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ABSTRACT

This methodological note focuses on the edge density of real
world examples of networks. The edge density is a parame-
ter of interest typically when putting up user studies in an
effort to prove the robustness or superiority of a novel graph
visualization technique. We survey many real world exam-
ples all being of equal interest in Information Visualization,
and draw a list of conclusions on how to tune edge density
when randomly generating graphs in order to build artificial
though realistic examples.

Categories and Subject Descriptors
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tion/Methodology, Benchmarking; G.2.2 [Discrete Mathe-

matics|: Graph Theory— Graph Algorithms; G. [Probability

and Statistics]: Random generation
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1. INTRODUCTION

Graphs provide a useful mathematical tool for modeling
various real world phenomenon. People participating to a
same social activity, companies competing or collaborating
in a given industrial sector, routers exchanging packets over
the internet, or proteins involved in a given process of the
living cell are examples of “networks” that can be modeled
using graphs. They form a network because of the inter-
actions taking place between the different actors: people,
companies, routers or proteins.

In this paper, we will use the term “network” to denote
the real world entity that usually maps to a graph after it
is modeled. We will reserve the word “graph” to denote
the mathematical construction itself. Actors of a network
are usually mapped to nodes of the graph. Put differently,
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nodes are placeholders for actors to which one can attach
various attributes (labels, ordinal or numerical values, etc.)
in order to reflect properties of the modeled network. Links
between actors of the network are mapped to edges, formally
defined as pairs of nodes (or ordered couples if direction is
relevant). Again, attributes obtained from a description of
the studied network can be attached to edges of the graph.

The intent of this methodological note is to look at a par-
ticular measure of a graph that is being used when con-
structing artificial examples of real world networks, namely
the edge density. We do not argue about what definition
should be adopted, but insist on the way the edge density
should be used — whatever the definition may be — when
generating artificial example graphs in the context of Infor-
mation Visualization. The construction of artificial example
graphs often follow “random” generation processes. (That
is, the randomness of these constructions more often comes
from the fact that the underlying generation algorithm is
unpredictable. This is radically different from being able
to prove formally that the algorithm generates all graphs
of the considered class with equal probability.) The class
from which graphs are drawn can be controlled by varying
parameters such as the number of edges, for instance.

Being able to build artificial examples of networks can
be necessary. Algorithms are often designed to be able to
deal with any graph possessing a number of given properties.
Another way of looking at the question is the following. The
list of desired properties defines a class of graphs and the
hope is that the algorithm will perform as expected with any
candidate graph of the class under consideration. A good
example could be that of a drawing algorithm (for planar
graphs or directed acyclic graphs, for instance). Testing it
against a suite of example graphs may provide confidence
on the algorithm’s robustness or performance. In doing so,
the designers should take care in testing the algorithm with
a selection of cases sampling the set of graphs it has been
designed for. One good strategy here is to use a generation
algorithm that will draw graphs uniformly at random (that
is all graphs of the considered class should be drawn with
equal probability).

Another important situation where artificial networks must
be constructed is when putting up usability experiments. In
order to avoid biases and to make sure that users’ perfor-
mances are judged equally, one will often prefer an artificial
dataset to avoid domain specific knowledge from interfering
with the experiment. Testing a new graph navigation tech-
nique is a typical example where an artificial example will be
required to comply with real world characteristics. For in-



stance, because layout algorithms typically exploit the link
structure, it is essential that the constructed graphs have
a topology that mimics that of the real world networks for
which the navigation technique has been designed. Finally,
because real world networks sometimes can be huge, it might
be necessary to generate examples on a smaller scale but
that nevertheless capture real world properties.

The concept of a random graph, as defined by Erdés and
Rényi [13, 14] (see also [4]), has recently been challenged
by more focused classes of graphs found in the real world.
Indeed, the relevance of “small world networks” and “scale-
free networks” has been assessed by the work of Barabasi,
Watts, Strogatz and others (see [31, 3, 32, 26] for instance;
see also [5, 11]). It is nevertheless custom to simply say that
“graphs have been generated randomly” when describing the
process by which the example graphs have been obtained.
What is kept silent here, is that restrictions on the class
of all possible graphs have helped the designer to focus on
properties of “real-world” examples. One such restriction
consists in putting an upper bound on the number of edges
of a graph. A useful way to pilot this parameter is to impose
the constructed graphs to have a given edge density.

However, the edge density depends on the number of nodes
of a graph and must be used with caution to avoid construct-
ing non-realistic examples. We aim at exploring the notion
of edge density and provide methodological guidelines to
help designers when faced with the problem of “randomly
generating example graphs”.

2. EDGE DENSITY OF GRAPHS

2.1 Possible definitions

The density of a graph should be a real number reflecting
just how many edges it contains. Let us denote a graph as
G = (V,E) where V is the set of nodes and E is the set
of edges. We shall denote the number of nodes and edges
as n = |V] and m = |E|. We shall moreover only consider
simple graphs, that is undirected graphs without any loop
connecting a node to itself. Theoretically speaking, a graph
is considered dense if its number of edges is close to n*. We
shall however adopt a radically different point of view, since
graphs with that many edges certainly are virtually absent
from reality as far as Information Visualization is concerned.
In other words, although a graph with n nodes but “only”
20n edges does not have many edges when compared to
n?, it does so when compared to networks found in the real
world.

One definition of edge density that is often used is to
compare the number of edges m with the number of nodes
n contained in the graph by computing the ratio:

de =m/n.

(1)

This measure is often seen as natural because most draw-
ing algorithms will fail to produce readable (no edge cross-
ing) representations of graphs having more than ~ 4n edges
[25]. That is, although simple graphs have n(n —1)/4 edges
on average, only those having a number of edges propor-
tional to n are taken as test candidates for most layout al-
gorithms. (This statement holds when one considers graphs
on n nodes where each edge is selected with probability 1/2.
More generally, if the probability of selecting an edge is p,
then this number is p - n(n — 1)/2. See [4] or [5, Chap. 1].)
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This assumption is present in the Graph Drawing commu-
nity and holds for most drawing algorithms producing node-
link diagrams. As a particular case, planar graphs can have
at most 3n — 6 edges (see [23, Section 1.5] for instance).
The assumption is however irrelevant once we consider other
types of representations such as matrix representations that
can easily hold graphs having a quadratic number of edges.

Ghoniem et al. [20] argue that, from an information vi-
sualization point of view, a better choice is to compute the
ratio:

d=+/m/n?.

Their main argument against dy is:

(2)

[ although d; is ] topologically meaningful, [ it is ]
not scale invariant since the number of potential
edges increases in the square of the number of
nodes [20, Sect. 3.2] (see also [19, 21]).

Indeed, the density value d; for simple graphs, as defined by
Eq. (1), varies over the interval [0, 5] and thus depends on
n. The density d; mapped to [0, n — 1] for directed graphs or
[0,n] if graphs contain loops. This is somehow undesirable
as we would prefer the density value to vary on a fixed inter-
val, whatever the number of nodes in the graph is. Eq. (2)
achieves this by mapping the edge density of a graph to the
interval [0, %) when considering simple graphs. Directed
graphs are mapped to [0,1) or to [0,1] if loops are allowed.
This last remark is of importance when it comes to deciding
how the possible d values should be interpolated.

What we want to emphasize here is that even though
Eq. (2) maps the edge density to a fixed interval [0, %)
whatever the number n of nodes in the graph, claiming its
scale invariance is somewhat wrong. In other words, the
density cannot be used as a tuning parameter independently
from n. Any of these two definitions can be used depending
on their utility or convenience. We shall refer to d, as the
“linear density” and to d as the “square root density”.

2.2 Looking closer at density

Let us now look at how the number of edges m in a graph
varies according to its density. This is actually a function
depending on two parameters, d and n. The curves in Fig-
ure 1 show how the number of edges grow as d varies on
0. 25)

Hence, for instance, a graph on 200 nodes having a density
of di = 0.1 has 400 edges, whereas for the same density a
graph with 500 has 2500 edges. When the density goes to
d2 = 0.2, the number of edges respectively increases to 1600
(for a 200 nodes graph), and 10000 edges (for a 500 nodes
graph). Observe that in each case, the number of edges
has been multiplied by 4 which was predictable since the
number of edges is given by the identity m = d® - n? and
that do =2 - d;.

However, although in each case the number of edges has
increased identically by a factor of 4, the number of edges
when compared to the number of nodes has been affected
in a radically different manner. Indeed, for d = 0.1 a graph
of n = 200 nodes has 2n = 400 edges. When n = 500,
the number of edges already is equal to 5 times the number
of nodes of the graph. When d increases to d = 0.2, the
number of edges of a 200 node graph goes to 1600, which
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Figure 1: The curve shows how the number of edges
of a graph grows depending on its density d (Eq. (2)).
The lower curve corresponds to n = 200 while the
upper curve is for n = 500.

is 8 times its number of nodes. A graph of 500 nodes and
density d = 0.2 should have 20 times more edges than nodes
which is rarely seen in the real world (see section 3). Even if
realistic, such a ratio is rather high and it might be unrea-
sonable to use a node-link layout to visualize such a graph.
Put differently, it might be pointless to compare the perfor-
mance of a navigation technique (or that of a user using the
technique) against a node-link layout algorithm on a graph
having 20 - n edges, that is, with d; = 20. The node-link
layout is almost sure to lose (but this, of course, depends on
the type of graph being visualized and/or navigated). This
statement actually already is true for lower values of d,.

Figure 2 shows snapshots of ramdom simple graphs with
fixed density and increasing size (number of nodes). Each
drawing has been rescaled (for each value of n) so that the
size of nodes compare. As a consequence, the densities dy
and d also relates to visual density or opacity inside the
circular drawing of the graphs. By contrast, Figure 3 shows
graphs with increasing size all having the samed density.
Images have been scaled so that nodes of all graphs have the
same size. As a consequence, any part inside the circular
drawing of these graph relatively have the same “visual”
density.

We ought to look at how the d¢ density is affected by the
increase in d. In other words, we wish to look at the number
of edges of a graph G as a multiple of n, that is m = k-n (or
d¢(G) = k) as d varies. Our argument is simple. In order
to test an algorithm or a navigation technique’s robustness
with respect to the size and number of edges of a graph,
we should consider letting m grow as mo = n, mi1 = 2n,
mg = 3n, and so on up to a given order of magnitude. A
majority of the examples we collected confirm that indeed
networks have a linear number of edges with d¢ < n. Again,
it only makes sense to test most layout algorithms on graphs
with & - n edges with rather low values of k (see section 3).
The relation between d and dy is straightforward:

de=d*-n (3)

from which we deduce:
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Figure 2: The picture gives a visual impression of
how density d; (left) and density d increase as n

grows. We use fixed density d; = 3 and d = 0.25,
so that the number of edges coincide for n = 50.

From Eq. (3), we see that in order to map to
graphs withn,2n,3n, ..., kn, ... edges, the “square
root” density d should vary over the set

showing that the relevant values for d actually depend on
n. That is, as n grows, d should be constrained to lower
values in order to map to realistic graphs, as confirmed by
Figure 4. Indeed, a graph with 30n edges has density d ~
0.25 when n = 500 whereas the density goes up to d ~ 0.39
for a graph with n = 200 nodes.

(4)

3. REAL WORLD EXAMPLES

We list here example datasets we have collected from var-
ious places and covering as many application domains as
possible. We plan to continue this effort and publicize the




n=150

Figure 3: The picture gives an impression of how
density d; remains visually “constant” as n grows.
The example graphs were built using d; = 3 and
n = 50, 100, 150, 200.

available statistics on the web'. Note that not all networks
are freely available. Whenever possible, we provide informa-
tion to locate and get the example networks. In each case,
we give the square root density d and the linear density dy
of the graph underlying the considered example network.

3.1 Small Worlds

Many networks found in the real world share the so-called
“small world” property. The expression “small world” refers
to the fact that networks often organize into communities,
themselves being small worlds organized into sub-communities,
and so on. This organization into communities rely on close
relationships of people belonging to a same subgroup. In
other words, people having common acquaintances are likely
to already know each other. Or put more formally, nodes
having common neighbors are likely to already be connected
by a link. The interested reader will want to browse Watts’
novel [33] or read more specialized literature [32, 27, 5, 11,
29].

We also list here graphs that do not exactly fall within
this category, but that more exactly are “scale-free”. That
is they are organized around a few nodes with a very high
degree. Although it is possible to find scale-free graphs that
are also small worlds, some graphs are scale-free but not
small world. That is, scale-free graphs can be community-
less. This is the case for the yeast protein interaction net-
works, for example. The interested reader will want to look
at [5, 11].

! Anyone wishing to share data should feel free to contact
us. Note that, as far as edge density is concerned, we do not
require the actual dataset but only need to know about the
number of nodes and edges.
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Figure 4: The curve shows how the “linear density”
d; (Eq. (1)) relates to the “square root” density d

(Eq. (2)).

Dataset (source) n m dy d
Yeast protein interac-

tion [30] 985 899 0.91 0.0304
IV London 2004 Co-

authorship graph [8] 1160 2013 1.74 0.0387
Internet routers [7] 11174 | 23409 | 2.09 0.0137
Word association (web

forms) [10] 2975 6981 2.35 0.0281
Internet routers [7] 10900 | 31180 | 2.86 0.0162
InfoVis Contest 2004

co-citation graph [9] 743 2219 2.99 0.0634
Yeast protein interac-

tion [35] 3833 11942 | 3.16 0.0285
Painters dataset [34] 502 2486 4.95 0.099
Co-authorship  graph

[6] 1506 7766 5.16 0.0585
Email network [12] 59912 | 447543 | 7.47 0.0112
Word association

(nouns in dictionary)

[17] 51511 | 392142 | 7.61 0.0122
Peer-to-peer  (Kazaa)

file sharing [22] 3403 30555 | 8.98 0.0514
InfoVis Contest 2004

co-authorship graph [9] | 1953 17970 | 9.20 0.0686
Word association

(verbs in dictionary)

[16] 9043 | 101603 | 11.24 | 0.0352
Social network (IMDB)

2] 419 | 5651 | 13.49 | 0.1794
Passenger air traffic

2000 [1] 1148 16523 | 14.39 0.112
Web pages [18] 589 15120 | 25.67 0.2088
Constraint  program-

ming [18] 240 | 6300 | 26.25 | 0.33
Peer-to-peer (web) file

sharing [22] 6049 1866271 308.53 | 0.2258

The table lists the values n, m, d, and d, for graphs coming
from different application domains. All graphs have a single
connected component.

e The data (n and m) related to yeast protein interac-
tion was extracted from the cited papers. The number
of nodes (proteins) and edges (interactions) strongly



depends on the underlying biological question. In any
case however, we can expect the linear density of such
graphs to remain below d, < 4.

e The word association networks were obtained from the
authors of the cited papers. One example was ob-
tained through web forms. People were asked to spon-
taneously respond to a list of suggested words drawn
at random. The two other networks were built from
the Robert French dictionary. In one case the network
was restricted to nouns. There was an (undirected)
edge between two words if the first appeared in the
definition of the other. The other network was built
from verbs.

e One dataset was used for the InfoVis Contest in 2004.
All data is available from the InfoVis Contest Repos-
itory website [15]. The graphs considered here were
borrowed from [9] (see also

www.cs.ubc.ca/~tmm/papers/contest04/entry.html).

e The email network data is available at
www.theo-physik.uni-kiel.de/~ebel/.

e The peer-to-peer file sharing data concerns the largest
connected component of the graph describing the ex-
change of a single file between peers.

The graphs are sorted according to their d, values in order
to make it clear that:

e Most graphs have a rather low linear density value
below dy < 10.

e Most graphs have a d value below 10% with an average
value of 6% for the considered examples.

e The d density does not necessarily increase with dy: it
all depends on the value of n.

e the example with d, = 308.53 stands as an exception.

Ghoniem uses a dataset coming from constraint program-
ming which probably explains why the authors of [20, 21]
conducted their experiment using graphs with density val-
ues d = 0.2,0.4 and 0.6. Note that a value of d = 0.6

is rather high knowing that d actually varies over [0, %)

(and not over [0,1] as the authors assumed). Also, inter-
polating at equidistant values over the interval is question-
able. Ghoniem’s experiments were based on graphs of size
n = 20,50 and 100. Even if their example graphs are rela-
tively small, using a density of d = 0.4 or d = 0.6 for n = 100
corresponds to a linear density of d; = 16 or d; = 36 which
is rather high when compared to the real life datasets we list
(Ghoniem himself only reaches a value of d; ~ 26). A study
wishing to establish a clear comparison between matrix rep-
resentations and other node-link representations should con-
centrate on examples with a much lower d; density. Indeed,
force-directed layout algorithms actually are amongst the
only available techniques to deal with graphs not having
any particular topological properties. However, they often
fail to easily produce readable layouts when d¢ > 4. The case
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of the painters dataset [34] required the design of a specific
force model based on the work of Noack [28]. Boutin et al.
[6] specifically designed a strategy to filter edges out of a
graph in order to help the identification of clusters.

The same type of error was observed in [24]. In order
to assess of the usability and superiority of their navigation
technique, the authors conducted a usability study using an
artificial email network. To build their network example,
the authors first set its size to n = 200 and density at d =
30%. (That is, m = 3600.) This is rather high considering
that it corresponds to a linear density of d, = 18, which does
not compare to the example reported in [12]. A number of
edges equal to m = 1500 (or d = 13.72%) would have been
more acurate.

3.2 Web crawls

The following networks have been obtained by web crawlers,
in an attempt to get a better view of the traffic taking place
over several regions of the world. As expected the networks
have a huge size. The incredibly large size of these examples
undoubtedly show that d cannot be used without any refer-
ence to n. All data is publicly available from the Laboratory
for Web Algorithmics website (see law.dsi.unimi.it).

‘World re- | n m dy d

gion (crawl

year)

India (2004) 1382908 16917053 12.23 | 0.0030
United King- | 18520486 | 298113762 16.10 | 0.00093
dom (2002)

Europe (2005) | 862664 19235140 22.29 | 0.0051
United King- | 39459925 | 936364282 23.73 | 0.00077
dom (2005)

Indochina 7414866 194109311 26.18 | 0.0019
(2004)

Ttaly (2004) 41291594 | 1150725436 | 27.87 | 0.00082
Slovakia 50636154 | 1949412601 | 38.50 | 0.00087
(2005)

4. CONCLUSIVE REMARKS

4.1 So what density should I use when build-
ing my example graphs ?

What we have emphasized here is that when looking at
examples from the real world, it seems that the linear den-
sity de¢ is a much better descriptor of the complexity of net-
works with respect to the application domain. That is, d,
seems relatively constant through all examples of a given
application domain when compared to the [0, "7*1] theoret-
ical range. For example, graphs extracted from the internet
— hyperlinks between web pages or physical connections be-
tween internet routers — most of the times have a linear den-
sity that can exceed 10 to easily reach 20. Other examples —
social networks, co-authorship, graphs from linguistics — all
fall below the threshold d, < 10. It also seems that many
examples remain under d¢ < 5. Note however that differ-
ent types of graphs, with varying density, can be considered
within a same application domain. Looking at classes of a
Java library for instance, graphs with different density can
be obtained by looking either at the inheritance structure
or call graphs?. In other words, different questions arising

2We wish to thank one of the anonymous referees for point-
ing out this relevant observation and providing the example.



in a same application domain might correspond to differ-
ent types of graphs. This is not really surprising as task
and data types indeed are related. We will nevertheless talk
about an “application domain” meaning a type of graph as-
sociated with a set of relevant tasks.

In other words, when considering a given application do-
main, you may well select a density d, and work with that
density independently from n — that is, you could use the
same d; for all example graphs you generate, on all cardi-
nalities. On the contrary, when using the density measure
d, you should select d depending on the size of the example
you wish to generate as indicated by Eq. (4).

However, it may be more convenient to use the density
d to tune the algorithms used to generate example graphs
because it varies over a fixed interval. The value to be used
should then be chosen according to a target application do-
main, and should be computed from the adequate d, value.
More precisely, suppose one wants to randomly generate a
graph to test a technique developed for the navigation of
internet graphs while using artificial example graphs of a
size smaller than the real world web crawls. Let d and d;
be the densities computed from a real world example graph
with given n and m (d = y/m/n?, d¢ = m/n). Let q be
such that the size of the example to be generated will be
N = n/q. Because we want the linear density to remain
constant, dém = dy, we must have M = m/q, so we find
d™) = 4. \/@- In other words, as we generate examples
of size smaller than real world examples we can allow the
density d to increase only by a square root factor.

Figure 5 illustrates how the density d varies as ¢ increases
when mimicking the 2004 web crawl on India. When gener-
ating a graph with N = 1000 nodes, that is if ¢ ~ 10, we
can use a density d ~ 0.09 close to 30 times that of the orig-
inal real world example. Starting from Ebel’s email network
with n = 59912 to build a N = 200 nodes example graph,
we compute the above transformation with ¢ ~ 300 so we
can use a density close to /300 - 0.0112 = 0.194, leading to
a graph with about 1500 edges.

0.35

034

Ebel’'s email network

0.2+

d Density

0.154

0.1 India 2004 web craw!

0.05

1000
q

Figure 5: The curve shows how the density of ex-
ample graphs vary as g increases, based on the real
world web crawl for India in 2004 (n = 1382908,
m = 16917053).
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4.2 Models of random graphs

We have made a point explaining how the density d or
d¢ should be used in order to construct “realistic”, though
artificial, example graphs. Properly tuning the density is
however often not enough. Different algorithms will typi-
cally produce different types of graph because they model
different classes of networks. Properly choosing a model has
a definite impact on the possible uses of the artificial ex-
amples and thus on the conclusion one can draw from the
experiment that was conducted using these artificial graphs,
or on the robustness of a drawing algorithm.

For example, it is certainly wrong to simply draw graphs
at random using the Erdos-Rényi model when designing a
user experiment trying to assess of the usability of a visual
navigation technique. Indeed, Erdos-Rényi graphs have a
more or less constant node degree simply because edges are
drawn between nodes without any specific pattern. How-
ever, most examples found in the real world are much more
inhomogeneous and show properties that radically differ from
the Erdos-Rényi graphs. Barabasi and others extensively
study small world networks or scale-free networks through
their degree distribution. Scale-free graphs, for example,
typically show power law degree distribution. Barabasi sug-
gested that these networks arise from a pattern he calls
“preferential attachements”. That is, new actors will prefer-
ably get connected to high degree nodes, thus leading to a
“rich get richer” pattern. The book by Bornholdt and Schus-
ter [5] surveys Barabasi preferential attachement model (with
an interesting chapter by Bollobas) and many other useful
and “realistic” model that should be preferred to Erdos-
Rényi when building test cases. The interested reader will
want to look at the recent books [5] and [11]. A comparison
of all available models and algorithms for generating random
graphs is out of the scope of this short note and merits to be
adressed separately. Again, our ambition here was to focus
our discussion on the edge density of graphs and on how it
should be used when building “realistic” examples.
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