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Abstract

Mining relational data often boils down to computing

clusters, that is finding sub-communities of data elements

forming cohesive sub-units, while being well separated from

one another. The clusters themselves are sometimes terms

“communities” and the way clusters relate to one another

is often referred to as a “community structure”. We study

a modularity criterion MQ introduced by Mancoridis et al.

in order to infer community structure on relational data.

We prove a fundamental and useful property of the mod-

ularity measure MQ, showing that it can be approximated

by a gaussian distribution, making it a prevalent choice

over less focused optimization criterion for graph cluster-

ing. This makes it possible to compare two different cluster-

ings of a same graph as well as asserting the overall quality

of a given clustering relying on the fact that MQ is gaus-

sian. Moreover, we introduce a generalization extending

MQ to hierarchical clusterings of graphs which reduces to

the original MQ when the hierarchy becomes flat.

1 Introduction

Network science has now become a major research area

involving scientists from various disciplines: sociologists,

computer scientists, physicists and mathematicians now

meet regularly to exchange ideas on issues related to the

study of networks [3, 5]. Questions concern graph models

and their properties, algorithms and related implementation

issues, empirical study trying to validate models, etc.

Networks indeed appear as natural models in numerous

application domains. People participating to a same social

activity, companies competing or collaborating in a given

industrial sector, routers exchanging packets over the inter-

net are all examples of networks that can be modeled using

graphs. They form a network because of the interactions

taking place between the different actors: people, compa-

nies or routers. Networks are commonly used in biology to

model protein interaction when addressing the problem of

finding functional relationships between biological objects.

Co-occurrence of terms or concepts in text or hypermedia

documents provide a fruitful strategy to explore large infor-

mation space. More generally, networks also appear as a

useful tool to explore data in context where relations must

be induced by interpreting the available data. Computer

science contributes to this vivid research field by provid-

ing algorithms capable of searching a large network hoping

to identify “natural” clusters or communities describing its

overall structure. Once a sub-community has been identi-

fied, the analyst will typically pursue a more detailed in-

spection of its own dynamics.

Being able to find the intrinsic community structure of a

relational dataset is of interest to data miners. Indeed, once

communities have been identified, the original set can be

reduced to a quotient making explicit the relations between

them, thus enabling the analyst to identify higher-level pat-

tern in the data. The ability of assessing of the intrinsic

quality of a community structure is an issue we wish to ad-

dress in this short note. More precisely, we promote the

use of an index quantifying the quality of a graph cluster-

ing introduced by Mancoridis et al. [10]. We show that

Mancoridis et al.’s quality index possess important statisti-

cal properties making it a more relevant choice over other

possibilities.



2 Identifying network communities: quality

measure of community structures

2.1 Mancoridis et al.’s MQ

The problem of finding communities or “natural clus-

ters” in a graph had been adressed by Mancoridis et al. [10]

in the context of software reverse-engineering where com-

munities correspond to logical units of programs. Their ap-

proach made use of a map computing the “modularity qual-

ity” (MQ) of a clustering in terms of internal cohesion and

outer communications between units. Their method mainly

consisted in seeing MQ as an optimization criterion. They

used classical approaches such as genetic algorithms or hill

climbing in order to find community structures with maxi-

mum modularity quality MQ. Auber et al. [2] later used

this MQ criterion in order to find communities in small

world networks (social networks). They used MQ to tune a

threshold value filtering edges of the graph (thus maximiz-

ing MQ along a one-dimensional parameter), leading to a

fragmentation of the graph into connected components from

which they induced a clustering. Recursively using MQ on

sub-communities, Auber et al. obtained a multi-level de-

compositions of graphs. They also showed how this hierar-

chical decomposition can be used as a visual metaphor for

exploring large graphs.

In order to define Mancoridis’ MQ, we need to introduce

some notations. Let G = (V, E) with n = |V | be a simple

graph1 over a set V = {v1, . . . , vn}. Denote as usual by

NG(v) the neighborhood of v in G, that is the set of nodes

connected to v by an edge in E.

Let C be a clustering (C1, . . . , Ck) where the subsets

Ci ⊂ V are pairwise disjoint and sum up to C1∪· · ·∪Ck =
V . A clustering is also sometimes called a set partition of

the set V . We shall need notations describing the size of

various neighborhoods with respect to C. To this end, we

introduce two matrices C = (ci,p), D = (di,q) with:

ci,p =

{

1 if vp ∈ Ci

0 otherwise
di,q = |NG(vq) ∩ Ci|

Note that we abuse notations and write C for both the

clustering and the matrix encoding the membership relation

of nodes vp to clusters Ci. Entries of row i of the matrix C

correspond to nodes of the subset Ci. By definition, each

column of C contains a single entry equal to 1, all others

being equal to 0, and we have
∑

p ci,p = |Ci|. As for matrix

D, the entry di,q equals the number of neighbors of node vq

belonging to cluster Ci, so we have
∑

i di,q = dG(vq) (the

degree of node vq in G). Each row of matrix C or D can

be thought of as an n-dimensional vector. Denote by 〈 · , · 〉
1That is, G is undirected and contains no self-loop.

the (symmetric) bilinear form computing the usual scalar

product:

〈X, Y 〉 =

N
∑

p=1

xpyp.

Lemma 2.1 The number of edges connecting nodes be-

tween Ci and Cj (i 6= j) can be computed as: (〈Ci, Dj〉 +
〈Cj , Di〉)/2.

When i = j, the number of edges connecting nodes in Ci

is given by 〈Ci, Di〉/2.

Note however, that in practice the number of edges

between Ci and Cj can be computed as 〈Ci, Dj〉 =
∑n

p=1 ci,pdj,p since we have 〈Ci, Dj〉 = 〈Cj , Di〉.

Definition 2.1 (See [10]) Define

MQ+(G;C) =
1

k

k
∑

i=1

〈Ci, Di〉/2
(

|Ci|
2

)
,

MQ−(G;C) =
1

(

k
2

)

∑

i<j

〈Ci, Dj〉
|Ci||Cj |

.

and set MQ(G;C) = MQ+(G;C) − MQ−(G;C).

We refer to the term MQ+(G;C) as a positive contribu-

tion to MQ and to the term MQ−(G;C) as a negative con-

tribution. Indeed, a “good” clustering should favor edges

internal to clusters and should try to minimize the number

of edges connecting nodes of different clusters.

The ratio computed by the term
〈Ci,Di〉/2

(|Ci|
2

)
measures how

close cluster Ci is to a clique – it can actually be seen as

an extension of Watt’s clustering index [12, 13] to clusters

of the graph G. Conversely, the term
〈Ci,Dj〉
|Ci||Cj |

indicates how

close edges between Ci and Cj are to a complete bipar-

tite graph. This ratio could be interpreted as a dissimilarity

between the sets Ci and Cj , by analogy to the link index in-

troduced by Guha et al. [8] as part of the ROCK clustering

algorithm.

Example. Consider the graph shown in Figure 1 (bor-

rowed from [7]). Nodes represent members of a karate club

and edges models acquaintances between them. Nodes have

been divided into two different clusters and are marked ei-

ther as ovals or squares. Computing MQ for this graph and

this clustering gives a quality index of 0.1742 which is ac-

tually quite good since approximately only 3% of all parti-

tions have an MQ value above 0.174 (assuming an average

value of −0.2 and standard deviation of 0.2, see [4]).



1

23

4

5

6

7

8

11

12

13

14 18

20

22

9

32

31

28

29

33

10

17

34

15

16

21

23

24

26

30

25

27

19

Figure 1. Zachary’s karate club graph bor-

rowed from [7]. Nodes belong to either of two

clusters according to whether they are shown

as circles or squares.

3 Gaussian approximation for MQ

The quality index MQ has several advantages over other

possible cost functions. First observe that MQ varies over

the finite interval [−1, 1]. Indeed, MQ(G;C) = 1 when

all clusters Ci are cliques (graphs containing all possible

edges) and that no edges connect nodes of different clusters.

Similarly, MQ(G;C) = −1 when clusters contain no inter-

nal edges while pairs of clusters Ci and Cj form complete

bipartite graphs. This already makes it easier to compare

different clusterings of a same graph. Other min-cut cost

function often simply “count” the number of edges (or their

weights) linking distinct clusters, thus varying over an un-

bounded domain (see the surveys [1, 9]). Also, MQ takes

the size (number of nodes) of clusters into account thus re-

quiring a cluster to reach a reasonably high “density”, as

opposed to other cost function which only require a cluster

to have numerous edges without respect to its number of

nodes (this is the case for the quality index Q introduced by

Girvan and Newman [11], for instance).

We now show that MQ can be approximated by a gaus-

sian distribution providing a criterion to compare cluster-

ings of graphs on a common scale, but most of all to ob-

jectively compare clustering heuristics. The proof relies on

two variations of the central limit theorem we now state.

Theorem 3.1 Let (Xi)i≥1 be a sequence of independent

random variables. Then the random variable

X1 + · · · + Xk

k

converges towards a gaussian random variable N(µ, σ) as

k → ∞.

The following “variation” however does not require that

the variables be independent. It is often referred to as the de

Moivre-Laplace theorem:

Theorem 3.2 Let (Xi)i≥1 be a sequence of random vari-

ables obeying the same probability distribution, all having

the same mean value X̄i = µ and standard deviation σ.

Then the random variable

1√
k

(
X1 + · · · + Xk − kµ

σ
)

converges towards a centered and normalized gaussian ran-

dom variable N(0, 1) as k → ∞. As a consequence, the

variable
X1 + · · · + Xk

k

can be approximated by a gaussian distribution with mean

µ and standard deviation σ/
√

k.

(For more details on these classical results, the reader

should consult basic textbooks such as [6]).

Theorem 3.3 Consider MQ as a random variable depend-

ing on both a graph G = (V, E) with n = |V | and a clus-

tering C = (C1, . . . , Ck). Then MQ can be approximated

by a gaussian distribution as n → ∞.

We shall sketch proofs showing that both M+(G;C) and

M−(G;C) can be approximated by a gaussian distribution.

Now assume these terms can indeed be seen as random vari-

ables. They furthermore are independent since they rely on

disjoint subsets of edges of the underlying graph G. Hence,

the theorem will follow since the sum of any two indepen-

dent gaussian random variables is again a gaussian random

variable.

Now, each term of Definition 2.1 can be considered as

a random variable taking its value from a graph G and a

cluster Ci. We shall see that each of these terms can be

approximated by a gaussian distribution (see the following

lemmas and corollaries). Again, these random variables are

independent because they rely on disjoint subsets of edges

in G, thus their sum provides a gaussian approximation of

M+(G;C), by virtue of Theorem 3.1. The same argument

can be repeated with Eq. (1) for M−(G;C).

Lemma 3.1 Let G = (V,E) be a graph with V =
{1, . . . , n} so that edges correspond to pairs {p, q} of dis-

tinct integers (p, q ∈ V and p 6= q). For each of these pairs

{p, q} define the random variable Xp,q as:

Xp,q(G) =

{

1 if {p, q} is an edge in E
0 otherwise

Then the variable X =
P

p,q Xp,q

(n

2)
converges towards a

gaussian distribution as n → ∞.



First note that the number of random variables Xp,q as-

sociated with pairs of distinct integers {p, q} is exactly
(

n
2

)

.

Obviously, all variables Xp,q obey the same distribution,

have the same mean µp,q = 1/2 and standard deviation

σp,q = 1/2. Indeed, the edges of a graph G can be put

into one-to-one correspondence with subsets of all possible

pairs of distinct integers. Observe that half of these subsets

do contain a given pair p, q while the other half does not,

from which we deduce X̄p,q = 1/2 and σp,q = 1/2. By

virtue of Theorem 3.2, the variable X can be approximated

by a gaussian distribution.

Corollary 3.1 The expression
E(Ci)

(|Ci|
2

)
can be considered as

a random variable depending of a graph G (where C is

assumed to be given) and as such can be approximated by

a gaussian distribution.

The variable indeed depends on the subgraph induced from

G on the subset Ci. Moreover, we have:

X(G|Ci
) =

∑

p, q ∈ Ci

p 6= q

Xp,q(G|Ci
) =

E(Ci)
(

|Ci|
2

)

where the variables Xp,q are defined as in Lemma 3.1. Con-

sequently, lemma 3.1 applies and X can be approximated

by a gaussian random distribution.

The same type of argument can be repeated for

MQ−(G; ) relying on bipartite graphs Kr,s = (V,E) and

random variables

Lemma 3.2 Let Kr,s = (V,E) denote the complete bipar-

tite graph. That is, V = V1 ⊕ V2 with V1 = {1, . . . , r}
and V2 = {1, . . . , s} and edges in E correspond to pairs

{p, q} with p ∈ V1 and q ∈ V2. For each of these

pairs {p, q} define the random variable Yp,q as Yp,q(G) =
{

1 if {p, q} is an edge in E
0 otherwise

The proof mimics that of Lemma 3.1. Again, note that

the number of random variables Xp,q associated with pairs

{p, q} such that p ∈ V1 and q ∈ V2 is exactly r ·s. The same

argument as that used in Lemma 3.1 shows that all variables

Yp,q have the same mean µp,q = 1/2 and standard deviation

σp,q = 1/2. By virtue of Theorem 3.2, the variable Y can

be approximated by a gaussian distribution.

Corollary 3.2 The expression
E(Ci,Cj)
|Ci||Cj |

can be considered

as a random variable depending on a graph G (where C is

assumed to be given) and as such can be approximated by

a gaussian distribution.

4 A multilevel quality measure for hierarchi-

cal clustering

We now embark on defining what we call a hierarchical

clustering of a graph. The general idea is to have a set of

nested clusters building into a hierarchy and covering the

whole graph. Obviously, we aim at generalizing MQ and

define a quality measure taking the whole hierarchy of clus-

ters into account.

Let us first define a rooted tree as a connected simple

graph T = (W,F ) which moreover does not contain any

cycle, with a distinguished node r ∈ W called its root. An

ancestor of a node x is a node z situated on the path con-

necting x to the root. As a consequence, any node but r has

at least one ancestor. A node y is a descendant of a node

x when x is part of the pat connecting y to the root. The

parent node p(x) of a node x is its closest ancestor – the

ancestor sitting at distance one from x. Any two nodes x, y
necessarily have a common ancestor (which can be either x
or y). The child nodes of a node x are its closest descen-

dants. A leaf is a node with no child. The set of leaf nodes

of a tree T will be denoted as L(T ). Finally, a subtree Tx

can be induced from any node x ∈ W . It is obtained by

taking the subgraph induced from the set of all descendants

of x, including x itself acting as a root for Tx.

A hierarchical clustering of a graph G = (V, E) is a tree

T = (W,F ) where W ⊂ 2V , that is the nodes of the tree

are subsets of elements in V . We shall denote subsets of

V as x or y. We impose that a node x be equal to the set

union of its child nodes x = y1 ∪ · · · ∪ ym, and that they

be distinct y1 ∩ · · · ∩ ym = ∅. We also require that subsets

attached to leaves of T cover the set V . That is, leaves of the

tree T correspond to clusters of nodes in the graph G. Our

definition differs from the more usual one where leaf nodes

correspond to nodes v ∈ V (or, more precisely, singletons

{v}). Note also that any node v ∈ V belongs to a unique

leaf node x ⊂ V in T .

By convenience, we will simply say that the couple

(G; T ) is a hierarchically clustered graph. Let x denote the

root of the tree T and x1, . . . , xk denote the child nodes

of x in T . Denote by Tx1
, . . . , Txk

the subtrees rooted

at x1, . . . , xk. Observe that the subsets C1 = L(Tx1
),

. . . , Cq = L(Txq
) induced from the leaves pending at the

subtrees induce a clustering of G. Moreover, the subtrees

Tx1
, . . . , Txk

together with the induced subgraph G(C1),
. . . , G(Ck) correspond to hierarchically clustered graphs

(G(C1);Tx1
), . . . , (G(Ck);Txk

).
The quality measure we wish to define follows the idea

that an “internal” edge (connecting nodes of a same cluster)

should be encouraged to sit as deep as possible in the tree.

Similarly, the penalty assigned to external edges (connect-

ing nodes of different clusters) should be somewhat corre-

lated to the tree distance between the two clusters. This
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Figure 2. A clustered graph G = (V, E) is a

graph equipped with a tree structure whose

leaves are distinct subsets x ⊂ V covering

V . The cluster structure is indicated by the

dashed grayed regions.

is accomplished by assigning weights to edges, cumulat-

ing (positive or negative) values correlated with the depth

at which the end nodes sit. This is accomplished by recur-

sively defining a multilevel mMQ index as follows:

Definition 4.1 Let (G; T ) be a hierarchially clustered

graph and let 0 < q < 1 be any real number. The multilevel

modularity quality MQ(q;G; T ) is defined in terms of

the hierarchically clustered subgraphs (G(C1);Tx1
), . . . ,

(G(Ck);Txk
) as follows:

MQ+(q; G; T )

= 1
k

∑k
i=1

〈Ci,Di〉/2

(|Ci|
2

)

(

1 + q · MQ+(q; G(Ci);Txi
)
)

,

MQ−(q; G; T )

= 1

(k

2)

∑

i<j
〈Ci,Dj〉
|Ci||Cj |

(

1 + q · MQ−(q; G(Ci);Txi

)

·
(

1 + q · MQ−(q; G(Cj ;Txj

)

.

Finally,

MQ(q; G; T ) = MQ+(q; G; T ) − MQ−(q; G;T ).

As one can observe, for each edge of the graph, the recur-

sion actually cumulates powers of q depending on its depth

with respect to the hierarchy tree T . The total contribution

of an edge to MQ(q; G;T ) varies according to the depth at

which it starts being external to clusters nested more deeply

in the hierarchy.

Proposition 4.1 Let (G, T ) be a hierarchical clustering

and denote by C = C1, . . . , Ck the clustering of the graph

G induced from the subgraphs G(L(Tx1
)), . . . , G(L(Txk

))
where x1, . . . , xk are the child nodes of the root x.

Then we have MQ(G;C) = MQ(0;G;T ).

Indeed, setting q = 0 is equivalent to flattening the hier-

archy thus only seeing edges as acting between clusters of

depth 1.

Theorem 4.1 Given a real number 0 < q < 1, the multi-

level quality measure MQ(q; •; •) varies over the interval

(− 1
1−q , 1

1−q ). Moreover, it can be approximated by a gaus-

sian distribution.

The firt part of the statement of the theorem follows

by observing that both the positive and negative contribu-

tions of an edge (its associated coefficients in MQ+(q; •; •)
and MQ−(q; •; •) respectively) are bounded by the series
∑

i≥0 qi. As for the last part of the statement, the proof of

Lemma 3.1 and Lemma 3.2 can be adapted to random vari-

ables taking their values over couples (G; T ) where (G;T )
is a hierarchical clustering, and such that Xp,q(G; T ) (re-

spectively Yp,q) returns the weight of the edge {p, q}.

5 Perspectives and future work

We have established a fundamental and useful property

of a modularity measure introduced in [10]. This property

being now proved, the MQ measure appears as a prevalent

choice over less focused optimization criterion for graph

clustering. Indeed, comparing two different clusterings of

a same graph as well as asserting the overall quality of a

given clustering can now rely on the fact that MQ is gaus-

sian. We however still need to work and provide estima-

tions for the mean and standard deviation of these gaussian

approximations.

We have moreover introduced a generalization extend-

ing MQ to hierarchical clusterings of graphs. We are now

studying the combinatorics of the coefficients appearing in

the MQ(q; •; •) expression in order to improve our knowl-

edge on this multilevel modularity measure. Better knowing

its mechanics could help us use MQ as a tuning criterion to

incrementally compute a “good” hierarchical clustering of a

graph. We also need to observe how the mean and standard

deviation differ from the usual case.

Although originally defined to work on simple and non-

weighted graphs, MQ admits a fuzzy version. Indeed, a

fuzzy membership relationship is straightforward to encode

in the matrix C where entries are allowed to be real numbers

ci,q ∈ [0, 1] such that
∑

i ci,q = 1. In that case, the number

ci,q simply reflects the probability that vertex vq belongs to

cluster Ci. The quality index MQ must then be adapted to

this more general setting by computing the weight ω(Ci)
of clusters Ci (instead of their cardinalities) as ω(Ci) =
∑

q ci,q . Note that this generalization should also require



the use of fractional binomial coefficients. Being able to

deal with weighted edges in yet another direction we wish

to explore.
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