cost,
whereas an unpredicted one has a B-cycle cost.
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Subtyping test. In tree-based techniques, the comparison between the effective
type and the expected type may be either an equality test or a subtyping test.
With the former, all types must be exhausted, whereas only methods need to be,
in the latter. But subtyping test is expensive in the general case. [Queinnec 1997]
handles only SI and uses the coloring technique of [Cohen 1991], which is prefered
to Schubert’s numbering as it is incremental. Interval containment [Muthukrish-
nan and Muller 1996] uses Schubert’s numbering. Type prediction techniques use
equality tests.

Mixed techniques. There are many ways to mix table-based and tree-based tech-
niques, by putting either tables in tree leaves [Queinnec 1997] or tree roots in table
entries [Vitek and Horspool 1994]. Type slicing [Zibin and Gil 2002] is a generaliza-
tion of Schubert’s numbering and interval containment to MI. The main effect of
those techniques is to save static memory w.r.t. standard table-based techniques:
the size of static data structures may be quite smaller than ΣCMC . However, this
is detrimental to time efficiency: as with type prediction, method call is no more
constant-time. Moreover, unlike pure type prediction, a table access is required.

Attributes. The case of attributes is rarely treated in the literature. It may
be explained by the fact that they are often encapsulated in the methods, as in
Smalltalk: so they are accessed only on self, which has the uncommon feature
to be the only statically typed entity: Invariant 2.1.2 is thus verified for them, in
case of SI. Accessor simulation is sufficient for MI but non encapsulated attributes
require plain accessors, because of definition overloading.

7.3 Global optimizations

7.3.1 Method copy. When the source code of superclass methods is known at
compile-time, it is possible to copy in a class the code of inherited and not overrid-
den methods. Method copy has been already seen as an application to MI of the
Theta technique (see section 5.1.4). The main advantage of this technique, termed
customisation by [Chambers and Ungar 1989], is that self becomes monomor-
phic: method calls to self, which are quite numerous, can be compiled by a static
call, without extra memory access. When the attributes are encapsulated as in
Smalltalk, attribute invariance does not matter and attribute offsets are always
static. Otherwise, non self attribute accesses must be encapsulated by accessors
generated or simulated by the compiler (see section 4.4). Calls to super or static
calls must be inlined. Moreover, all methods which apply only to self—either by
following some specific visibility keyword, or as deduced from a global analysis—
may be removed from method tables. Finally, method copy gives more precise type
informations, in case of type overriding, either safe as return type, or unsafe as
parameter or attribute types. Anchored types may be replaced by constant types.
However, only accesses to self are optimized. An implementation technique is
required for the general case. Time efficiency is improved at the detriment of static
space: method code is duplicated with a factor linear w.r.t. class number. Thus this
technique cannot be envisaged without an association with optimizations reducing
drastically the size of the generated code. Obviously, dead code must be ruled out.
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7.3.2 Automatic devirtualization. It is a common opinion that repeated inheri-
tance is an abomination and that the keyword virtual is justified only by efficiency.
A static global analysis can determine which classes must be implemented as vir-
tual, and which classes need not [Gil and Sweeney 1999; Eckel and Gil 2000]. More
precisely, it can determine how to share subobjects. On the diamond example, it
is possible to merge, on one hand, the subobjects D and B, on the other hand, the
subobjects A and C, saving 3 method tables in Table II. A simple devirtualization
scheme consists in marking as virtual all classes which have two direct subclasses
with a common subclass, i.e. all A such that ∃B,C,D : C 6= B,D ≺ B ≺d A and
D ≺ C ≺d A. In a second step, one identifies virtual edges, in such a way that for
each pair of related classes D ≺ A, there is at most one non virtual edge towards
A on all paths from D. After removing virtual edges, there remains only arbores-
cent inheritance. Of course, the choice of the only non virtual edge is a matter of
optimization.

7.3.3 Type analysis. The main objective of type analysis is to determine the
concrete type of each program expression, i.e. the set of dynamic types that the
expression will take for all possible executions. Without loss of generality, the
problem is exponential—even undecidable as an exact answer poses the problem
of program termination—but simplifying assumptions make it polynomial [Gil and
Itai 1998]. Type analysis may be based on the construction of a call graph, but,
with object-oriented languages, the two problems are in circular dependency: a
call graph is needed to get precise concrete types, but a precise call graph requires
concrete types, at least for receivers. As sound type analyses compute always an
approximate (upper bound) of exact concrete types, they may be more or less pre-
cise and costly. [Grove and Chambers 2001] makes a review of different techniques.
A classic compromise is Rapid Type Analysis (RTA) [Bacon and Sweeney 1996]. A
secondary goal of type analysis is to type check programs, in case of downcasts or
of unsafe type overriding, and it may save some dynamic type checks [Wang and
Smith 2001].

7.3.4 Dead code. An interesting by-product of type analysis is the ability to
distinguish living and dead classes and code. Indeed, the call graph associated to a
type analysis makes explicit the classes which are never instanciated and the meth-
ods which are never called, in that they are unreachable from the main procedure.
Type analysis is thus a good way to reduce the code size of applications. However,
not all applications will benefit from it. This is not the case, for instance, of appli-
cations where class instanciation results from an interaction with a user, a DBMS,
another program or a network. In such a context, all application classes are alive,
as well as all their methods which can be activated in the same way.

7.3.5 Inlining. This is a common optimization of procedural languages: it con-
sists in copying the code of a callee in the caller, for instance when the call is
monomorphic and the method is small or not often called. In global compilation,
this is a final optimization of monomorphic calls or type prediction.

7.3.6 Small Eiffel. The GNU Eiffel compiler is typical of the use of those
global techniques in the framework of a statically typed language. It is based on
a double a priori: global compilation without method tables. In the object layout,
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Fig. 14. Unidirectional coloring heuristics applied to classes, methods and attributes.

the pointer to method table is replaced by the class identifier. The compilers uses
the following techniques:

(1) method copy which makes self monomorphic (customization);
(2) type analysis following the RTA algorithm, which determines concrete types of

all expressions;
(3) dead code and classes are then ruled out;
(4) method calls still polymorphic after steps 1 and 2 are implemented by a small

decision tree, based on equality tests on type identifiers; the same technique is
used for polymorphic accesses to attributes, when the offset vary according to
concrete types, as well as for downcasts;

(5) finally, inlining is done in many cases.

Recompilation speed is ensured by producing C code. The compilation of living
code from Eiffel to C is systematic, but C files are recompiled only when they
have been modified. [Zendra et al. 1997; Collin et al. 1997] describe in detail those
techniques and experimental results which show a clear improvement w.r.t. existing
Eiffel compilers.

7.4 Coloring heuristics

We detail now the coloring approach as it is quite versatile and it naturally extends
to MI the SST implementation. Method coloring has been proposed by Dixon et al.
[1989], under the name of selector coloring. One of the first experimentations, by
André and Royer [1992], concluded to large coloring computation time and the
technique was considered as uneffective ever since. However, a previous work by
Pugh and Weddel [1990] had reported positive results, confirmed later by Ducour-
nau [1991; 1997]. One may define coloring as upholding SST invariants 2.1.1 and
2.1.2 in MI.

Invariant 7.4.1. An attribute (resp. method) has an offset (color) invariant by
specialization. Two attributes (resp. methods) with the same color don’t belong to
the same class.
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Table V. Coloring bibliography

optimization entities %
paper #colors size birect. method attribute class holes

Dixon et al. [1989] × ×
Pugh and Weddel [1990] × × 6

Ducournau [1991] × ×
André and Royer [1992] × ×
Ducournau [1997] × × 6

Vitek et al [1997] × ×
Ducournau [2002a] × × 45

As a corollary, two classes which have two different attributes (resp. methods) with
the same color cannot be specialized by a common subclass. An injective numbering
of attributes (resp. methods) verifies the invariant: therefore, an optimization is
needed. The first proposition, by Dixon et al. [1989], André and Royer [1992], was
to minimize the color number, which is an NP-hard graph coloring problem [Garey
and Johnson 1979]. A first improvement, proposed by Pugh and Weddel [1990]
and Ducournau [1991; 1997], consists in minimizing the total size of method (resp.
attributes) tables: the tables resulting from coloring are then similar to SST tables,
except that they may contain holes, i.e. empty entries. A second improvement, due
to Pugh and Weddel [1990], is a bidirectional coloring, with positive and negative
colors. The complexity of those new problems is not known but they are likely
as difficult as the original problem. In any case, heuristics are needed and some
experiments, by Pugh and Weddel [1990] and Ducournau [1997; 2002a], show their
efficiency and that improvements are effective. Dixon et al. [1989], André and Royer
[1992] applied first coloring to methods, whereas Pugh and Weddel [1990], and
Ducournau [1991] applied it to attributes, and Vitek et al. [1997] and Ducournau
[2002a] to classes, as a generalization of the SST technique of Cohen [1991]:

Invariant 7.4.2. Each class has an offset (color). Two classes with the same
offset have no common subclass.

The time overhead of multiple inheritance vanishes but holes induce a small space
overhead. Pugh and Weddel [1990] report a 6 % hole rate on a Flavors program
with 563 classes and 2245 attributes. Ducournau [1997] reports the same hole rate
on a Smalltalk distribution with 698 classes and 4518 methods. However, class
coloring experiment on large MI programs as Geode or Lov reports a 45 % hole
rate, whereas the average hole rate is around 12 % [Ducournau 2002a]. For static
tables (methods and classes), this overhead is insignificant compared to the cubic
table size of standard implementation (see appendix A).

On the other hand, for dynamic memory, the overhead may be significant: one
should minimize the total dynamic memory, which needs a profiling of class in-
stanciation. A conservative solution will be to simulate accessors (see section 4.4)
instead of coloring attributes: the offset of each subobject will be colored in the
same way as methods. Dynamic memory overhead disappears, at the detriment of
a constant time overhead for attribute accesses: it may be reduced by the double
compilation of Myers [1995].

On the whole, coloring gives exactly the same implementation as standard SST
implementation in case of SST: this corrects the main drawback of standard MI
implementation. In case of MI, the overhead w.r.t. SST concerns only static tables
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and accesses to some attributes: nevertheless this overhead remains far from all
other MI implementations overhead (sections 3 and 4). Notice that row displace-
ment [Driesen and Hölzle 1995] would give similar efficiency for method tables and
subobject offsets: however, class coloring does not seem to have any equivalent.

7.5 Global techniques in separate compilation

Separate compilation is not incompatible with global techniques which can be ap-
plied at link or load time. Moreover, almost all implementations require a minimal
global step, for instance for generating class identifiers by a global numbering.

7.5.1 Double compilation. The technique proposed by Myers [1995] implies a
small global analysis to determine whether a class is always specialized as a primary
one, or not. Double compilation can be based on other criteria, e.g. devirtualization,
as long as they are invariant by specialization. It is only interesting for optimizing
accesses to self and to other entities typed by the current class.

7.5.2 Link time computation of method tables and object layout. One can dis-
tinguish two different tasks in compilation. On one hand, it generates the method
code. On the other hand, it generates the data structures associated to classes,
together with object layouts, by fixing the size of all tables and the offset of all
entities. Therefore, a general approach is to place the second task, either partly or
entirely, at link time: linking will then have to substitute in the code the values
of all the offsets computed after the compilation. For instance, this must be done
for Schubert’s numbering (2) if one wants a truly static cast, i.e. that n1 and n2

values are immediate values in the code. Of course, the code generated by separate
compilation must be independant of this global step: in case of optimization, the
worst case must always be foreseen.

Link time coloring. Coloring is a global technique but, as already noticed by
Pugh and Weddel [1990], it could be computed at link time: effectively, coloring
requires only the schema of classes, not their code, and the generated code depends
only on individual colors associated to the different entities. Those colors are small
integers which could be run-time constants computed at link-time. However the
approach does not seem to have been experimented.

Link time devirtualization. Any global technique is not interesting at link time,
after a separate compilation. Automatic devirtualization is a good counter-example.
It may reduce the number of subobjects, thus the need to shift object references,
but there is no way to know, at compile-time, whether a shift will be needed or not.
Thus, the generated code will be the same as with standard MI implementation,
with the only difference that, at run-time, most shifts would be null. Therefore,
the only gain will be on the size of static tables: in case of SST, the layout will be
the SST one (augmented with upcast tables) but the code will be the MI one. A
double compilation—according to whether all superclasses are reachable through
non virtual edges—could however improve the code.

The case of empty subobject optimization is quite different as both kinds of
merging can be fixed at compile time: no link time processing is needed. At link
time, one could only fix that some second kind merging is always possible, but it
would have no effect neither on the code nor on the layout.
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7.5.3 Separate type analysis. Type analysis requires source code, but it may
split up into two phases: intra-class analysis and inter-class analysis. This is an
object-oriented formulation of classic intra-procedural and inter-procedural analy-
ses. Privat [2002] proposes to joint those two phases by a template, produced by an
intra-class analysis during a separate compilation and which stands for an abstract
of the class code, expliciting the flow of types in the methods. At link-time, the
global inter-class analysis will use those templates to construct the call graph and
determine concrete types for all expressions in the template. Such an approach
would allow to detect dead code and to rule it out from the executable. However,
local optimizations as monomorphic calls and inlining are not directly possible but
an optimized version could use in separate compilation the result of the previous
global analysis.

8. CONCLUSION

On the one hand, separate compilation of SST is simple and as efficient as possible:
indirect method calls are a true overhead which could be only reduced with global
compilation or an increasing of processors’ capabilities for indirect branching pre-
diction [Driesen 1999]. But SST expressivity if far from what programmers expect.
On the other hand, separate compilation of plain MI presents a significant overhead
w.r.t. SST: the main drawback of the standard implementation is that it is as costly
when one does not use MI. Therefore, this is not surprising that recent efforts have
focused on SI but MST languages, as Java or C#: this is a sound middle point
between the two extremes, especially if compared to C++ NVI or mixins.

There is some evidence that standard MI implementation might be improved,
for instance with the empty subobjects optimization, when it is not incompatible
with VBPTRs. However, standard implementation is not the only approach to
MI. Variants such as the Theta approach correct partially the main drawback
of standard implementation but they don’t seem to have been effectively used.
Small Eiffel proved that quite different approaches are possible but, in that
case, definitively incompatible with separate compilation. Global compilation is
obviously the way to obtain the best efficiency but its drawbacks are numerous.
Therefore, a general way to improve separate compilation is to introduce a touch
of global techniques in the run-time production line. This was already the case
with Theta. The coloring approach combined with type analysis is an appealing
idea on paper: the run-time produced using those techniques would be even more
efficient than with SST implementation, due to dead code detection. However
the efficiency of the link-time global step must be established in practice: we are
currently working towards a prototype.

Nevertheless, most global techniques have a significant drawback besides being
global: they are not incremental and could not satisfy the specifications of abstract
machines as Jvm or Clr which are mainly dedicated to mobile code.

Commonly used statically typed object-oriented languages—i.e. C++, Eiffel

and Java—are quite perfectible: valuable suggestions include shared class at-
tributes instead of static variables, method combination, or self encapsulation,
besides private and protected keywords. The cost of implementing those fea-
tures would not increase the overhead of object-orientation. This is not the case of
type overriding which add some overhead especially with standard MI. Moreover,
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when some language feature is considered as too expensive, the language should
provide ways to restrict specialization: some classes might be specialized only in
single or arborescent inheritance, some attribute or parameter types might not be
overridden, and so on. Furthermore, in object orientation, modularity has been
historically confused with the notion of class: however, the class is a conceptual
unit, not always the program unit of the size appropriate for compilation. A higher
level notion such as modules has been advocated for long [Szypersky 1992; Bracha
and Lindstrom 1992]. Java packages are not a good answer as they are mainly de-
signed as name spaces: however, current discussions on the notion of sealing may be
a forward step towards true modules [Biberstein et al. 2001]. In any case, modular
compilation of object-oriented languages will be a topic of further research. Hence,
perspective is threefold: application of global techniques in separate compilation,
modular compilation and global techniques compatible with incremental loading.
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Table VI. Statistics on classes, including empty and virtual classes,

and total and virtual inheritance edges

classes edges

name total empty virtual total virtual

SmallEiffel 382 27 91 4 416 13

JDK.1.0.2 604 96 153 5 650 20
digitalk3 1357 430 539 0 1356 0

digitalk2 535 156 235 0 534 0

Unidraw 614 115 81 3 623 4
Lov-obj-ed 436 39 132 21 747 68

Geode 1318 163 436 78 2486 251

APPENDIX

A. SPACE BENCHMARKS

Some large benchmarks are commonly used in the object-oriented implementation
community15, e.g. by [Driesen and Hölzle 1995; Vitek et al. 1997; Eckel and Gil
2000; Zibin and Gil 2002]. We present here some statistics computed from these
benchmarks according to various implementation techniques.

Four techniques have been considered: ideal SST implementation, even if non
applicable in all benchmarks, pure NVI, the simple devirtualization scheme of sec-
tion 7.3.2 (DVI), MI with the empty subobject optimization (ESO) and standard
MI (SMI). DVI may be understood as the best C++-like implementation, with a
sound multiple inheritance semantics, for a hand made program, with a complete
knowledge of the whole program. On the contrary, ESO is presumably the best
standard MI implementation in separate compilation.

A.1 Benchmark description, interpretation and correction

Each benchmark is a file of class descriptions, each of which consists of four items:
the class name, the list of its direct superclasses, the two lists of attributes and
methods defined in the class. They have been produced and used mostly for as-
sessing techniques for subtyping test and method call, so they often don’t comport
informations about attributes. Therefore, we restrict hereafter our statistics to the
few of them which comport such data. Digitalk is a Smalltalk distribution16,
whereas Unidraw is a C++ program mainly in SI, Lov and Geode are Eiffel-like
programs making an intensive use of MI.

The contents of the benchmarks is also questionable. One should expect that only
pure object-oriented data are included: typically, static methods and variables, or
non virtual methods should be excluded. One will see that this is not the case with
the JDK benchmark which includes obviously static variables and we can only
certify that non object-oriented data has been removed from the Small Eiffel

benchmarks. Besides that, name interpretation may be discussed as it is different
between the different languages: in C++ and Java benchmarks, parameter types
have been concatenated to method names in order to deal with static overloading.
However, the case of attribute is not clear: the same attribute name in two related

15 Many people contributed to those benchmarks, among which Karel Driesen and Jan Vitek: a
current repository is Yoav Zibin’s web site, http://www.cs.technion.ac.il/˜zyoav/.
16 As Smalltalk is dynamically typed, these statistics are not directly applicable.
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Table VII. Statistics (total number, mean and max) on attribute
number, either introduced or inherited

name introduced inherited

SmallEiffel 1317 3.4 39 3441 9.0 46

JDK.1.0.2 2192 3.6 274 90667 150.1 600

digitalk3 1495 1.1 37 11352 8.4 52
digitalk2 529 1.0 30 3885 7.3 30

Unidraw 1574 2.6 36 5101 8.3 47
Lov-obj-ed 1262 2.9 74 3552 8.1 105

Geode 2919 2.2 182 14355 10.9 217

classes has been interpreted as overriding (as in Eiffel), not as overloading (as
in C++ or Java): hence, Unidraw and JDK may be slightly underestimated.
Renaming, which is proper to Eiffel, has not been considered in the Small Eiffel

benchmark17, and no information is available about Lov or Geode.
Moreover, these benchmarks are often libraries, not single applications: it is thus

difficult to extrapolate from them the size appropriate for typical applications and
to judge the maximal number of classes, methods, attributes, etc. of applications.
Anyway, some hundreds of classes seem common in object-oriented programs, e.g.
the Small Eiffel compiler [Zendra et al. 1997].

Finally, the statistics may differ from previous ones in several ways. Some are
connected to the fact that this paper aims at separate compilation and static typ-
ing. First, there is no definition overloading (see note 3, page 6): two methods
or attributes with the same name, introduced in two unrelated classes, are con-
sidered as different18. Second, all methods are considered, whereas Yoav Zibin’s
benchmarks remove degenerate methods, i.e. methods which have only one defini-
tion. Furthermore, some measures are uniquely determinate (NVI, SMI) whereas
many other (ESO, DVI, coloring) are the result of an optimization problem: heuris-
tics commonly used are greedy and there is a very little chance that two different
experiments give the same number.

However, besides all those small flaws, the statistics presented hereafter are a
somewhat precise indication of the relative cost of the measured techniques.

A.2 Dynamic space

Table VI presents the number of classes, together with the number of classes without
attributes, in the two kinds of merging (see section 3.3), and the number of virtual
classes according to the DVI scheme (see section 7.3.2). The number of classes
without attributes is surprisingly high in all benchmarks, between 30 and 60 %. It
was unexpected and it will have an important effect on the number of subobjects
as empty subobjects may be merged into another one. On the contrary, there are
very few virtual classes and virtual edges.

Table VII presents statistics on the number of attributes, as well introduced in a
class as the total number for the class. Java figures obviously deviate from other

17 In Eiffel, it may be difficult to distinguish attributes and methods: constant features, i.e.

features whose body is a constant, have been treated as methods, except when they are frozen.
18 In Java, the same method may be introduced in two unrelated interfaces: thus, the JDK data
may be slightly overestimated.
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Table VIII. Statistics (total, mean and maximum) on subobject numbers

name NVI DVI ESO SMI

SmallEiffel 809 2.1 8 548 1.4 6 1348 3.5 6 2957 7.7 13
JDK.1.0.2 792 1.3 6 698 1.2 4 1927 3.2 8 2802 4.6 14

digitalk3 1357 1.0 1 1357 1.0 1 4089 3.0 8 8673 6.4 14

digitalk2 535 1.0 1 535 1.0 1 1497 2.8 7 3228 6.0 12
Unidraw 634 1.0 4 683 1.1 3 1934 3.1 7 2468 4.0 10

Lov-obj-ed 1846 4.2 19 1490 3.4 19 2352 5.4 17 3707 8.5 24
Geode 13798 10.5 140 6030 4.6 36 11249 8.5 33 18442 14.0 50

Table IX. Statistics on upcast table size (total (u), mean and max)

name DVI ESO SMI

SmallEiffel 198 1. 9 4595 12. 44 10532 28. 76

JDK.1.0.2 36 0. 3 4992 8. 49 6465 11. 61
digitalk3 0 0. 0 20315 15. 55 26633 20. 91

digitalk2 0 0. 0 7160 13. 45 9198 17. 66

Unidraw 56 0. 1 3310 5. 28 4711 8. 45
Lov-obj-ed 1167 3. 28 10111 23. 117 11503 26. 118

Geode 19285 15. 161 89547 68. 481 94992 72. 490

statistics: the reason is that static variables are taken into account, as well as
attributes.

Attribute number is to compare with the number of subobjects, i.e. pointers to
method tables in the object layout: this gives a good idea of the dynamic overhead
of MI implementations (Table VIII). On the whole, pointers to method tables are
more than doubling dynamic space as soon as inheritance is intensively used (Lov
and Geode) but ESO (resp. DVI) reduces the overhead by 40 % (resp. 70 %). Of
course, DVI is better than any other technique, as it is near optimal. One should
not be surprised by the fact that NVI is worse than ESO in the case of Geode: the
worst-case complexity of NVI is exponential. Furthermore, empty subobjects bring
no optimization to NVI.

Table IX shows the size occupied either by upcast tables, in method tables, or by
VBPTRs in object layout (see section 4.3). Besides Java because of static variables,
this demonstrates that VBPTRs have a large overhead. ESO has a poor effect: this
is due to the fact that more than half of empty classes are of the second kind, which
does not save on upcast tables. On the contrary, DVI is a great improvement, even
if, in the worst case, the total of upcast tables and number of subobjects is almost
2 times greater than the number of attributes, with a 180 % overhead. In the case
of ESO, the overhead is 600 %. However, if DVI is not hand made but produced by
an automatic devirtualization at link time, the upcast tables should be the same
as with SMI or ESO, unless offsets iτs(C) are computed at link time. In that case,
an extra entry for the null shifts in each subobject will be sufficient.

On the whole, MI overhead in the object layout may be less than the one that
previous works as [Sweeney and Burke 1998; Gil and Sweeney 1999; Eckel and
Gil 2000] report, as they consider only the hierarchy structure whereas data on
attributes and methods is needed to deal with empty subobjects. As a matter
of fact, though most benchmarks are common, it is impossible to compare our
statistics with those of Eckel and Gil [2000] because they don’t include any per
benchmark statistics of either the subobject number or the upcast tables size.
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Table X. Statistics on method number

introduced defined inherited
name total mean max total mean max total mean max

SmallEiffel 3832 10.0 209 6482 17.0 209 37658 98.6 277
JDK.1.0.2 3190 5.3 75 5095 8.4 78 22348 37.0 156

digitalk3 13007 9.6 440 17104 12.6 460 613675 452.2 1065
digitalk2 5536 10.3 271 6858 12.8 272 154616 289.0 677

Unidraw 1751 2.9 103 3327 5.4 103 14167 23.1 123

Lov-obj-ed 3631 8.3 117 5026 11.5 127 36883 84.6 287
Geode 8078 6.1 193 14214 10.8 207 302742 229.7 870

Table XI. Statistics on table size (in K-entries)

SST NVI DVI ESO SMI
name (s) (nv) (dv) (m) (m′) nv/s dv/s m/dv m′/m m/s

SmallEiffel 38 61 48 100 188 1.6 1.3 2.1 1.9 2.7

JDK.1.0.2 22 25 24 55 77 1.1 1.1 2.2 1.4 2.4

digitalk3 614 614 614 1739 3154 1.0 1.0 2.8 1.8 2.8
digitalk2 155 155 155 391 729 1.0 1.0 2.5 1.9 2.5

Unidraw 14 14 14 31 40 1.0 1.0 2.2 1.3 2.2
Lov-obj-ed 37 104 80 122 183 2.8 2.2 1.5 1.5 3.3

Geode 303 1348 827 1235 1894 4.5 2.7 1.5 1.5 4.1

A.3 Static space

Table X presents statistics on the number of methods, as well introduced or defined
in a class as the total number for the class.

According to the different techniques, the total size of method tables may be
computed by the following formulas, wheremC is the number of methods introduced
by C:

∑
C

fC , where fC =



MC =
∑
C�DmD SST

mC +
∑
C≺dD fD NVI

m′C +
∑
C≺nvD

fD +
∑
C�vD fD DVI∑

C�DMD SMI∑
C�esoD

MD ESO

(13)

In the DVI case, m′C is the number of method of C which are not known by the
superclass of D that D extends: ≺nv is the subset of non virtual edges in ≺d, and
C �v D iff C � D and 6 ∃D′, C � D′ ≺nv D. The SMI case can be rewritten
as
∑
D nDMD, where nD is the number of D subclasses, including D. The ESO

case amounts to exclude merged classes from the sum on D: C �eso D means that
C � D and there is no D′ merged to D, i.e. empty and such that C � D′ ≺d D.

For an exact assessment of MI overhead, one must take into account shifts to
receivers, which can be handled by thunks or by 2 extra instructions in the code
plus a 50 % increasing of table size (if one uses only short integers). The thunk
number is exactly the difference of table sizes between the considered MI technique
and SST: there is a thunk per table entry, but for each class-method pair there is
exactly one null shift. One must also add, from Table IX, the upcast tables size (u)
to SMI, ESO and DVI sizes.

Table XI shows the total size, i.e. number of entries, of method tables in all
techniques. The ratio between ESO and ideal SST table sizes is around 3-4. When
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Table XII. Estimate of code size for method calls (in K-entries)

name classes methods calls (c) code (3c) tables (m) shifts thunks

SmallEiffel 382 6482 25928 78 100 102 124
JDK.1.0.2 604 5095 20380 61 55 68 64

digitalk3 1357 17104 68416 205 1739 1006 2251

digitalk2 535 6858 27432 82 391 250 472
Unidraw 614 3327 13308 40 31 42 33

Lov-obj-ed 436 5026 20104 60 122 101 170
Geode 1318 14214 56856 171 1235 731 1864

Table XIII. Final comparison between SST, NVI, coloring, and between shifts and thunks in the

ESO case (in K-entries)

total size ratio vs. SST

name SST NVI DVI color shifts thunks NVI DVI color shifts thunks

SmallEiffel 115 186 146 136 282 304 1.6 1.3 1.2 2.4 2.6

JDK.1.0.2 83 93 90 97 186 182 1.1 1.1 1.2 2.2 2.2
digitalk3 819 819 819 823 2961 4206 1.0 1.0 1.0 3.6 5.1

digitalk2 237 237 237 239 727 949 1.0 1.0 1.0 3.1 4.0
Unidraw 54 54 54 63 114 105 1.0 1.0 1.2 2.1 1.9

Lov-obj-ed 97 297 227 118 288 357 3.1 2.3 1.2 3.0 3.7

Geode 473 3608 2056 639 2181 3313 7.6 4.3 1.3 4.6 7.0

MI is intensively used, the difference between ESO and DVI is significant but less
than expected: in fact, ESO improves upon SMI with the same ratio as DVI upon
ESO. The advantage of DVI w.r.t. SMI or ESO lies in the null thunks which may be
measured by the ratio (dv−s)/(m−s): this ratio is around 50 % in case of intensive
use of MI (Geode and Lov). As for pure NVI, besides its unsound semantics, its
bad worst-case complexity tends to reduce the gap with SMI and ESO. NVI may
be worse than ESO or SMI: in Geode, the maximal number of method tables is far
greater with NVI than with SMI (Table IX), and the average method table number
and size are greater than with ESO.

A conservative estimate of method coloring consists in adding to SST table size
the superclass number (sp, i.e. the subobject number for SMI, Table VIII) for
simulating accessors, and in majoring the total by 50 %, which is an upper bound
for all experiments. In case of SI hierarchies (Digitalk), the 50 % majoration is not
needed as coloring is exactly SST.

Code size. Statistics on the number of method call sites in the method code are
missing, as well as for any other mechanism: hence, there is no way to measure
the static space occupied by the different techniques in the method code. However,
previous studies show that the number of call sites may be large enough to make
code size significant w.r.t. table size [Driesen et al. 1995; Ducournau 1997]. For
instance, a number of 35042 call sites is reported for a Smalltalk implementation
with 774 classes and 8540 method definitions. Assuming an average number of 4
call sites per method definition—which may be quite unlikely in C++ or Eiffel

programs—Table XII shows that the 3 instruction sequence code for method call in
standard SST has a rather significant global impact on static space. For assessing
the static space overhead or gain of thunks, one must compare the cost of the shifts
in the code and in the table, x = 2c+m/2, with the cost of thunks, x = 2(m− s).
The total static size will be obtained with 3c+m+x+u/2, which must be compared
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Table XIV. Statistics on table size, when all non leaf classes are abstract (in K-entries)

SST NVI DVI ESO SMI
name (s) (nv) (dv) (m) (m′) nv/s dv/s m/dv m′/m m/s

SmallEiffel 30 49 33 82 153 1.6 1.1 2.5 1.9 2.7

JDK.1.0.2 17 19 18 43 60 1.2 1.1 2.4 1.4 2.6

digitalk3 411 411 411 1167 2178 1.0 1.0 2.8 1.9 2.8
digitalk2 109 109 109 276 524 1.0 1.0 2.5 1.9 2.5

Unidraw 11 11 11 23 31 1.0 1.0 2.2 1.3 2.2
Lov-obj-ed 21 63 37 75 111 3.0 1.8 2.0 1.5 3.6

Geode 175 790 374 693 1083 4.5 2.1 1.9 1.6 4.0

to 3c + 3s/2 + sp/2 which is an upper bound for coloring, and to 3c + 3dv − 2s
for DVI (Table XIII)19. Thus, even when taking into account the size of the code,
which is advantageous for thunks, the thunk space overhead remains greater.

One must notice, from Tables VII and X, that the number of attributes and
methods in a class is far from 215: thus, an implementation of ∆s and offsets with
short integers is valid. This explains why sp and u are divided by 2 in the previous
formula. However, treating attribute and method offsets, or class identifiers, as
immediate values may depend on the processor. According to Driesen et al. [1995],
processors may offer from 8 to 13 bits for immediate values: 13 bits are sufficient
for treating all that data as immediate values, but 8 bits are not enough for large
applications. This is not a problem when offsets are computed at compile-time: the
code will then differ according to the offset value, with a small overhead when the
value is greater than 128. However, when offsets are computed at link-time, the
compiler should be able to predict whether the link-time computation will always
produce a 8-bit value: thus, the overhead will be larger.

Abstract classes. Many other data are missing, for instance the number of ab-
stract classes, which would reduce the static space estimate, as in the ΣC formula
(13), C should exclude abstract classes. When the class number is large, it is likely
that many classes are abstract: the effect of a precise measure might be as sig-
nificant as for classes without attributes. A common assumption, which may be
far from reality, is that only leaves may have instances. Table XIV presents the
same statistics as Table XI, according to this assumption. The effect of abstract
classes is important, but one must notice that the variation of the ratios between
the different implementations is not significant.

Time efficiency. Assessing time efficiency from those spacial benchmarks requires
quite hypothetical assumptions. The time overhead is mostly in the shifts, either
static or dynamic. Thus the subobjects number is a good indication of null shifts
(Table VIII), whereas upcast tables size is a good indication of the number of shifts
that are statically avoided (Table III). For method calls, one can compare thunks
with the other technique: if one assumes that all table entries are equiprobable, the
proportion of null shifts in method calls is exactly the ratio of SST table size (s)
and the size of tables in the considered technique. Therefore, with ESO, thunks
save on between 23 % and 40 % of all shifts in method calls, whereas, with DVI
from 50 % to 100 % are saved.

19 One assumes here that code instructions and addresses have the same size: this may be not

the case on some 64-bit processors.
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B. PSEUDO-CODE SURVEY

The processor specifications are mostly the same as in Driesen [1995; 1999]: par-
ticularly, 2 load instructions cannot be executed in parallel, but need a one cycle
delay.

B.1 Single subtyping

Method call:

load [object + #tableOffset], table

load [table + #selectorOffset], method 2L+B
call method

Tableoffset is a constant for all types and methods whereas selectorOffset
depends on the method.

Attribute access:

load [object + #attributeOffset], attribute L

AttributeOffset depends on the attribute.
Type check using Schubert’s numbering:

load [object + #tableOffset], table

load [table + #n1Offset], classid

comp classid, #n1

blt #fail 2L+ 2
comp classid, #n2

bgt #fail

// succeed

N1Offset is a constant, whereas n1 and n2 depend on the target class. Fail is the
address of the code which signals an exception, either shared by several or even all
type checks, or proper to each one.

Type check using coloring:

load [object + #tableOffset], table

load [table + #targetColor], classId

comp classId, #targetId 2L+ 2
bne #fail

// succeed

TargetColor and TargetId depend on the target class.

B.2 Multiple inheritance

Method call:

load [object + #tableOffset], table

load [table + #deltaOffset], delta

load [table + #selectorOffset], method 2L+B + 1
add object, delta, object

call method

DeltaOffset and selectorOffset depend on both the method and the receiver’s
static type.

Thunks:
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add object, #delta, object

jump #method

Delta and method depend on both the method and the receiver’s static type. When
method table points to the thunk, the code is that of single subtyping, whereas,
when the thunk is inlined in the method table, it changes to:

load [object + #tableOffset], table

add table, #selectorOffset, method L+ 1 +B
call method

Equality test, with unrelated types:

load [x + #tableOffset], table1

load [y + #tableOffset], table2

load [table1 + #dcastOffset], dx

load [table2 + #dcastOffset], dy 2L+ 3
add dx, x, x

add dy, y, y

comp x, y

Dcastoffset is a constant. When types are related, this simplifies to:

load [x + #tableOffset], table

load [table1 + #castOffset], dx

add dx, x, x 2L+ 2
comp x, y

and castOffset depends on both types.
Upcast:

load [object + #tableOffset], table

load [table + #castOffset], delta 2L+ 1
add object, delta, target

CastOffset depends on the static types of both the source and the target.
Accesses to attributes

load [object + #tableOffset], table

load [table + #castOffset], delta

add object, delta, object 3L+ 1
load [object + #attributeOffset], attribute

CastOffset depends on both the receiver’s static type (τs) and on the class in-
troducing the attribute (Tp) whereas attributeOffset is an attribute invariant
(δp).

Assignment a.x := b.y:

load [object1 + #tableOffset], table1

load [object2 + #tableOffset], table2

load [table1 + #cast1Offset], delta1

load [table2 + #cast2Offset], delta2

add object1, delta1, object1

add object2, delta2, object2 5L+ 3
load [object1 + #attribute1Offset], attribute

load [attribute + #tableOffset], table
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load [table + #castOffset], delta

add attribute, delta, attribute

store attribute, [object2 + #attribute2Offset]

B.3 Alternatives

NVI code for method call is exactly the same as for MI, whereas NVI code for
attribute access is the same as for SST: indeed, the required shift is static, so in
the SST code, attributeOffset is augmented by the value of the shift.

Method call with shared tables:

load [object + #tableOffset], table1

load [table1 + #table2Offset], table2

load [table1 + #delta1Offset], delta1

load [table2 + #delta2Offset], delta2

add object, delta1, object 3L+B + 1
load [table2 + #selectorOffset], method

add object, delta2, object

call method

Attribute accesses with VBPTRs:

load [object + #castOffset], object 2L
load [object + #attributeOffset], attribute

Simulating accessors to attributes is exactly as with standard MI:

load [object + #tableOffset], table

load [table + #castOffset], place 3L+ 1
add object, place, place

load [place + #attributeOffset], attribute

B.4 Single inheritance multiple subtyping

Assignment x := y with table caching, when y is interface-typed:

load [tableY + #interfaceOffset], tableX L
move Y, X

When y is class-typed, the table should be first accessed by:

load [Y + #tableOffset], tableY

load [tableY + #interfaceOffset], tableX 2L
move Y, X

Method call to x is then:

load [tableX + #selectorOffset], method

call method

B.5 Complements

B.5.1 Covariant overriding. In single subtyping, for attributes, with Shubert’s
numbering:

load [object + #tableOffset], table1

load [val + #tableOffset], table2

load [table1 + #attributen1Offset], n1cible
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load [table2 + #n1Offset], n1source

load [table1 + #attributen2Offset], n2cible

comp n1cible, n1source 2L+ 4
blt #fail

comp n2cible, n1source

bgt #fail

store val, [object + #attributeOffset]

Covariant return type in multiple inheritance, in a thunk:

add object, #delta, object

call #method

load [return + #tableOffset], table

load [table + #castOffset], delta

add return, delta, return // casting from u to t

B.5.2 Genericity. Method call to formal type with offset conversion:

load [generic + #tableOffset], table1

load [object + #tableOffset], table2

load [table1 + #selectorOffset], offset 3L+B + 1
add table2, offset, method

load method, method

call method

Generic is the current receiver, instance of a parameterized class, and object is
an object typed by the formal type.

Attributes in multiple inheritance:

load [generic + #tableOffset], table1

load [object + #tableOffset], table2

load [table1 + #castOffset], delta

add table2, delta, table2 4L+ 2
load [table2], place

add object, place, place

load [place + #attrOffset], attribute

B.6 Global techniques

B.6.1 Type prediction. When n types are predicted, with ordered identifiers t1,
..., tn, the code for method call will be a balanced binary tree:

load [object + #typeOffset], typeId

comp #t_k #typeId

bgt #sup_k

// case of t_1, ..., t_k

call #method_k

jump #next

#sup_k

// case of t_k+1, ..., t_n

call #method_n

#next

When k = 1 (resp. n−1), there is a static call to #method 1 (resp. #method n). The
dichotomy depends on the choice of k. The ordered list {t1, ..., tn}may be partioned
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into segments of equal method values: the best is to choose k as an extremity of
the median segment. When such a k does not exist, i.e. when all values are equal,
method call is static. If one assumes a uniform probability p of right prediction
for all conditional branches and that method k is different of method k+1, for all k,
then the average time of method call will be L+ (1 + p+B(1− p))log2(n).

The case of attributes is the same.

B.6.2 Coloring. Coloring does not need a specific pseudo-code: it uses exactly
that of single subtyping, except for attributes when the code for simulating accessors
is used instead.
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