
HAL Id: lirmm-00095901
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00095901

Submitted on 18 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Why Fuzzy Sequential Patterns can Help Data
Summarization: an Application to the INPI Trademark

Database
Céline Fiot, Anne Laurent, Maguelonne Teisseire, Benedicte Laurent

To cite this version:
Céline Fiot, Anne Laurent, Maguelonne Teisseire, Benedicte Laurent. Why Fuzzy Sequential Patterns
can Help Data Summarization: an Application to the INPI Trademark Database. FUZZ-IEEE, Jul
2006, Vancouver, BC, Canada. pp.699-706, �10.1109/FUZZY.2006.1681787�. �lirmm-00095901�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00095901
https://hal.archives-ouvertes.fr

Why Fuzzy Sequential Patterns can Help Data Summarization: An
Application to the INPI Trade Mark Database

Céline Fiot, Anne Laurent, Maguelonne Teisseire and Bénédicte Laurent

Abstract— Mining fuzzy rules is one of the best way to
summarize large databases while keeping the information as
clear and understandable as possible for the end-user. Several
approaches have been proposed to mine such fuzzy rules, in
particular to mine fuzzy association rules. However, we argue
that it is important to mine rules that convey information about
the order. For instance, it is very interesting to convey the idea
of time running in rules, which is done in fuzzy sequential
patterns. In this paper, we thus focus on fuzzy sequential
patterns. We show that mining such rules require to manage
many information and we propose algorithms to remain efficient
in both memory and computation time. Our proposition is
assessed by experiments. In particular, we apply our algorithms
on the INPI database which stores almost 2 million trade marks.

I. INTRODUCTION

Mining concise and understandable summaries is one of
the main challenges for end-users who face large databases
which they cannot exploit. In this framework, we argue
that fuzzy logic is the key in order to keep the rules as
understandable as possible.

Our interesting approach to discover such a knowledge
consists in deriving linguistic summaries. This kind of sum-
mary has been extended to fuzzy summaries [1], [2]. Such
summarization often requires a user-interaction in order to
select interesting and useful knowledge, based on quality
and validity measures. Few methods are indeed based on
automatic generation of summary. Some of them are based
on functional dependencies [3], [4], [5] or association rules
[6] mining but few of them have been clearly detailed
with implemented algorithms and experiments. An extension
of association rules [7], [8] have thus been proposed to
automatically generate fuzzy linguistic summaries of type
“Most of people who eat a lot of candies purchase few potato
chips”, using support and confidence of those rules as validity
criteria.

However, this kind of rules does not take the order into
account, which leads to less informative rules. We thus aim
at building fuzzy rules that describe the evolution of the
data over one attribute (for instance the evolution over time).
These rules are called fuzzy sequential patterns. Some works
have been dealt with fuzzy sequential patterns. However, they
did not study the efficient implementation for their algo-
rithms. We focus here on the management of the database and

C éline Fiot, Anne Laurent and Maguelonne Teisseire are with the
LIRMM, University of Montpellier II - CNRS, 34392 Montpellier, France
(email: {fiot, laurent, teisseire}@lirmm.fr).

B én édicte Laurent is with the PRAXILING ICAR Laboratory, Uni-
versity of Montpellier III - CNRS, 34392 Montpellier, France (email:
benedicte.laurent@univ-montp3.fr).

rules in order to mine fuzzy sequential patterns as efficiently
as possible, meaning that we try and keep memory and
running time as low as possible.

In this paper we present one detailed algorithm, TOTALLY-
FUZZY, for finding fuzzy sequential patterns. This algorithm
can help in finding frequent sequences and so in generating
fuzzy summaries taking into account the ordered aspect of
data in summarization. Section II introduces a motivating
examplewhich is the real data considered here as an applica-
tion. Section III presents a short view on fuzzy association
rules and fuzzy summarization. Then Section IV presents
an introduction to sequential patterns and fuzzy sequential
patterns. Section V next details our algorithm TOTALLY-
FUZZY run to mine the trade mark database. Section VI
presents this database, the implementation of the algorithm
and the experiments. Finally, in Section VII, we conclude on
the benefits of applying fuzzy sequential patterns to database
summarization.

II. MOTIVATING EXAMPLE

We introduce here a short example that will be used in the
next sections to illustrate the definitions and formalism we
propose.

Choosing a trade mark is a decisive point for a company.
Stakes are financially high and consequences of a mischosen
trade mark can be disastrous. For this reason it could be
interesting and useful to find out and understand how trade
marks are build identifying recurrent patterns in the INPI
trade mark database. This database contains around 2 mil-
lions of marks registered between 1961 and 2003 in France
and statistical methods can only partly help studying trade
marks and their building or evolution.

Let us consider a sample of the INPI database (table I),
taken from the class 32 of trade marks, which registers marks
linked to “beers, spring mineral water, soft drinks, fruit juice,
...”. In this data set, each row records one registration with its
date and the registered trade mark. The first row represents
the first registration for the company C1. It means that it
has registered the trade mark “AceCool c©” at the date d1.
A summarization of this database could be for instance that
“Most company register at least one trade mark beginning
with a capital a”.

Using association rules to build fuzzy summaries in our
context could help in finding out frequent correlations in
letters or morpheme association such that “Most marks
containing several a also contain few b” or “Most marks are
componed of few z and few x”. However some information
are still hidden such as the ordering of letters in trade marks.

TABLE I

SAMPLE OF REGISTRATIONS IN THE INPI DATABASE

ID comp Date Trade Mark

C1 1 AceCool c©

2 Youth Fountain Spring Water
3 Spring Citron
4 Equi Cola

C2 1 Asia-cola c©

2 Asiatitude
3 Plant’Asia Grand Th

C3 1 Bzh’ Citrus
2 Bzh’ Orang’
3 Phare Ouest Beer
4 Mad’ n’ Bzh
5 A l’aise Breizh
6 Le Finisterien Mad Breizh

For example, we cannot easily find using association rules
or fuzzy association rules that “Most marks are componed
of more than two syllables” or that “In most trade marks a
is often followed by several consonants”.

That is in what using of sequential patterns and more
particularly fuzzy sequential patterns can help. In fact,
sequential patterns are an extension of association rules
enabling the taking into account of the temporal aspect
of ordered data. In addition fuzzy sequential patterns
can be used to mine additional knowledge so giving
more information than sequential patterns. In the case of
sequential patterns we consider the binary presence or
absence for example “In most names a is often followed by
b”, whereas fuzzy sequential will precise the approximative
number of a and b.

III. SUMMING UP DATABASES USING ASSOCIATION

RULES

Fuzzy summaries have been studied for the 1980’s. They
are linguistically quantified propositions generally written
as “Q Y are B”, where Q is a linguistic quantifier, Y is a
set of objects and B is a property. Such a summary could
be for example “Most trade marks are long”. They can
be used to bring interpretable information from large and
multidimensional data sets containing a large amount of
valuable knowledge not directly accessible or exploitable for
a user. Usually these propositions are partially automatically
built from a combination of a priori known sets of
quantifiers, objects and properties. They are then returned
with a truth degree, computed by the systems for each
combination.
On the contrary fuzzy summaries from association rules
based approaches are completely automatically built. These
methods only compute useful combinations of quantifiers,
objects and properties and the truth degree is given by
association rules characteristics such as support, confidence
or lift.

Fuzzy association rules are an extension to the association
rules approach proposed by [9]. They have been proposed
to find frequently correlated numerical attributes in purchase
databases. One of their aims was in fact to bring linguistical

description to decision makers.
Let DB be a database and I the set of attributes or
items in this database. Each of these attributes ik will be
associated with several fuzzy sets. A fuzzy association rule
(X, A) → (Y, B) can be interpreted as a proposition in the
following form “If X is A then Y is B”, where X and Y
are itemsets (sets of items) and A and B are fuzzy sets
respectively associated to X and Y. The satisfiability of rules
is determined thanks to two factors: the support which gives
the significance of the rule and the confidence which gives
the certainty of it.

Definition 1: The support or significance factor S of a
rule R : (X, A) → (Y, B) reflects the number of records
containing the itemset (X, A) ∩ (Y, B) in the database.

Definition 2: The confidence or certainty C factor of a
rule R : (X, A) → (Y, B) measures the likelihood for a
record in DB containing (X, A) to also contains (Y, B).

A rule is considered of a certain interest if it is frequent
and it has sufficient certainty, that means its support and
confidence are above user-defined minimum thresholds
minSupp and minConf .

From these interesting fuzzy association rules, one can
automatically build fuzzy summaries. For example a fuzzy
association rule “word, lot & letter, lot → figure, few”
given with a support of 65% and a confidence of 90% can
be interpretated as “Most of trade marks containing a lot
of words and letters contain few figures”. However some
information is still hidden such as the form of the words.
For example, we can not know if trade marks are componed
first of a short word then of a long one or if letters are
followed or preceeded by figures. That is why a method that
mine ordered data could be useful.

IV. FROM SEQUENTIAL PATTERNS TO FUZZY

SEQUENTIAL PATTERNS

By contrast to association rule based approaches, sequen-
tial pattern algorithms take the temporal aspect of data into
account. They are thus well-adapted to ordered or historized
data, such as monitoring data, texts or liguistic data. In this
section we briefly describe the basic concepts of sequential
patterns then fuzzy sequential patterns.

A. Sequential Patterns

Let DB be a set of customer transactions where each
transaction T consists of three information: a customer-id,
a transaction timestamp and a set of items.
Let I = {i1, i2, ..., im} be a set of items. An itemset is a
non-empty set of items, denoted by (i1i2 . . . ik). It is a non-
ordered representation. A sequence s is a non-empty ordered
list of itemsets, denoted by < s1s2...sp >. A n-sequence is
a sequence of n items (or of size n).

Example 1: Let us consider purchases of products
1, 2, 3, 4, and 5 made by the customer Smith according to
the sequence s =< (1) (2 3) (4) (5) >. It means that all
the items of the sequence were bought separately except the

products 2 and 3 which were purchased at the same time. In
this example, s is a 5-sequence.

One sequence < s1 s2...sp > is a subsequence of another
one < s′1 s′2 ...s′m > if there exist integers l1 < l2 < ... < lp
such that s1 ⊆ s′l1 , s2 ⊆ s′l2 , ..., sp ⊆ s′lp .

Example 2: The sequence s′ = <(2) (5)> is a subsequence
of s because (2) ⊆ (2 3) and (5) ⊆ (5). However, <(2) (3)>
is not a subsequence of s.

All transactions from the same customer are grouped to-
gether and sorted in increasing order of their timestamp. They
are called a data sequence. A customer supports a sequence
s if it is included into the data sequence of this customer
(s is a subsequence of the data sequence). The support of a
sequence is defined as the percentage of customers support-
ing s. In order to decide whether a sequence is frequent or
not, a minimum support value (minSupp) is specified by the
user and the sequence is said to be frequent if the condition
supp(s) ≥ minSupp holds. Given a database of customers
transactions the problem of sequential patterns mining is to
find all maximal sequences (frequent sequences not included
into another frequent sequence) of which the support is
greater than a specified threshold (minimum support) [10].
Each of these sequences represents a sequential pattern, also
called a maximal frequent sequence.
Note that items are processed using a simple binary eval-
uation: present or not present. In our case, we know that
names are componed of letters and we would like to know
how many of them they are, so we have to mine quantitative
attributes such as the number of figures or symbols. We
could have divided these attributes into crisp intervals but the
linguist expert knowledge have driven us to fuzzy intervals
and so to fuzzy sequential patterns mining.

B. Fuzzy Sequential Patterns

In order to mine fuzzy sequential patterns, the universe
of each quantitative item is partitioned into several fuzzy
sets. The notions of item and itemset have been redefined
compared to classical sequential patterns, as presented in
[11].

Definition 3: A fuzzy item is the association of one item
and one corresponding fuzzy set. It is denoted by [x, a] where
x is the item (also called attribute) and a is the associated
fuzzy set.

Example 3: [length, short] is a fuzzy item where short is
a fuzzy set defined by a membership function on the quantity
universe of the possible values of the item length.

Definition 4: A fuzzy itemset is a set of fuzzy items. It
can be denoted as a pair of sets (set of items, set of fuzzy
sets associated to each item) or as a list of fuzzy items.
We use the following notation: (X, A) =
([x1, a1], ..., [xp, ap]) where X is a set of items and
A a set of corresponding fuzzy sets and [xi, ai] are fuzzy
items.

Example 4: (X, A) = ([length, short][letter, few]) is a
fuzzy itemset and can be also denoted by
((length, letter)(short, few)).

One fuzzy itemset only contains one fuzzy item related
to one single attribute. For example, the fuzzy itemset
([length, short][length, few]) is not a valid fuzzy itemset,
because it contains twice the attribute length.

Lastly we define a g-k-sequence.
Definition 5: A g-k-sequence S =< s1 · · · sg > is a se-

quence constituted by g fuzzy itemsets s = (X, A) grouping
together k fuzzy items [x, a].

Example 5: The sequence < ([length, short][symbol, lot])

([letter, lot]) > groups together 3 fuzzy items into 2 itemsets.
It is a fuzzy 2-3-sequence.

In the next sections of this article we use the following
notations: let C represent the set of customers and Tc the
set of transactions for one customer c. Let I be the set of
attributes and t[i] the value of attribute i in transaction t. In
the example presented Section III, table I, Tc = {C1, C2,
C3}.

Let consider the database given table I. Each trade mark
is parsed to get the number of words, signs, letters, figures
and symbols. For example, Asia-cola c© contains one word,
10 signs, 8 letters and 2 symbols. This translation is given
by Table II. As no trade mark contains figures, this column
is not represented.

TABLE II

RESULTS OF TABLE I PARSING

ID comp Reg date #word #sign #letter #symbol

C1 1 1 8 7 1
2 4 24 24 0
3 2 12 12 0
4 2 8 8 0

C2 1 1 10 8 2
2 1 10 10 0
3 3 18 16 2

C3 1 2 10 9 1
2 2 10 8 2
3 3 14 14 0
4 3 9 7 2
5 3 13 12 1
6 4 22 22 0

Next step consists in dividing these quantitative attributes
into fuzzy sets thanks to the linguist expert knowledge. The
fuzzy sets, for each item, are given Fig. 1.

Finally from these membership functions we get the
membership degrees for each attribute and fuzzy set. We
obtain a membership database from which is extracted the
registrations for C3, described Table III.

Table III is used below to illustrate the upcoming
definitions and algorithms for the sequence mS =<([letter,
very few]) ([word, few])>, “Registrations first contain
names with very few letters then trade names are made of
few words”.

Fig. 1. Fuzzy sets

TABLE III

MEMBERSHIP DEGREES FOR C3
Fuzzy items

#word length #letter #symb
D. f. L. sh. m. L. v.f. f. L. v.f. f.

d1 1 1 0.25 0.75 1
d2 1 1 0.5 0.5 1
d3 0.5 0.5 1 1
d4 0.5 0.5 0.25 0.75 0.75 0.25 1
d5 0.5 0.5 1 1 1
d6 1 1 1

C. Three Ways for Support Computation

T.-P. Hong and al [12] and then Y.-C. Hu and al [13] have
presented two proposals of fuzzy sequential patterns mining
approaches. We have extended their initial definitions of
fuzzy support to give the user three levels of fuzzification,
which could be used to cope with different problems.

The support1 of a fuzzy itemset is computed as the
proportion of customers supporting it. However the
cardinality of a fuzzy set depends on the counting method.
We transpose here three of those technics in the framework
of fuzzy sequential patterns and we propose three definitions
for the fuzzy support:

• SPEEDYFUZZY is based on the count “supports / does not
support”. Computing the support of a fuzzy itemset consists
in counting all the elements for which the membership
degree is not null:

SSF (c, (X, A)) =



1 if ∃t ∈ Tc|∀[x, a] ∈ (X, A), µa

`

t[x]
´

> 0
0 else

(1)
Example 6: With SPEEDYFUZZY, customer 1 supports the se-

quence mS since transactions are found containing the regarded
itemsets with a membership degree greater than zero, underlined
fuzzy items in Table III.

• MINIFUZZY is based on a thresholded count, so it only
keeps the elements for which the membership degree is
greater than a given threshold. This method increments the
number of customers supporting the fuzzy itemset only when
each item of the candidate sequence has a membership degree
greater than a specified threshold in the data sequence of the

1Note that the support of a fuzzy item, itemset or sequence is not the
support a fuzzy set (cardinality of the crisp subset of elements having a
nonzero membership grades [14]), but rather the frequency of this fuzzy
item, itemset or sequence in the database.

customer:

SMF (c, (X, A)) =



1 if ∃t ∈ Tc|∀[x, a] ∈ (X, A), µa

`

t[x]
´

> ω
0 else

(2)
Example 7: With MINIFUZZY, customer 1 supports the se-

quence mS since a succession of transactions is found containing
the items with a membership degree greater than the threshold
(ω=0.49), boldfaced in Table III.

• TOTALLYFUZZY carries out a thresholded Σ-count. The
support is computed by a weighted sum of the membership
degrees greater than a given threshold. In this approach the
importance of each fuzzy itemset in the data sequence is
taken into account in the support computation. To do so the
threshold membership function α is defined as:

αa

`

t[x]
´

=



µa

`

t[x]
´

if µa

`

t[x]
´

> ω
0 else

(3)

The support counting formula becomes:

STF (c, (X, A)) = ⊥θc
j=1>[x,a]∈(X,A)

h

αa

`

tj [x]
´

i

(4)

where > and ⊥ are the generalized t-norm and t-conorm
opertators.
Note that the Σ-count is a thresholded Σ-count, with a
threshold ω=0.

Example 8: With TOTALLYFUZZY, customer 1 supports the
sequence mS if a following of transactions is found containing
the fuzzy items of the sequence, with a membership degree greater
than the threshold ω (0.49). The best value for the sequence is kept,
items twice underlined in Table III.

The support of a fuzzy sequence is computed as the ratio
of the number of customers supporting this fuzzy sequence
compared to the total number of customers in the database:

FSupp(X,A) =

X

c∈C

h

S(c, gS)
i

–

|C|
(5)

where the support degree S(c, gS) indicates if the
customer c supports the fuzzy sequence gS. This support
degree is computed using the algorithms SPEEDYFUZZY,
MINIFUZZY and TOTALLYFUZZY. In this paper we only
describe TOTALLYFUZZY which has been used for
experiments on the INPI Trade Mark Database presented
Section VI.

V. TOTALLYFUZZY: AN ALGORITHM TO MINE FUZZY

SEQUENTIAL PATTERNS

TOTALLYFUZZY implements the fuzzy support computation
using a thresholded Σ-count to calculate the number of
customers supporting a sequence. In this section, we present
the support calculation carried out by this algorithm and
the overall algorithm which extracts the fuzzy sequential
patterns.

A. A Trade-Off between Space and Computational Complex-
ity

When considering classical sequential patterns, a customer
supports or not a sequence. So as soon as the sequence
is found within a customer’s transactions, the scan of the
database can stop. On the contrary, as TOTALLYFUZZY com-
putes a thresholded Σ-count, for each customer and each

sequence, the best membership degree must be considered.
This degree is computed as the aggregation of the itemset
supports. The order of the fuzzy items must also be taken
into account. That leads to an exhaustive scanning of the
transaction set, as performed for association rule mining.
Let us consider for instance the table III. If we look for
the same sequence as above, <([letter, very few]) ([word,
few])>, the first occurrence of this sequence is the one
underlined, supported by transaction d1 then d3. However
the best occurrence of this sequence is given by transaction
d4 followed by d6, underlined twice.

A naive approach could be that for each candidate
k-sequence (likely frequent sequence) we scan all the
database to find its support, it means at most nk scans of
the database if n is the number of frequent items. The only
structure kept in memory would so be the list of candidate
sequence. However this would be very unefficient, as the
computational time would explode.
To reduce this number of scans, we have defined a data
structure enabling us to find all the representation of all
the k-sequences in only k scans of the database. The
computational time is so lower but the used memory
space is increased. However some optimizations have been
implemented to bound this spatial complexity.
So we present here an efficient implementation based on
the notion of path. One path corresponds to a possible
instantiation of the candidate sequence itemsets into the
customer’s transaction set. Several paths may be initialized
for one customer (here one registrating company). For the
global support computation we only keep the complete one
having the best degree.

Definition 6: One path is a triplet containing the already
found sequence seq, the currently searched itemset curIS

(coming next in the candidate sequence) and the current
membership degree curDeg.
The next subsection presents an illustration of TOTALLY-
FUZZY working, then Subsection V-C details the functions
for the support calculation. Finally Subsection V-D presents
the overall algorithm to extract the fuzzy sequential patterns.

B. Computing a sequence support: an Illustration

As an illustration we run TOTALLYFUZZY to compute
the support of the candidate sequence <([letters, very few])
([words, few])> for customer 3 from table III, with a threshold
ω= 0.2. It is summarized in table IV.
First the process is initialized by creating one first empty
path pth1 = (∅, ([letter, veryfew]), 0) (Table IV, row 1).
Then it begins scanning the first record of customer 3. The
currently searched itemset curIS is found with a degree
d1[letter, very few]=0.25geqω. The path pth1 is so updated
with pth1.seq ←< ([letter, veryfew]) >, pth1.curIS ←

([words, few]) and pth1.seq ← 0.25 (Table IV, row 2).
Then transaction d2 contains the first sequence of the candi-
date sequence g-S, ([letter, veryfew]). So a new path is cre-
ated, pth2 ← (< ([letter, veryfew]) >, ([words, few]), 0.5).
As this transaction does not contain the next itemset for

TABLE IV

ILLUSTRATION OF TOTALLYFUZZYON C3
pth1 : (∅, ([letter, veryfew]), 0)

After d1 pth1 : (< ([letter, veryfew]) >, ([words, few]), 0.25)

After d2 pth1 : (< ([letter, veryfew]) >, ([words, few]), 0.25)
pth2 : (< ([letter, veryfew]) >, ([words, few]), 0.5)

Opt. pth1 is deleted

After d3 pth2 : (< ([letter, veryfew]) ([words, few]) >, ∅, 0.5), closed
pth3 : (< ([letter, veryfew]) >, ([words, few]), 0.5)

After d4 pth2 : (< ([letter, veryfew]) ([words, few]) >, ∅, 0.5), closed
pth3 : (< ([letter, veryfew]) ([words, few]) >, ∅, 0.5), closed
pth4 : (< ([letter, veryfew]) >, ([words, few]), 0.5)
pth5 : (< ([letter, veryfew]) >, ([words, few]), 0.75)

Opt. pth3 and pth4 are deleted

After d5 pth2 : (< ([letter, veryfew]) ([words, few]) >, ∅, 0.5), closed
pth5 : (< ([letter, veryfew]) > ([words, few]) >, ∅, 0.63), closed
pth6 : (< ([letter, veryfew]) >, ([words, few]), 0.75)

Opt. pth2 is deleted

After d6 pth5 : (< ([letter, veryfew]) > ([words, few]) >, ∅, 0.63), closed
pth6 : (< ([letter, veryfew]) > ([words, few]) >, ∅, 0.87), closed

Opt. pth5 is deleted

C3 deg. 0.87

pth1, the scan of the dataset should continue. Before that,
an optimization is carried out to avoid using to much space
in memory: for two paths at the same step, only the one with
the best curDeg value is kept. Here we have pth1.curDeg <

pth2.curDeg so pth1 is deleted and TOTALLYFUZZY keeps
on scanning the next transaction with pth2 (Table IV, row
3).
Transaction d3 is then checked. It contains pth2.curIS =

([words, few]). It is so modified to pth2 ← (<

([letter, veryfew]) ([words, few]) >, ∅, 0.5). This path is
closed since it contains all the itemsets of g-S. However
we keep the possibility to improve this solution. So, before
having modified pth2, it is copied into pth3. At this step,
we have two paths: pth2, closed with a support degree of
0.5 and pth3 = (< ([letter, veryfew]) >, ([words, few]), 0.5)

(Table IV, row 4).
Transaction d4 is then checked. pth3.curIS is found so it is
copied, modified and then closed with a degree of 0.5. As d4
also contains the first itemset of g-S, a new path is created.
At this point we have four paths (Table IV, row 5). The
Optimize function deletes for each step in the sequence the
path with the lower degree. It means pth3 and pth4. Scanning
then continues. At d5, pth5 is copied into pth6, modified
and closed with a support degree of 0.63, so pth2 is deleted.
Finally, at d6, pth6 is updated and closed with a degree of
0.87. This is the path kept for customer 3.

C. Computing a sequence support: the Algorithms

The algorithm TOTALLYFUZZY uses the function
FindTotallySeq to carry out an ordered scanning in one
customer’s transaction set.

When the first itemset of the sequence is found, one path
is created with the itemset support. The next transactions are
checked to find either the following part of the sequence or
once again the beginning of the sequence or an improvement
of the paths, already created. All the possible paths are
thus completed step-by-step at each transaction. The support
degree of the best path for the whole sequence is then
returned. The Update function allows the update of each path
and closes the complete ones. The Optimize algorithm, not

presented in this paper, enables to delete unnecessary paths.
The function CalcTotallySupport computes the support for
one candidate sequence by adding for each customer the
aggregation value of the optimal path for this sequence.

ALGORITHM 1 - CalcTotallySupport
Input: gS, candidate g-k-sequence ;
Ouput: FSupp fuzzy support for the sequence gS ;

FSupp,nbSupp,m← 0 ;

For each customer client c ∈ C do
m← FindTotallySeq(g-S, Tc);
nbSupp += m ;

End For
FSupp← nbSupp/Γ;

return FSupp;

ALGORITHM 2 - Update
Input: pth, path to update

pth.seq ← pth.seq ∪pth.curIS ;

If (pth.curIS.next 6= ∅) Then
pth.curIS ← pth.curIS.next ;

Else
Close(pth);

End If
Optimize(pth) ;

ALGORITHM 3 - FindTotallySeq
Input: g-S, candidate g-k-sequence;

T, transaction set to run
Ouput: m, support degree of the best g-S representation

instanciated in the transaction set T

Paths : list of paths → (seq, curIS, curDeg)

Paths←Path(∅, gS.first, 0)

For each transaction t ∈ T do
For each path pth ∈ Paths, not updated at t do

If (pth not closed) Then
If (pth.curIS ∈ t) Then

pth.curDeg ← pth.curDeg | >[x,a]∈pth.curISαa(t[x]) ;
Update(pth);

End If
End If
For j from 2 to pth.curIS -1 do

[Search for an improvement of the current path]
If ((gS.get(j) ∈ t) &
(>[x,a]∈gS.get(j)αa(t[x]) > pth.curDeg[j])) Then

nCurIS ← gS.get(j) ;
For i from 1 to j-1 do

nSeq ← nSeq | gS.get(i) ;
nCurDeg ← nCurDeg | pth.curDeg[i];

End For
nCurDeg ← nCurDeg | >[x,a]∈gS.get(j)αa(t[x]) ;
Paths← Paths∪ Update((nSeq, nCurIS, nCurDeg)) ;

End If
End For

End For
If ((gS.first ∈ t) & (not(FirstPass))) Then

pth←Path(∅, gS.first, >[x,a]∈gS.firstαa(t[x]));
Paths← Paths ∪ pth ;
Update(pth) ;

End If
Paths.Optimize() ; [deletion of less pertinent paths]

End For
For each path pth ∈ Paths do

If (pth not closed) Then
Cut(pth); [deletion of paths not containing the whole sequence]

End If
End For
pth← Paths.first ; [Paths only contains the best complete path]

m← �(pth.curDeg) ; [Aggregation to return the support degree]

return m;

D. Mining Frequent Sequences

Our approach extends the level-wise approach generate-
prune within the context of sequential patterns and more
particularly uses the prefix-tree structure described in [15],
in order to improve the support computation process. This
structure is used to store both the candidate sequences and the
frequent ones. The tree on figure 2 represents the sequences
<([letter, very few][figure, few])([figure, few])>, <([letter, very
few])([length, medium])> and also the subsequences <([length,
medium])> and <([figure, few])([figure, few])>.

[figure, few]

[figure, few] [length, medium]

[letter, very few] [length, medium]

[figure, few]

[figure, few]

- - - same itemset —– other itemset

Fig. 2. Storage of sequences as a prefix-tree

The overall algorithm PSP-Totally is presented by the
Algorithm 4. First the fuzzy support of all fuzzy items is
computed and only the items with a support greater than
minSupp are stored as frequent ones of size 1. Then, while
a candidate generation still is possible, the generate function
builds the candidate sequences of size k from the frequent
sequences of size k-1. Then a scan over the database is
run and supports are computed thanks to CalcTotallySupp.
Finally all infrequent sequences of size k are pruned and
the process continues. At the end of the process we obtain
a Prefix-tree containing all the frequent sequences of the
database with their support at each leaf of the tree.

ALGORITHM 4 - PSP-Totally
Input: DB, a database, minSupp
Ouput: PT , the prefix-tree of frequent sequences

find-1-Frequent() ;

While (#candidate < 0) do
generate(PT .depth+1) ;
For each sequence s in PT do

CalcTotallySupp(s);
End For
prune(PT);

End While
return (PT) ;

As for PSP, the overall computational complexity of PSP-
Totally only depends on the length of the candidate se-
quences, and so of the support calculation. The computation
of the generate and prune functions are indeed insignificant
in comparison with the one of CalcTotallySupp.

VI. EXPERIMENTS

In this paper we present one of our mining experiments,
looking for sequences of words in registered trade marks
(intra-name patterns). Further experiments, detailed here but

not finished yet, will consist in looking for evolution in
the registration by registering company (inter-name patterns).

A. The INPI Trade Mark Database

The INPI is the French National Institute for the Industrial
Property. It aims at managing and registering industrial title
deeds, communicating information on industrial property and
devising and adapting french industrial property right.
The INPI trade mark database registers around 2 millions
of names registered between 1961 and 2004. These trade
marks have been registered in one or several categories
corresponding to industrial fields such as “toys, games” or
“clothing, shoes, hat industry”. Each record is componed
of several attributes, for instance: id number, trade mark,
registration date, registrating company, registrating class.

The global goal of analysing such a database is, for the
linguist expert, to understand how trade marks act on con-
sumers. One step towards this aim is to understand building
mecanisms of those marks from a linguistic point of view,
through different axes: morpheme analysis (e.g. number of
letters, ...), phonetic, graphic (presence of numbers or special
characters (e.g. !, @, ...). Some of these analysis can be made
thanks to statistical methods such as plotting histogramms
or graphs to look at evolution or distribution of registration
number, but it is hard to retrieve relevant information in such
a huge database when facing so many indicators.

Therefore data mining tools can be really useful to sum
this trade mark database up. Then this data set contains
many quantitative information such as letter number or word
number for a same trade mark. So it requires to use Fuzzy
Sets Theory based mining approaches in order to help the
linguist expert, without choosing crisp thresholds or intervals.
For example, how can we decide that a word is long? Must
it be longer than 10 letters? or 12? Moreover we require
to analyse series and connections in those names and so a
method allowing sequence mining.
For all these reasons we have chosen to mine fuzzy sequential
patterns in the INPI trade mark database.

B. Data Translation for Intra-name Pattern Mining

These experiments aim at discovering word form in reg-
istered trade names. Summaries would be described for
example as “Almost one third of registered names are first
componed of one part containing a lot of letters then of a
part with few figures and then of a part with few punctuation
signs and few letters”. These proposition would be built
from a sequence <([letter, lot])([figure, few])([punct symb,
few],[letter, few])>.
In this case, we can both consider trade marks made of one
or several words. In fact a name only componed of one
word will appear as a fuzzy itemset instead of a sequence
for a name made of several words. In order to mine this
kind of patterns, the INPI database is converted into the
format [ID TM, #WORD, FUZZY ITEM, DEGREE], where
fuzzy items are described on figure 3.

Fig. 3. Fuzzy sets for fuzzy items for intra-name pattern mining

TABLE V

DATABASE TRANSLATION FOR INTRA-NAME PATTERN MINING

Mining formalism Trade mark database
customer ↔ a trade mark

date ↔ number of the word in the trade mark
fuzzy item ↔ # of signs, letters, figures,

punctuations or symbols in this word

C. From Fuzzy Sequential Patterns to Fuzzy Summarization

First we have chosen to begin with the mining into classes
that seemed to have an atypical behavior through statistical
analysis. The class number 38, registering trade marks linked
to the field of “Telecommunication”, was given to contain
more symbols and punctuations than the other trade marks.
Our summarization shows that even if these classes contains
a greater proportion of symbols, it is not a characteristic
point. We detail here the results obtained by mining this
dataset of more than 480,000 trade marks componed of one
or several words.

First we have mined for a general description of this
class. For a minimum support 70% (minSupp = 0.7), we
obtain the sequential pattern <([#sign, lot][#letter, lot])>
(76.8%), which has been translated into the statement “Most
of trade marks contain at least one word which contain a lot
of signs and a lot of letters”. Then, decreasing the minSupp

value, we have find out that “Almost one quarter of trade
marks contain a least two words, both having a lot of signs
and a lot of letters” (<([#sign, lot][#letter, lot]) ([#sign,
lot][#letter, lot])> (24.7%)).

During a second step, we have divided the class 38
into four databases, according to the number of words by
trade marks: one word (74,977 names), exactly two words
(101,440 names), at least two words (303,742 names) and at
least three words (228,940 names).

This part of mining has aimed at discovering more specific
knowledge about trade marks in the class 38. What we
can give as a summarization for this category of trade
marks is that: “Most trade marks componed of one word

contains a lot of signs and a lot of letters (<([#sign,
lot][#letter, lot])> (74.1%))” and “Only few trade marks
made of one word contains a medium amount of signs or let-
ters (<([#sign, medium])> (14.6%), <([#letter, medium])>
(15.1%))”. Those two summaries could have been found us-
ing summarization based on fuzzy association rules mining,
whereas the following ones expressing sequences between
words in trade marks can only be obtained thanks to fuzzy
sequential pattern summarization.

Mining in trade marks componed of two words reveals
that there composition is quite various. We have indeed
discovered that even “Most of them contain at least one
word with a lot of signs” (<([#sign, lot])> (81%)), “Only
one third of them contain two words made of a lot of signs,
one preceeding the other with a lot of letters” (<([#sign,
lot]) ([#sign, lot][#letter, lot])> (33%)).
We have then to decrease the support to 0.1 to learn more
about the intra-structure of these trade marks. We can see
that “A small part of the category 38 componed of two words
is componed of one word with a medium amount of signs
and few letters preceeding a second one with both a lot of
signs and letters” (<([#sign, medium][#letter, few]) ([#sign,
lot][#letter, lot])> (10.5%)) and that “A small part of these
trade marks is componed of one word with a medium
amount of signs and letters followed by a second one with
both a lot of signs and letters” (<([#sign, medium][#letter,
medium]) ([#sign, lot][#letter, lot])> (13.2%)).

Finally we give some information obtained concerning the
trade marks of class 38 componed of at least three words.
We have found out that “Almost two third are componed of
two words with both a lot of signs and letters” (<([#sign,
lot][#letter, lot]) ([#sign, lot][#letter, lot])> (62%)); it is
completed by decreasing the support: “Almost one half of
these trade marks contain three words with a lot of signs,
the first one with a lot of letters, one following then and
preceeding a third one with a lot of letters” (<([#sign,
lot][#letter, lot]) ([#sign, lot]) ([#sign, lot][#letter, lot])>
(43.5%)), whereas “Almost one half of these trade marks
contain three words with a lot of signs, the first and
last ones with a lot of signs and letters, the second one
with few letters or a medium amount of signs” (<([#sign,
lot][#letter, lot]) ([#letter, few]) ([#sign, lot][#letter, lot])>
(42%), <([#sign, lot][#letter, lot]) ([#sign, medium]) ([#sign,
lot][#letter, lot])> (42%)).

It appears that trade marks containing figures, symbols or
punctuations in this category are rare and infrequent.

D. Mining for Trends in Trade Mark Morphology

The currently carried out experiments aim at mining for
evolution in trade mark registration for a same registering
company. For example, we could find that “Few registrating
companies have first registered short names containing few
figures and then short names containing a lot of punctu-
ation symbols”. This would be represented by a sequence
<([sign, few],[figure, few])([sign, few],[punct symb, lot])>.
This requires to preprocess the database and to translate it
into the required format for fuzzy sequential pattern mining.

A record in the mined database will be a tuple [REGIS-
TERING COMPANY, YEAR, FUZZY ITEM, DEGREE]. Those
fuzzy items are the quantitative attributes number of signs,
number of words, number of figures, number of punctuation
symbols, number of letters and number of special characters,
associated to a fuzzy set. These fuzzy sets for those attributes
have been built from a linguist expert knowledge.
The results of these experiments will be used to extend the
method proposed in [16] to discover trends in text databases
and will be then completed applying temporal constraints, as
presented in [17].

VII. CONCLUSION

In this paper, we have presented a method to summarize
quantitative historized or ordered database with fuzzy se-
quential patterns. The efficient algorithm TOTALLYFUZZY is
detailed with the data structure used to reduce its compu-
tational complexity. We have implemented this algorithm
and applied it to summarize the INPI Trade Mark database.
The results of these experiments show the summarization
given to describe the intra-structure of trade marks. Further
experiments are currently in progress to sum up the evolution
of trade mark structure during the last fourty years.

ACKNOWLEDGMENT

The authors would like to thank Mr. St éphane Sanchez
and Mr. Federico Del Razo Lopez for their help in the
management and preprocessing of the INPI database.

REFERENCES

[1] J. Kacprzyk, “Fuzzy logic with linguistic quantifiers: A tool for better
modeling of human evidence aggregation processes?” Fuzzy Sets in
Psychology, pp. 233–263, 1988.

[2] J. Kacprzyk, R. Yager, and S. Zadrozny, “A Fuzzy Logic Based Ap-
proach to Linguistic Summaries of Databases,” Applied Mathematics
and Computer Science, vol. 10, pp. 813–834, 2000.

[3] P. Bosc, L. Lietard, and O. Pivert, “Extended functional dependencies
as a basis for linguistic summaries,” in 2nd Eur. Symp. on Principles
of Data Mining and Knowledge Discovery, 1998, pp. 255–263.

[4] D. Dubois and H. Prade, “Fuzzy sets in data summaries – outline
of a new approach,” in 8th Int. Conf. on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, 2000.

[5] J. C. Cubero, J. M. Medina, O. Pons, and M. A. Vila, “Data
summarization in relational databases through fuzzy dependencies,”
Inf. Sci., vol. 121, no. 3-4, pp. 233–270, 1999.

[6] J. Kacprzyk and S. Zadrozny, “Fuzzy linguistic summaries via associa-
tion rules,” Data Mining and Computational Intelligence, pp. 115–139,
2001.

[7] A. Fu, M. Wong, S. Sze, W. Wong, and W. Yu, “Finding Fuzzy Sets
for the Mining of Fuzzy Association Rules for Numerical Attributes,”
in 1st Int. Symp. on Intelligent Data Engineering and Learning, 1998,
pp. 263–268.

[8] C. M. Kuok, A. W.-C. Fu, and M. H. Wong, “Mining Fuzzy Associa-
tion Rules in Databases,” SIGMOD Record, vol. 27, no. 1, pp. 41–46,
1998.

[9] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” in Int. Conf. on
Management of Data, 1993, pp. 207–216.

[10] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” in 11th Int.
Conf. on Data Engineering. Taipei, Taiwan: IEEE Computer Society
Press, 1995, pp. 3–14.

[11] C. Fiot, A. Laurent, and M. Teisseire, “Motifs squentiels flous : un peu,
beaucoup, passionnment,” in 5mes journes d’Extraction et Gestion des
Connaissances, 2005, pp. 507–518.

[12] T. Hong, K. Lin, and S. Wang, “Mining Fuzzy Sequential Patterns
from Multiple-Items Transactions,” in Joint 9th IFSA World Congress
and 20th NAFIPS Int. Conf., 2001, pp. 1317–1321.

[13] R.-S. Chen, G.-H. Tzeng, C.-C. Chen, and Y.-C. Hu, “Discovery
of Fuzzy Sequential Patterns for Fuzzy Partitions in Quantitative
Attributes,” in ACS/IEEE Int. Conf. on Computer Systems and Ap-
plications, 2001, pp. 144–150.

[14] A. Kaufmann, “Introduction to the theory of fuzzy subsets,” 1973.
[15] F. Masseglia, F. Cathala, and P. Poncelet, “The PSP Approach for

Mining Sequential Patterns,” in 2nd Eur. Symp. on Principles of Data
Mining and Knowledge Discovery, 1998, pp. 176–184.

[16] B. Lent, R. Agrawal, and R. Srikant, “Discovering trends in text
databases,” in 3rd Int. Conf. Knowledge Discovery and Data Mining,
1997, pp. 227–230.

[17] C. Fiot, A. Laurent, and M. Teisseire, “Des motifs squentiels gnraliss
aux contraintes de temps tendues,” in 6mes journes d’Extraction et
Gestion des Connaissances, 2006, pp. 603–614.

