
HAL Id: lirmm-00096211
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00096211

Submitted on 19 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unified Framework for Logic Diagnosis
Alexandre Rousset, Patrick Girard, Christian Landrault, Serge

Pravossoudovitch, Arnaud Virazel

To cite this version:
Alexandre Rousset, Patrick Girard, Christian Landrault, Serge Pravossoudovitch, Arnaud Virazel.
Unified Framework for Logic Diagnosis. EWDTW: East-West Design & Test Workshop, Sep 2006,
Sochi, Russia. pp.47-52. �lirmm-00096211�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00096211
https://hal.archives-ouvertes.fr

Unified Framework for Logic Diagnosis

A. Rousset, P. Girard, S. Pravossoudovitch, C. Landrault, A. Virazel
Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier

UMR 5506 UNIVERSITE MONTPELLIER II / CNRS
161 rue Ada, 34392, Montpellier Cedex 05, FRANCE

Abstract

This paper presents a unified diagnosis method

targeting most of the fault models used in practice
today. This framework is intended to be used to
diagnose faulty behaviors in nanometric circuits for
which the classical stuck-at fault model is far to cover
all realistic failures. The method is based on an
Effect-Cause approach which relies on the two
following main operations. The first one is based on
critical path tracing (CPT) [4] and consists in
identifying critical lines in the Circuit Under Test
(CUT) which can be the source of observed errors.
The second one consists in allocating a set of possible
fault models to each critical line, so that root causes
of failures can be finally determined. The main
advantage of this method is that it does not need to
explicitly consider each fault model during the
diagnosis process.

1. Introduction

Failure analysis is an important operation, which

may impact the circuit design and the fabrication
process and has a growing role in fast yield ramping.
Failure analysis first relies on a logical diagnosis
aiming at reducing the potential faulty subparts of the
circuit before using more sophisticated physical tools
in order to precisely locate and identify the defect.
This logical diagnosis process is based on the
knowledge of the structure of the circuit, the applied
test vectors and the responses to these vectors
provided by the tester (test data log).

The objective of logic diagnosis is to locate and
identify failures leading to a CUT erroneous
behaviour. Information provided by the diagnosis
process is therefore used to guide the circuit physical
observation during failure analysis. Thus, the
efficiency of the failure analysis depends on the
resolution of the diagnosis process.

There are two types of diagnosis approaches,
namely Cause-Effect and Effect-Cause. The Cause-
Effect analysis is based on fault simulation. Using

fault simulation, one can built a fault dictionary on
which all the succeeding steps of the logic diagnosis
process will depend. The main advantage of such an
approach is to be able to handle both combinational
and sequential circuits in the same way, even for
circuits not equipped with specific DFT structures.
On the other hand, the Cause-Effect approach exhibits
some drawbacks. The first one is the need to have an
accurate description of the fault models used with the
associated failure effects. If such an accurate
description is manageable for static faults, this is no
longer the case for dynamic faults like delay faults
and/or parametric faults such as resistive shorts and
opens. The second drawback is related to the huge
data volume that should be generated by the fault
simulator particularly for large industrial circuits.

The Effect-Cause approach looks more interesting
as the diagnosis process is performed starting from
the faulty responses. Generally, an Effect-Cause
approach uses a backtracking process originating
from the CUT outputs, such as the Critical Path
Tracing (CPT) process [1]. The Effect-Cause
approach is particularly interesting for the diagnosis
of failures with dynamic and/or parametric effects. Its
application and use for sequential circuits is not so
easy even if researches have been done in this
direction [13]. Nevertheless, its most efficient use
concerns full-scan circuits. In this case, the diagnosis
process can be divided into two main steps. The first
one consists in identifying faulty scan cells from the
external outputs of the CUT on which one or several
errors have been observed during test. Potential
problems introduced by compaction logic (masking,
unknown value) have to be considered during this
step [2][3]. The second step consists in identifying
suspected defects (fault locations and fault types) in
the combinational part of the CUT. This paper deals
with diagnosis in the combinational part of the CUT.

The Effect Cause approach is based on a CPT
process initially developed to diagnose stuck-at faults
[1][4]. Due to advances in manufacturing technologies,
process variations and more aggressive clocking
strategies more and more lead to failures which can no
longer be modelled by classical stuck-at faults.

IEEE EWDTW, Sochi, September 15-19, 2006 47

Numerous actual failures exhibit timing or parametric
behaviours which are not represented by stuck-at
faults. Such failures have to be taken into account in
the testing process in order to reach acceptable DPM
(Defect Per Million) figures. This is the role of
dedicated delay fault testing procedures and IDD
related approaches. Consequently, the CPT process has
been extended and adapted to handle other fault
models such as delay faults [5][6], or short faults [7].
However, a common feature of all the methods
proposed so far is that they handle one single fault
model at a time or scarcely two fault models when the
induced effects are similar [8][9][10]. The problem is
that when an error is observed during test, it does not
exist any deterministic information about the defect
which has caused this error and hence there is any
knowledge of the fault model to be used a priori for the
diagnosis process. As considering each fault model
explicitly is not a viable solution, there is a need to
develop a unified framework for fault diagnosis.

This paper presents such a unified diagnosis
framework. The method is based on an Effect-Cause
approach which relies on the two following main
operations. The first one is based on CPT and consists
in identifying critical lines in the CUT which can be
the source of observed errors. The second one
consists in allocating a set of possible fault models to
each critical line, so that root causes of failures can be
finally determined. The main advantage of this
method is that it does not need to explicitly consider
each fault model during the diagnosis process.

The rest of the paper is organized a follows. In
section 2, the fault models that can be associated with
a given line are described in details. In section 3, we
describe the CPT process as well as the fault model
allocation procedure. Section 4 concludes this paper.

2. Fault models identification associated
with an error

Circuit defects are the result of numerous

problems (localised defects, process variations, etc.)
and lead to different behaviours (logical error, delay,
electrical parameters deviation, etc.). To be handled
efficiently by fault simulation tools, test pattern
generators or diagnostic tools, these faulty behaviours
have been represented by fault models. These models
may represent logical deviations (stuck-at, short,
open), timing deviations (gate/path delay fault) or
parametric errors (resistive short, resistive open). On
the other hand, some defects affect the static
behaviour of the CUT while some others affect the
dynamic behaviour. Faults which affect the dynamic
behaviour, such as delay faults or transistor stuck-

open faults, require a pattern sequence to be detected.
In this study, we consider the following classical fault
models: stuck-at, short (AND/OR bridging), resistive
short, open, resistive open, gate delay, and by
extension path/segment delay, stuck-on and stuck
open faults.

When an error is located on a given line L, this
error can be caused by a defect affecting the line itself
or is due to the propagation of an upstream error. In
the first case, we need to know the fault-free circuit
behaviour to determine the model to be associated
with this defect. Thus, if the expected value on line L
is a logic 0, the following models can be suspected
for the observed error (Figure 1a):
Stuck-at 1 of line L,
Short (OR bridge between line L and another line at
logic 1),
Open (with open line load at 1),
Internal fault inside the upstream gate (transistor N
stuck-open or transistor P Stuck-on),
Resistive open on L or StF (Slow to Fall) delay fault
(if the applied pattern produces a transition on line L),
Resistive short (with all lines at 1, if the applied
vector produces a transition on line L).
Similarly, if the expected value on line L is a logic 1,
the following models can be suspected for the
observed error (figure 1b):
Stuck-at 0 of line L,
Short (AND bridge between line L and another line at
logic 0),
Open (with open line load at 0),
Internal fault inside the upstream gate (transistor P
stuck-open or transistor N Stuck-on),
Resistive open on L or StR (Slow to Rise) delay fault
(if the applied pattern produces a transition on line L),
Resistive short (with all lines at 0, if the applied
vector produces a transition on line L).

Figure 1. Potential fault models associated with an error

on a given line

L=0

Open1

1

Short (OR)

1

Resistive Short
(If L=)

1

Tn Stuck Open

Tp Stuck On

(a)

Delay
(If L=) Sa1

Resistive
open

Sa0

Open0

0
Short (AND)

0

Resistive Short
(If L=)

0

Tn Stuck On

Tp Stuck Open

(b) L=1

Resistive
open

Delay
(If L=)

48 IEEE EWDTW, Sochi, September 15-19, 2006

As it can be seen on Figure 1, faults which affect a
faulty line can be determined assuming the
knowledge of: (i) the expected value on this line, (ii)
the values on others lines (short fault), and, (iii) the
transition induced on this line by the applied pattern
(dynamic fault).

Thus, all the possible fault models associated with
a given logical error can be deduced according to the
fault-free signals on this line as shown in Figure 2. In
this table, we consider both the pattern Vi producing
the error and the previous pattern Vi-1.

Among the fault models considered in Figure 2,
we can see that several models are equivalent in terms
of induced errors. For example, this is the case for
open faults and stuck-at faults. Furthermore, it is
worth noting that resistive shorts represent a subset of
short faults. In fact, resistive short faults require the
same conditions than short faults with an additional
condition on signal transition. Compared to delay
faults which have the same behaviour, resistive short
faults imply the knowledge of the aggressor line, i.e.,
the line shorted to the faulty node.
 Vi-1Vi
 00 11 10

01

Stuck at 0 x x
Stuck at 1 x x
Tn Stuck open (*) x x
Tn Stuck on (*) x x
Tp Stuck open (*) x x
Tp Stuck on (*) x x
Open 0 x x
Open 1 x x
Resistive open x x
Short Or (with any line at 1) x x
Short And (with any line at 0) x x
Resistive Short (with any line at
1)

 x

Resistive Short (with any line at
0)

 x

Delay StF x
Delay StR x
Delay StR & StF x x

Figure 2. Fault models associated to a given error
(*) Stuck-on and Stuck-open faults produce an

error if sequential conditions are fulfilled.

3. Unified diagnosis process

The proposed diagnosis process is based on an

Effect-Cause approach which relies on the two
following main operations. The first one is based on a
CPT process and consists in identifying critical lines
in the CUT. The CPT process uses i) a fault-free
circuit simulation, ii) the critical path tracing
operation itself, iii) an intersection procedure between
critical paths. The second one consists in allocating a
set of possible fault models to each critical line, so

that root causes of failures can be finally determined.
The data needed for the completion of this process are
the following: (i) the gate level circuit description, (ii)
the test pattern list, (iii) the subset of faulty patterns
which exhibit an error during test, and iv) the
corresponding erroneous outputs.

3.1. Fault-free simulation and signal encoding

As previously mentioned, we need to know the

logic value on a given line as well as its previous
value (transition for delay fault, sequential effect for
stuck-on and stuck-open fault ...). So, in order to
make transition propagation possibilities appear
during fault-free circuit simulation, we use a six-
valued logic simulation based on the H6 algebra [14]:

C0 : static 0 = 00
C1 : static 1 = 11
R1 : rising transition = 01
F0 : falling transition = 10
P0 : static 0-hazard = 010
P1 : static 1-hazard = 101
C0 (C1): Static 0 (1), represents a signal

remaining absolutely stable at 0 (1) (whatever gate
propagation delays and timing defects of the circuit
may be).

F0 (R1): Fall (Rise), represents a signal with the
initial value 1 (0) and the final value 0 (1) (after
circuit stabilization)

P0 (P1): Pulse 0 (Pulse 1), represents a signal with
the same initial and final value 0 (1), but with
possible transitions to 1 (to 0) according to circuit
timing parameters or delay faults.

Such an algebra allows an efficient encoding of
the logic values produced by the faulty test pattern, as
well as an encoding of the transitions (R1, F0) and
possibilities of transition (P0,P1) on a given line,
without the need of any timing analysis.

 At the beginning of the fault-free simulation, the
signals to be applied on the circuit’s inputs are
determined from the faulty pattern Vi, and from the
previous pattern Vi-1, applied just before Vi. Thus, for
a given input E, the values to be associated are the
following:

Vi-1 (E) = 0, Vi (E) = 0 => E = C0
Vi-1 (E) = 1, Vi (E) = 1 => E = C1
Vi-1 (E) = 0, Vi (E) = 1 => E = R1
Vi-1 (E) = 1, Vi (E) = 0 => E = F0
Having determined all the input values, the

simulation process consists in propagating these
values towards the circuit outputs thanks to
propagation tables associated to each logic gates.
Propagation tables for classical AND, OR, NOT gates
are shown in figure 3. All other propagation tables
can be easily obtained from these three basic ones.

IEEE EWDTW, Sochi, September 15-19, 2006 49

AND C0 C1 F0 R1 P0 P1
C0 C0 C0 C0 C0 C0 C0
C1 C0 C1 F0 R1 P0 P1
F0 C0 F0 F0 P0 P0 F0
R1 C0 R1 P0 R1 P0 R1
P0 C0 P0 P0 P0 P0 P0
P1 C0 P1 F0 R1 P0 P1

OR C0 C1 F0 R1 P0 P1
C0 C0 C1 F0 R1 P0 P1
C1 C1 C1 C1 C1 C1 C1
F0 F0 C1 F0 P1 F0 P1
R1 R1 C1 P1 R1 R1 P1
P0 P0 C1 F0 R1 P0 P1
P1 P1 C1 P1 P1 P1 P1

IN OUT
C0 C1
C1 C0
F0 R1
R1 F0
P0 P1
P1 P0

Figure 3. Propagation tables of basic gates
For example, let’s consider the circuit in Figure 4.

It has 4 inputs (e1, e2, e3, e4) and 2 outputs (z1, z2).
The pattern pair applied on the circuit inputs is the
following: V1=(0,0,1,0), V2=(1,1,1,1). From these two
patterns, we first deduce the six-valued input vector
V= (R1, R1, C1, R1). Then, the values propagated
during the fault-free simulation process are showed in
Figure 4.

Figure 4. Multi-valued simulation

3.2. Critical path tracing

Critical path tracing has been initially proposed to

handle stuck-at faults [4], and was further adapted to
handle other fault models such as timing faults
[6][11][12], short faults [7], or stuck-open faults [9].
In our approach, the path tracing process is not
directly associated with any fault model. In fact, our
first target is to determine all the critical lines, i.e. all
lines from which a logic error can induced the faulty
behaviour observed at the CUT outputs. The
combination of fault models with critical lines will be
done in a second step. This process can rely on CPT
algorithm developed to stuck-at faults [4].

For example, this CPT process is illustrated in
Figure 5 which is based on the 6-valued simulation
performed on the circuit in Figure 4. The sensitive
inputs of each gate (highlighted with a black dot) are
defined from final logic values of each signal and
with rules provided in [5]. The CPT process begins
from each faulty output z1 and z2. The sets of critical
lines obtained from z1 and z2 are respectively {e2, a, b,
c, d, e, f, g, z1} and {e2, a, c, e, f, g, z2}.

Figure 5. Critical path tracing

For each critical line, the CPT process memorizes
the symbol on this line. After the CPT ending and the
associated intersection process which will be
described later on in the next paragraph, this
associated value will allow us to determine the fault
model(s) to be associated with a given critical line.
Thus, the information provided at the end of the CPT
process is a list of pairs (LC, S) where LC is the
critical line name, and S is the symbol associated with
this critical line. For the example in figure 5, the CPT
process applied to z1 and z2 produces the two
following lists associated with z1 and z2 respectively
{(e2,R1), (a,F0), (b,P0), (c,F0), (d,P1), (e,R1), (f,P1),
(g,R1), (z1,P1)} and {(e2,R1), (a,F0), (c,F0), (e,R1),
(f,P1), (g,R1), (z2,F0)}.

3.3 Identification of critical lines

The CPT process is repeated for all faulty outputs

observed during test. For each faulty output, a critical
line list is created with for each line, the symbol
associated. All potential sites are presents in these
lists. Now, if we assume the single fault assumption,
then the fault location is necessarily present in all
lists. With this assumption and to determine the
possible fault locations, we can do the intersection of
all the lists produced by the CPT process. The
intersection operation is defined as follows:

Let’s take two lists L1 and L2 supplied by CPT
process and Ls = L1 ∩ L2. Ls is defined as the result
of all the intersections between each pair (LCi,Si)1 of
list L1 and each pair (LCj,Sj)2 of list L2. The
intersection of two pairs (LCi,Si)1 ∩ (LCj,Sj)2 is
defined as follows:
- If LCi ≠ LCj or Si ∩s Sj not defined, then
(LCi,Si)1 ∩ (LCj,Sj)2 = ∅
- else LC=LCi=LCj then (LC,Si)1 ∩ (LC,Sj)2 = (LC, Si
∩s Sj)

z1

z2

G1
G2

G3

G4

G5

G6
G7

G8

G9

F0

P0

F0

F0

P1

R1

P1

P1

a

b

c

d

e
g

R1

R1

R1

C1

R1

e1

e2

e3

e4 f

z1

z2

G1

G3

G4

G5

G6
G7

G8

G9

F0

P0

F0

F0

P1

R1

P1

P1

a

b

c

d

e
g

R1

R1

R1

C1

R1

e1

e2

e3

e4 f

« Fail »

« Fail »

G2

50 IEEE EWDTW, Sochi, September 15-19, 2006

with the intersection operation ∩s between symbols of
two critical lines defined in figure 6.

∩s C0 C1 F0 R1 P0 P1 D
C0 C0 - C0 - C0 - -
C1 - C1 - C1 - C1 -
F0 C0 - F0 D F0 D D
R1 - C1 D R1 D R1 D
P0 C0 - F0 D P0 D D
P1 - C1 D R1 D P1 D
D - - D D D D D
Figure 6. Intersection operation between signals

The D symbol, added to the others symbols used
for the simulation, enables to represent a falling or a
rising commutation. This symbol allows
characterizing a temporal fault acting on both
commutation types.

The - symbol represents an undefined intersection.
In this undefined case and with the single fault
assumption, the error observed on this line cannot be
the result of a defect (through its fault model)
affecting this line but only the propagation of an
upstream error. As a consequence, the line can be
removed from the list of the possible defect location.

In order to illustrate this intersection process, let’s
take again the results obtained from the figure 5
assuming that the two outputs z1 and z2 are faulty.
From these two faulty outputs, we have the two
following list of critical pairs:

L1 = {(e2,R1), (a,F0), (b,P0), (c,F0), (d,P1), (e,R1),
(f,P1), (g,R1), (z1,P1)},

L2 = {(e2,R1), (a,F0), (c,F0), (e,R1), (f,P1), (g,R1),
(z2,F0)}.

Using the rules defined previously, the
intersection between L1 and L2 gives the list L12:

L12 = {(e2,R1), (a,F0), (c,F0), (e,R1), (f,P1),
(g,R1)}

Now, if we assume that another faulty pattern Vj
gives a fault-free output z1 and a faulty output z2.
Assuming also that associated with its previous pattern
Vj-1, this gives us the multi-valued pattern
{R1,C0,R1,R1}, figure 7 summarizes the
corresponding simulation.

Figure 7. Critical path tracing

The CPT process starting from output z2 gives the
following critical lines list L3:

L3 = {(e2,C0),(e3,R1),(a,C1),(c,R1),(g,F0),(z2,R1)}
In this case, we can notice that the CPT process

stops at gate G7, defined as non sensitive, then

resumes at fanout c feeding the two inputs of this non
sensitive gate. The details of such a mechanism are
described and can be found in [4].

Applying again the previous intersection rules, the
result of intersection between L3 and L12 is:

L123 = {(c,D),(g,D)}
Although the critical lines e2 and a belong to the

three initial lists, they are not included in the final list
L123. This is due to indefinite intersection between
symbols associated with e2 and a. Moreover, lines c
and d get the D symbol, because these lines are
critical for both falling and rising transitions.

3.4 Fault model allocation

At this stage of the diagnosis process, we have in

hand a reduced list of critical lines for each of which
one symbol is associated with. According to this
symbol, we can associate fault models with each
critical lines as described in the table of figure 8. This
table is an adaptation of the one given in figure 2
taking into account the different symbols manipulated
during the CPT process.

 C0 C1 F0,P0 R1,P1 D
Stuck at 0 x x
Stuck at 1 x x
Tn Stuck open (*) x x
Tn Stuck on (*) x x
Tp Stuck open (*) x x
Tp Stuck on (*) x x
Open 0 x x
Open 1 x x
Resistive open x x x
Short Or (with any line at 1) x x
Short And (with any line at 0) x x
Resistive Short (with any line at
1)

 x

Resistive Short (with line any at
0)

 x

Delay StF x
Delay StR x
Delay StR & StF x x x

Figure 8. Fault models according to symbol associated
to critical line

To illustrate this fault model association process,
let take the example used in the previous paragraph
leading to the final list L123 = {(c,D),(g,D)}. In this
case, the only possible faults associated with critical
lines c and g are:

line c: resistive open, Delay (StR & StF)
line g: resistive open, Delay (StR & StF)

3.5. Using fault-free outputs to static faults
screening

In the same way that done in [4], it is possible to

use the fault-free outputs in the CPT process in order

f

z1

z2

G1
G2

G3

G4

G5

G6
G7

G8

G9

C1

R1

R1

R1

F0

F0

F0

F0

a

b

c

d

e
g

F0

R1

C0

R1

R1

e1

e2

e3

e4

« Pass »

« fail »

IEEE EWDTW, Sochi, September 15-19, 2006 51

to screen critical lines al least for certain kinds of
faults. As example, let’s consider the example of
figure 9.

Figure 9. Static fault screening

Assuming that the critical line list provided from
faulty output z1 is:

L1 = {(e1,C1),(e2,R1),(z1,R1)}
With the previous allocation rules shown in figure

8, the faults associated with the critical line e2 are (see
figure 8, column R1,P1): Sa0, Open0, Resistive open,
AND short (with a line at 0 logic value), StR, StR &
StF.

If we analyze the behaviour of such faults, it is
easy to show that all faults with a static effect (i.e.
Sa0, Open0, AND short (with a line at 0)) cannot
cause the observed error on output z1.

In fact, if such a static fault is acting on line e2,
then an error would have been propagated to the
output z2. On the contrary, faults with a dynamic
effect, i.e. faults with a transition delay (Resistive
open, Resistive short (with a line at 0), StR, StR &
STF), this is not the case. In fact, one of these faults
can affect line e1, and be propagated and observed on
z1, without any effect on z2 according to the timing or
electrical parameters of the CUT, and to the fault size.

Thus, a fault free output analysis can improve the
diagnosis accuracy by static faults screening in the
final list. As in [4], this screening process based on
the use of fault-free outputs can be based on a path
tracing principle adaptation.

4. Conclusion

The proposed diagnostic method relies on an

effect cause approach based on CPT process. It
enables to work without manipulating explicitly the
fault models. The potential faults leading to the
observed dysfunctions on the outputs are determined
solely from an analysis of the effects (errors)
produced on circuit lines. In comparison with
previous methods developed on the CPT principle,
this approach will allow handling a more
comprehensive and realistic set of fault models in an
unified manner thus improving the diagnosis
accuracy and then its overall quality.

5. References

[1] M. Abramovici, P.R. Menon, D.T. Miller, “Critical Path
Tracing – An Alternative to Fault Simulation”, IEEE
Design & Test of Computers, Vol 1, n°1, pp 83-92,
February 1984.
[2] S. Mitra, K.S. Kim, "X-Compact, an Efficient Response
Compaction Technique for Test Cost Reduction",
International Test Conference, pp. 311-320, 2002.
[3] G.Mrugalski, A. Pogiel, J. Rajski, J. Tyszer, C. Wang,
"Fault Diagnosis in Designs with Convolutional
Compactors", International Test Cconference, pp. 498-507,
2004.
[4] M. Abramovici, M. A. Breuer, “Multiple Fault
Diagnosis in Combinational Circuits Based on an Effect-
Cause Analysis”, IEEE Transactions on Computer, vol. c-
29, n°6, pp. 451-460, June 1980.
[5] P. Girard, C. Landrault, S. Pravossoudovitch, “An
Advanced Diagnostic Method for Delay Faults in
Combinational Faulty Circuits”, Journal of Electronic
Testing: Theory and Applications, vol. 6, n°3, pp. 277-293,
1995.
[6] Yuan Chieh Hsu, Sandeep Gupta, “A New Path-
Oriented Effect-Cause Methodology to Diagnose Delay
Failure”, International Test Conference, pp. 758-767, 1998.
[7] Srikanth Vendkataraman, W. Kent Fuchs, « A
Deductive Technique for Diagnosis of Bridging Fault »,
Internationel Conference on Computer Aided Design, pp.
562-567, 1997.
[8] Xinyue Fan, Will Moore, Camelia Hora, Guido
Gronthoud, “A novel Stuck-At Based Method for Transistor
Stuck-Open Fault Diagnosis”, International Test
Conference, session 16, pp. 1-4, 2005.
[9] David B. Lavo, Brian Chess, Tracy Larrabee, F. Joel
Fergusson, “Diagnosing Realistic Bridging Faults with
Single Stuck-At Information”, IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems,
vol.17, n°3, pp. 255-267, March 1998.
[10] Piet Engelke, Ilia Polian, Michel Renovell, Bernd
Becker, “Simulating Resistive Bridging and Stuck-At
Faults”, International Test Conference, pp. 1051-1059,
2003.
[11] P. Girard, C. Landrault, S. Pravossoudovitch, “A
Novel Approach to Delay Fault Diagnosis”, ACM Design
Automation Conference, pp. 357- 360, 1992.
[12] P. Girard, C. Landrault, S. Pravossoudovitch, “Delay
Fault Diagnosis Based on Critical Path Tracing from
Symbolic Simulation”, ISCAS92, IEEE International
Symposium on Circuits and Systems, vol. 3 of 6, pp.1133-
1136, 1992.
[13] P. Girard, C. Landrault, S. Pravossoudovitch, B.
Rodriguez, “Diagnostic of Path and Gate Delay Faults in
Non-Scan Sequential Circuits”, VTS’95: 13th IEEE VLSI
Test Symposium, Princeton, USA, May 1-3, 1995, pp 380-
386.
[14] J.P. Hayes, “Digital Simulation with Multiple Logic
Values”, IEEE Trans. Computer-Aided-Design, vol. 5, n° 2,
pp. 274-283, April 1986.

e1
e2 z1 « Fail » R1

R1

z2 « Pass »

C1

F0

52 IEEE EWDTW, Sochi, September 15-19, 2006

