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Abstract 
 
This paper presents a unified diagnosis method 

targeting most of the fault models used in practice 
today. This framework is intended to be used to 
diagnose faulty behaviors in nanometric circuits for 
which the classical stuck-at fault model is far to cover 
all realistic failures. The method is based on an 
Effect-Cause approach which relies on the two 
following main operations. The first one is based on 
critical path tracing (CPT) [4] and consists in 
identifying critical lines in the Circuit Under Test 
(CUT) which can be the source of observed errors. 
The second one consists in allocating a set of possible 
fault models to each critical line, so that root causes 
of failures can be finally determined. The main 
advantage of this method is that it does not need to 
explicitly consider each fault model during the 
diagnosis process. 

 
1. Introduction 

 
Failure analysis is an important operation, which 

may impact the circuit design and the fabrication 
process and has a growing role in fast yield ramping. 
Failure analysis first relies on a logical diagnosis 
aiming at reducing the potential faulty subparts of the 
circuit before using more sophisticated physical tools 
in order to precisely locate and identify the defect. 
This logical diagnosis process is based on the 
knowledge of the structure of the circuit, the applied 
test vectors and the responses to these vectors 
provided by the tester (test data log). 

The objective of logic diagnosis is to locate and 
identify failures leading to a CUT erroneous 
behaviour. Information provided by the diagnosis 
process is therefore used to guide the circuit physical 
observation during failure analysis. Thus, the 
efficiency of the failure analysis depends on the 
resolution of the diagnosis process. 

There are two types of diagnosis approaches, 
namely Cause-Effect and Effect-Cause. The Cause-
Effect analysis is based on fault simulation. Using 

fault simulation, one can built a fault dictionary on 
which all the succeeding steps of the logic diagnosis 
process will depend. The main advantage of such an 
approach is to be able to handle both combinational 
and sequential circuits in the same way, even for 
circuits not equipped with specific DFT structures. 
On the other hand, the Cause-Effect approach exhibits 
some drawbacks. The first one is the need to have an 
accurate description of the fault models used with the 
associated failure effects. If such an accurate 
description is manageable for static faults, this is no 
longer the case for dynamic faults like delay faults 
and/or parametric faults such as resistive shorts and 
opens. The second drawback is related to the huge 
data volume that should be generated by the fault 
simulator particularly for large industrial circuits. 

The Effect-Cause approach looks more interesting 
as the diagnosis process is performed starting from 
the faulty responses. Generally, an Effect-Cause 
approach uses a backtracking process originating 
from the CUT outputs, such as the Critical Path 
Tracing (CPT) process [1]. The Effect-Cause 
approach is particularly interesting for the diagnosis 
of failures with dynamic and/or parametric effects. Its 
application and use for sequential circuits is not so 
easy even if researches have been done in this 
direction [13]. Nevertheless, its most efficient use 
concerns full-scan circuits. In this case, the diagnosis 
process can be divided into two main steps. The first 
one consists in identifying faulty scan cells from the 
external outputs of the CUT on which one or several 
errors have been observed during test. Potential 
problems introduced by compaction logic (masking, 
unknown value) have to be considered during this 
step [2][3]. The second step consists in identifying 
suspected defects (fault locations and fault types) in 
the combinational part of the CUT. This paper deals 
with diagnosis in the combinational part of the CUT. 

The Effect Cause approach is based on a CPT 
process initially developed to diagnose stuck-at faults 
[1][4]. Due to advances in manufacturing technologies, 
process variations and more aggressive clocking 
strategies more and more lead to failures which can no 
longer be modelled by classical stuck-at faults. 
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Numerous actual failures exhibit timing or parametric 
behaviours which are not represented by stuck-at 
faults. Such failures have to be taken into account in 
the testing process in order to reach acceptable DPM 
(Defect Per Million) figures. This is the role of 
dedicated delay fault testing procedures and IDD 
related approaches. Consequently, the CPT process has 
been extended and adapted to handle other fault 
models such as delay faults [5][6], or short faults [7]. 
However, a common feature of all the methods 
proposed so far is that they handle one single fault 
model at a time or scarcely two fault models when the 
induced effects are similar [8][9][10]. The problem is 
that when an error is observed during test, it does not 
exist any deterministic information about the defect 
which has caused this error and hence there is any 
knowledge of the fault model to be used a priori for the 
diagnosis process. As considering each fault model 
explicitly is not a viable solution, there is a need to 
develop a unified framework for fault diagnosis.  

This paper presents such a unified diagnosis 
framework. The method is based on an Effect-Cause 
approach which relies on the two following main 
operations. The first one is based on CPT and consists 
in identifying critical lines in the CUT which can be 
the source of observed errors. The second one 
consists in allocating a set of possible fault models to 
each critical line, so that root causes of failures can be 
finally determined. The main advantage of this 
method is that it does not need to explicitly consider 
each fault model during the diagnosis process. 

The rest of the paper is organized a follows. In 
section 2, the fault models that can be associated with 
a given line are described in details. In section 3, we 
describe the CPT process as well as the fault model 
allocation procedure. Section 4 concludes this paper. 

 
2. Fault models identification associated 
with an error 

 
Circuit defects are the result of numerous 

problems (localised defects, process variations, etc.) 
and lead to different behaviours (logical error, delay, 
electrical parameters deviation, etc.). To be handled 
efficiently by fault simulation tools, test pattern 
generators or diagnostic tools, these faulty behaviours 
have been represented by fault models. These models 
may represent logical deviations (stuck-at, short, 
open), timing deviations (gate/path delay fault) or 
parametric errors (resistive short, resistive open). On 
the other hand, some defects affect the static 
behaviour of the CUT while some others affect the 
dynamic behaviour. Faults which affect the dynamic 
behaviour, such as delay faults or transistor stuck-

open faults, require a pattern sequence to be detected. 
In this study, we consider the following classical fault 
models: stuck-at, short (AND/OR bridging), resistive 
short, open, resistive open, gate delay, and by 
extension path/segment delay, stuck-on and stuck 
open faults. 

When an error is located on a given line L, this 
error can be caused by a defect affecting the line itself 
or is due to the propagation of an upstream error. In 
the first case, we need to know the fault-free circuit 
behaviour to determine the model to be associated 
with this defect. Thus, if the expected value on line L 
is a logic 0, the following models can be suspected 
for the observed error (Figure 1a): 
Stuck-at 1 of line L, 
Short (OR bridge between line L and another line at 
logic 1), 
Open (with open line load at 1), 
Internal fault inside the upstream gate (transistor N 
stuck-open or transistor P Stuck-on), 
Resistive open on L or StF (Slow to Fall) delay fault 
(if the applied pattern produces a transition on line L),  
Resistive short (with all lines at 1, if the applied 
vector produces a transition on line L). 
Similarly, if the expected value on line L is a logic 1, 
the following models can be suspected for the 
observed error (figure 1b): 
Stuck-at 0 of line L, 
Short (AND bridge between line L and another line at 
logic 0), 
Open (with open line load at 0), 
Internal fault inside the upstream gate (transistor P 
stuck-open or transistor N Stuck-on), 
Resistive open on L or StR (Slow to Rise) delay fault 
(if the applied pattern produces a transition on line L),  
Resistive short (with all lines at 0, if the applied 
vector produces a transition on line L). 

 

 
Figure 1. Potential fault models associated with an error 
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As it can be seen on Figure 1, faults which affect a 
faulty line can be determined assuming the 
knowledge of: (i) the expected value on this line, (ii) 
the values on others lines (short fault), and, (iii) the 
transition induced on this line by the applied pattern 
(dynamic fault). 

Thus, all the possible fault models associated with 
a given logical error can be deduced according to the 
fault-free signals on this line as shown in Figure 2. In 
this table, we consider both the pattern Vi producing 
the error and the previous pattern Vi-1. 

Among the fault models considered in Figure 2, 
we can see that several models are equivalent in terms 
of induced errors. For example, this is the case for 
open faults and stuck-at faults. Furthermore, it is 
worth noting that resistive shorts represent a subset of 
short faults. In fact, resistive short faults require the 
same conditions than short faults with an additional 
condition on signal transition. Compared to delay 
faults which have the same behaviour, resistive short 
faults imply the knowledge of the aggressor line, i.e., 
the line shorted to the faulty node. 
 Vi-1Vi 
 00 11 10 

 
01 

 
Stuck at 0  x  x 
Stuck at 1 x  x  
Tn Stuck open (*) x  x  
Tn Stuck on (*)  x  x 
Tp Stuck open (*)  x  x 
Tp Stuck on (*) x  x  
Open 0  x  x 
Open 1 x  x  
Resistive open   x x 
Short Or (with any line at 1) x  x  
Short And (with any line at 0)  x  x 
Resistive Short (with any line at 
1) 

  x  

Resistive Short (with any line at 
0) 

   x 

Delay StF   x  
Delay StR    x 
Delay StR & StF   x x 

Figure 2. Fault models associated to a given error  
(*) Stuck-on and Stuck-open faults produce an 

error if sequential conditions are fulfilled. 
 
3. Unified diagnosis process 

 
The proposed diagnosis process is based on an 

Effect-Cause approach which relies on the two 
following main operations. The first one is based on a 
CPT process and consists in identifying critical lines 
in the CUT. The CPT process uses i) a fault-free 
circuit simulation, ii) the critical path tracing 
operation itself, iii) an intersection procedure between 
critical paths. The second one consists in allocating a 
set of possible fault models to each critical line, so 

that root causes of failures can be finally determined. 
The data needed for the completion of this process are 
the following: (i) the gate level circuit description, (ii) 
the test pattern list, (iii) the subset of faulty patterns 
which exhibit an error during test, and iv) the 
corresponding erroneous outputs. 
 
3.1. Fault-free simulation and signal encoding 

 
As previously mentioned, we need to know the 

logic value on a given line as well as its previous 
value (transition for delay fault, sequential effect for 
stuck-on and stuck-open fault ...). So, in order to 
make transition propagation possibilities appear 
during fault-free circuit simulation, we use a six-
valued logic simulation based on the H6 algebra [14]: 

C0 : static 0 = 00 
C1 : static 1 = 11 
R1 : rising transition = 01 
F0 : falling transition = 10 
P0 : static 0-hazard = 010 
P1 : static 1-hazard = 101 
C0 (C1): Static 0 (1), represents a signal 

remaining absolutely stable at 0 (1) (whatever gate 
propagation delays and timing defects of the circuit 
may be). 

F0 (R1): Fall (Rise), represents a signal with the 
initial value 1 (0) and the final value 0 (1) (after 
circuit stabilization) 

P0 (P1): Pulse 0 (Pulse 1), represents a signal with 
the same initial and final value 0 (1), but with 
possible transitions to 1 (to 0) according to circuit 
timing parameters or delay faults. 

Such an algebra allows an efficient encoding of 
the logic values produced by the faulty test pattern, as 
well as an encoding of the transitions (R1, F0) and 
possibilities of transition (P0,P1) on a given line, 
without the need of any timing analysis. 

 At the beginning of the fault-free simulation, the 
signals to be applied on the circuit’s inputs are 
determined from the faulty pattern Vi, and from the 
previous pattern Vi-1, applied just before Vi. Thus, for 
a given input E, the values to be associated are the 
following: 

Vi-1 (E) = 0,  Vi (E) = 0 => E = C0 
Vi-1 (E) = 1,  Vi (E) = 1 => E = C1 
Vi-1 (E) = 0,  Vi (E) = 1 => E = R1 
Vi-1 (E) = 1,  Vi (E) = 0 => E = F0 
Having determined all the input values, the 

simulation process consists in propagating these 
values towards the circuit outputs thanks to 
propagation tables associated to each logic gates. 
Propagation tables for classical AND, OR, NOT gates 
are shown in figure 3. All other propagation tables 
can be easily obtained from these three basic ones.  
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AND C0 C1 F0 R1 P0 P1
C0 C0 C0 C0 C0 C0 C0
C1 C0 C1 F0 R1 P0 P1
F0 C0 F0 F0 P0 P0 F0
R1 C0 R1 P0 R1 P0 R1
P0 C0 P0 P0 P0 P0 P0
P1 C0 P1 F0 R1 P0 P1  

 
OR C0 C1 F0 R1 P0 P1
C0 C0 C1 F0 R1 P0 P1
C1 C1 C1 C1 C1 C1 C1
F0 F0 C1 F0 P1 F0 P1
R1 R1 C1 P1 R1 R1 P1
P0 P0 C1 F0 R1 P0 P1
P1 P1 C1 P1 P1 P1 P1  

 
IN OUT
C0 C1
C1 C0
F0 R1
R1 F0
P0 P1
P1 P0  

Figure 3. Propagation tables of basic gates 
For example, let’s consider the circuit in Figure 4. 

It has 4 inputs (e1, e2, e3, e4) and 2 outputs (z1, z2). 
The pattern pair applied on the circuit inputs is the 
following: V1=(0,0,1,0), V2=(1,1,1,1). From these two 
patterns, we first deduce the six-valued input vector 
V= (R1, R1, C1, R1). Then, the values propagated 
during the fault-free simulation process are showed in 
Figure 4. 

 
Figure 4. Multi-valued simulation 

 
3.2. Critical path tracing 

 
Critical path tracing has been initially proposed to 

handle stuck-at faults [4], and was further adapted to 
handle other fault models such as timing faults 
[6][11][12], short faults [7], or stuck-open faults [9]. 
In our approach, the path tracing process is not 
directly associated with any fault model. In fact, our 
first target is to determine all the critical lines, i.e. all 
lines from which a logic error can induced the faulty 
behaviour observed at the CUT outputs. The 
combination of fault models with critical lines will be 
done in a second step. This process can  rely on CPT 
algorithm developed to stuck-at faults [4].  

For example, this CPT process is illustrated in 
Figure 5 which is based on the 6-valued simulation 
performed on the circuit in Figure 4. The sensitive 
inputs of each gate (highlighted with a black dot) are 
defined from final logic values of each signal and 
with rules provided in [5]. The CPT process begins 
from each faulty output z1 and z2.  The sets of critical 
lines obtained from z1 and z2 are respectively {e2, a, b, 
c, d, e, f, g, z1} and {e2, a, c, e, f, g, z2}. 

 
Figure 5. Critical path tracing 

For each critical line, the CPT process memorizes 
the symbol on this line. After the CPT ending and the 
associated intersection process which will be 
described later on in the next paragraph, this 
associated value will allow us to determine the fault 
model(s) to be associated with a given critical line. 
Thus, the information provided at the end of the CPT 
process is a list of pairs (LC, S) where LC is the 
critical line name, and S is the symbol associated with 
this critical line. For the example in figure 5, the CPT 
process applied to z1 and z2 produces the two 
following lists associated with  z1 and z2 respectively 
{(e2,R1), (a,F0), (b,P0), (c,F0), (d,P1), (e,R1), (f,P1), 
(g,R1), (z1,P1)} and {(e2,R1), (a,F0), (c,F0), (e,R1), 
(f,P1), (g,R1), (z2,F0)}. 
 
3.3 Identification of critical lines 

 
The CPT process is repeated for all faulty outputs 

observed during test. For each faulty output, a critical 
line list is created with for each line, the symbol 
associated. All potential sites are presents in these 
lists. Now, if we assume the single fault assumption, 
then the fault location is necessarily present in all 
lists. With this assumption and to determine the 
possible fault locations, we can do the intersection of 
all the lists produced by the CPT process. The 
intersection operation is defined as follows: 

Let’s take two lists L1 and L2 supplied by CPT 
process and Ls = L1 ∩ L2. Ls is defined as the result 
of all the intersections between each pair (LCi,Si)1 of 
list L1 and each pair (LCj,Sj)2 of list L2. The 
intersection of two pairs (LCi,Si)1 ∩ (LCj,Sj)2 is  
defined as follows: 
- If LCi ≠ LCj  or Si ∩s Sj not defined, then 
(LCi,Si)1 ∩ (LCj,Sj)2 = ∅  
- else LC=LCi=LCj then (LC,Si)1 ∩ (LC,Sj)2 = (LC, Si 
∩s Sj)  
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with the intersection operation ∩s  between symbols of 
two critical lines defined in figure 6. 

∩s C0 C1 F0 R1 P0 P1 D
C0 C0 - C0 - C0 - -
C1 - C1 - C1 - C1 -
F0 C0 - F0 D F0 D D
R1 - C1 D R1 D R1 D
P0 C0 - F0 D P0 D D
P1 - C1 D R1 D P1 D
D - - D D D D D  
Figure 6. Intersection operation between signals 

The D symbol, added to the others symbols used 
for the simulation, enables to represent a falling or a 
rising commutation. This symbol allows 
characterizing a temporal fault acting on both 
commutation types. 

The - symbol represents an undefined intersection. 
In this undefined case and with the single fault 
assumption, the error observed on this line cannot be 
the result of a defect (through its fault model) 
affecting this line but only the propagation of an 
upstream error. As a consequence, the line can be 
removed from the list of the possible defect location.  

In order to illustrate this intersection process, let’s 
take again the results obtained from the figure 5 
assuming that the two outputs z1 and z2 are faulty. 
From these two faulty outputs, we have the two 
following list of critical pairs: 

L1 = {(e2,R1), (a,F0), (b,P0), (c,F0), (d,P1), (e,R1), 
(f,P1), (g,R1), (z1,P1)}, 

L2 = {(e2,R1), (a,F0), (c,F0), (e,R1), (f,P1), (g,R1), 
(z2,F0)}. 

Using the rules defined previously, the 
intersection between L1 and L2 gives the list L12: 

L12 = {(e2,R1), (a,F0), (c,F0), (e,R1), (f,P1), 
(g,R1)} 

Now, if we assume that another faulty pattern Vj 
gives a fault-free output z1 and a faulty output z2. 
Assuming also that associated with its previous pattern 
Vj-1, this gives us the multi-valued pattern 
{R1,C0,R1,R1}, figure 7 summarizes the 
corresponding simulation.  

 
Figure 7. Critical path tracing 

The CPT process starting from output z2 gives the 
following critical lines list L3: 

L3 = {(e2,C0),(e3,R1),(a,C1),(c,R1),(g,F0),(z2,R1)} 
In this case, we can notice that the CPT process 

stops at gate G7, defined as non sensitive, then 

resumes at fanout c feeding the two inputs of this non 
sensitive gate. The details of such a mechanism are 
described and can be found in [4]. 

Applying again the previous intersection rules, the 
result of intersection between L3 and L12 is: 

L123 = {(c,D),(g,D)} 
Although the critical lines e2 and a belong to the 

three initial lists, they are not included in the final list 
L123. This is due to indefinite intersection between 
symbols associated with e2 and a. Moreover, lines c 
and d get the D symbol, because these lines are 
critical for both falling and rising transitions. 

 
3.4 Fault model allocation  

 
At this stage of the diagnosis process, we have in 

hand a reduced list of critical lines for each of which 
one symbol is associated with. According to this 
symbol, we can associate fault models with each 
critical lines as described in the table of figure 8. This 
table is an adaptation of the one given in figure 2 
taking into account the different symbols manipulated 
during the CPT process.  

 
 C0 C1 F0,P0 R1,P1 D 
Stuck at 0  x  x  
Stuck at 1 x  x   
Tn Stuck open (*) x  x   
Tn Stuck on (*)  x  x  
Tp Stuck open (*)  x  x  
Tp Stuck on (*) x  x   
Open 0  x  x  
Open 1 x  x   
Resistive open   x x x 
Short Or (with any line at 1) x  x   
Short And (with any line at 0)  x  x  
Resistive Short (with any line at 
1) 

  x   

Resistive Short (with line any at 
0) 

   x  

Delay StF   x   
Delay StR    x  
Delay StR & StF   x x x 

Figure 8. Fault models according to symbol associated 
to critical line 

To illustrate this fault model association process, 
let take the example used in the previous paragraph 
leading to the final list L123 = {(c,D),(g,D)}. In this 
case, the only possible faults associated with critical 
lines c and g are: 

line c: resistive open, Delay (StR & StF) 
line g: resistive open, Delay (StR & StF)  

 
3.5. Using fault-free outputs to static faults 
screening 

 
In the same way that done in [4], it is possible to 

use the fault-free outputs in the CPT process in order 
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to screen critical lines al least for certain kinds of 
faults. As example, let’s consider the example of 
figure 9. 

 

 
Figure 9. Static fault screening 

Assuming that the critical line list provided from 
faulty output z1 is: 

L1 = {(e1,C1),(e2,R1),(z1,R1)} 
With the previous allocation rules shown in figure 

8, the faults associated with the critical line e2 are (see 
figure 8, column R1,P1): Sa0, Open0, Resistive open, 
AND short (with a line at 0 logic value), StR, StR & 
StF. 

If we analyze the behaviour of such faults, it is 
easy to show that all faults with a static effect (i.e. 
Sa0, Open0, AND short (with a line at 0)) cannot 
cause the observed error on output z1. 

In fact, if such a static fault is acting on line e2, 
then an error would have been propagated to the 
output z2. On the contrary, faults with a dynamic 
effect, i.e. faults with a transition delay (Resistive 
open, Resistive short (with a line at 0), StR, StR & 
STF), this is not the case. In fact, one of these faults 
can affect line e1, and be propagated and observed on 
z1, without any effect on z2 according to the timing or 
electrical parameters of the CUT, and to the fault size. 

Thus, a fault free output analysis can improve the 
diagnosis accuracy by static faults screening in the 
final list. As in [4], this screening process based on 
the use of fault-free outputs can be based on a path 
tracing principle adaptation. 

 
4. Conclusion 

 
The proposed diagnostic method relies on an 

effect cause approach based on CPT process. It 
enables to work without manipulating explicitly the 
fault models. The potential faults leading to the 
observed dysfunctions on the outputs are determined 
solely from an analysis of the effects (errors) 
produced on circuit lines. In comparison with 
previous methods developed on the CPT principle, 
this approach will allow handling a more 
comprehensive and realistic set of fault models in an 
unified manner thus improving the diagnosis 
accuracy and then its overall quality. 
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