Minimum implicational basis for \wedge-semidistributive lattices

Philippe Janssen ${ }^{\text {a }}$, Lhouari Nourine ${ }^{\text {b,* }}$
${ }^{\text {a }}$ LIRMM, Université Montpellier II, 161, rue Ada, F34392 Montpellier cedex 5, France
${ }^{\text {b }}$ LIMOS, Université Blaise Pascal, Campus des cézeaux, F63173 Aubiere, France

Received 13 January 2006; received in revised form 21 February 2006; accepted 21 April 2006

Communicated by L. Boasson

Abstract

For a \wedge-semidistributive lattice L, we study some particular implicational systems and show that the cardinality of a minimum implicational basis is polynomial in the size of join-irreducible elements of the lattice L. We also provide a polynomial time algorithm to compute a minimum implicational basis for L. © 2006 Published by Elsevier B.V. Keywords: Algorithms; Lattice; Closure system; Minimum implicational basis

1. Introduction

This paper deals with the computation of a minimum implicational basis for a closure system. Computing a minimum implicational basis for a lattice given by its poset of irreducible elements is an important problem, which has applications to many areas of computer science, in particular to databases and AI [1,4,6,7,10]. For a survey on this problem and related areas, see [3].

The complexity of this problem remains open for general lattices. Recent progress on the status of this problem, and in particular solvability by limited nondeterminism [5], suggests however that this problem is more likely to be expected tractable than intractable [4].

It has been already shown that this problem is tractable for the two classes of locally distributive lattice [2] and of modular lattices [14]. In this paper we

[^0]show by using a dependence relation in [11] that the class of \wedge-semidistributive lattices is another tractable case.

Consider a finite set U. A subset $\mathcal{C} \subseteq 2^{U}$ is said to be a closure system if \mathcal{C} is closed under set-intersection and containing the set U. An implication on U is an ordered pair (A, B) of subsets of U, denoted by $A \rightarrow B$. The set A is called the premise and the set B the conclusion of the implication $A \rightarrow B$. Let Σ be a set of implications on U. A subset $D \subseteq U$ is Σ-closed if for each implication $A \rightarrow B$ in $\Sigma, A \subseteq D$ implies $B \subseteq D$. The set of Σ-closed subsets of U, denoted by $\mathcal{C}(\Sigma)$, is a closure system on U. Conversely, given a closure system \mathcal{C} on U, a family Σ of implications on U is said an implicational basis for \mathcal{C} if $\mathcal{C}=\mathcal{C}(\Sigma)$. An implicational basis is said minimum if it has a minimum number of implications.

In this paper, we study the latticial version of this problem. We view a lattice L as the closure system \mathcal{C}_{L} on the set $J(L)$ of its join-irreducible elements. More precisely, put $J(a)=\{j \in J(L): j \leqslant a\}$ for $a \in L$.

Fig. 1. (a) A lattice L where join-irreducible (resp. meet-irreducible) elements are labeled by letters (resp. numbers); (b) The closure system $c l$ associated to L.

Then $\mathcal{C}_{L}=\{J(a): a \in L\}$ is a closure system on $J(L)$ which, as a lattice ordered by inclusion, is isomorphic to L.

Fig. 1 gives an example of the closure system \mathcal{C}_{L} associated to a lattice L.

The closure system \mathcal{C}_{L} can be defined by the set of its meet-irreducible elements $\mathcal{M}\left(\mathcal{C}_{L}\right)=\{J(m): m \in$ $M(L)\}$, where $M(L)$ denotes the set of meet-irreducible elements of L. Each element of \mathcal{C}_{L} can be obtained as intersection of some elements of $\mathcal{M}\left(\mathcal{C}_{L}\right)$.

The problem we study is:
Problem: Minimum implicational basis
Instance: The set of meet-irreducible elements $\mathcal{M}\left(\mathcal{C}_{L}\right)$ of the closure system \mathcal{C}_{L}.
Question: Find a minimum basis Σ for \mathcal{C}_{L}.
This problem remains open for general lattices. Duquenne [2] has given a latticial version of this problem and shown that it is polynomial for upper locally distributive lattices or antimatroid. Recently, Wild [14] has proposed a polynomial time algorithm to compute an optimal ${ }^{1}$ implicational basis for modular lattices. In the following, we study the case of \wedge-semidistributive lattices. For such lattices we show that the number of implications of a minimum implicational basis is at most $|J(L)|^{2}$ and give a polynomial time algorithm to compute such a basis.

2. Some properties of \wedge-semidistributive lattices

Let L be a finite lattice. We note \vee the join operation, \wedge the meet operation and \prec the cover relation of L. If j is a join-irreducible element of L, we use j_{*} to denote

[^1]the unique element covered by j. Dually, we use m^{*} to denote the unique element covering a meet-irreducible element m.

We will use the arrow relations introduced by Wille [15]: for $x, y \in L, x \downarrow y$ means that x is a minimal element of $\{z \in L: z \nless x\}, x \uparrow y$ means that y is a maximal element of $\{z \in L: z \ngtr y\}$ and $x \uparrow y$ means that $x \uparrow y$ and $x \downarrow y$. Recall that $\uparrow, \downarrow, \downarrow$ are relations defined on $J(L) \times M(L)$, where $J(L)$ is the set of join-irreducible elements and $M(L)$ the set of meet-irreducible elements of L.

In the following, we deal essentially with \wedge-semidistributive lattices. Let us recall that a lattice L is said \wedge-semidistributive if for all elements $x, y, z \in L, x \wedge$ $y=x \wedge z$ implies $x \wedge y=x \wedge(y \vee z)$. A \wedge-semidistributive lattice is said semidistributive if for all elements $x, y, z, x \vee y=x \vee z$ implies $x \vee y=x \vee(y \wedge z)$. The following characterization of these lattices are well known (see, for example, [6]):

Property 1. A finite lattice L is \wedge-semidistributive if and only if for any $j \in J(L)$ there exists a unique $m \in$ $M(L)$ such that $j \downarrow m$.

For any \wedge-semidistributive lattice L and $j \in J(L)$, we denote by $m(j)$ the unique element $m \in M(L)$ such that $j \downarrow m$.

We define the mapping $\gamma: J(L) \rightarrow 2^{M(L)}$ by $\gamma(j)=$ $\{m \in M(L): j \downarrow m\}$. This mapping was introduced in [12] to define colored posets, which provides a new representation for lattices, and specially for upper locally distributive lattices. Fig. 2 shows the γ mapping of the lattice of Fig. 1. Note that this lattice is semidistributive.

We consider one of the standard dependence relations defined on join-irreducible elements (assuming

402
34

4

	1	2	3	4	5	6	7	γ
a						\uparrow	\downarrow	$\{6,7\}$
b				\uparrow	\downarrow	\uparrow		$\{4,5\}$
c			\uparrow					$\{3\}$
d			\uparrow		\uparrow			$\{5\}$
e			\uparrow		\uparrow		\uparrow	$\{7\}$
f		\uparrow		\downarrow			\uparrow	$\{2,4\}$
g	\uparrow	\downarrow		\downarrow				$\{1,2,4\}$

Fig. 2. The arrow relations and mapping γ of the lattice in Fig. 1.

Fig. 3. The graph of the B relation for the lattice in Fig. 1.
that the lattice L is \wedge-semidistributive) as follows (see, for example, $[8,11])$:

Let $j, j^{\prime} \in J(L)$.
Then $j B j^{\prime} \quad$ iff $\quad j \neq j^{\prime}, j^{\prime} \nless m(j), j_{*}^{\prime} \leqslant m(j)$.
For an illustration of that definition, see Fig. 3.
There are relationships between the existence of cycles in the graph of the relation B and some classes of lattices. For example, Nation has shown that a \wedge-semidistributive lattice is semidistributive if and only if it contains no B-cycle of length 2 [11].

The following lemma gives a rewriting of the definition of the relation B using the mapping γ.

Lemma 1. Let L be a \wedge-semidistributive lattice, $j, j^{\prime} \in$ $J(L)$.
$j B j^{\prime} \quad$ iff $\quad j \neq j^{\prime}$ and $m(j) \in \gamma\left(j^{\prime}\right)$.

3. Minimum implicational basis for \wedge-semidistributive lattices

In this section, we give a polynomial time algorithm to compute a minimum implicational basis for a \wedge-semidistributive lattice.

We start with two technical lemmas on closed sets of a closure system \mathcal{C}_{L}. The first one is obvious since the elements of \mathcal{C}_{L} are order ideals of the induced poset by $J(L)$.

Lemma 2. Let $j, j^{\prime} \in J(L)$ such that $j<j^{\prime}$ and $X \in$ \mathcal{C}_{L}. Then $j^{\prime} \in X$ implies $j \in X$.

Consider now a \wedge-semidistributive lattice L and $j, j^{\prime} \in J(L)$ such that $j B j^{\prime}$. We denote by $P_{j j^{\prime}}$ the set $J\left(j_{*}\right) \cup J\left(j^{\prime}\right)$.

Lemma 3. Let L be a \wedge-semidistributive lattice and $j, j^{\prime} \in J(L)$ such that $j B j^{\prime}$ and $X \in \mathcal{C}_{L}$. Then $P_{j j^{\prime}} \subseteq X$ implies $j \in X$.

Proof. Let $x \in L$ such that $X=J(x)$ and $P_{j j^{\prime}} \subseteq X$. Since $J\left(j_{*}\right) \subset X$ this implies that $j_{*} \vee j^{\prime} \leqslant x$, and then it suffices to prove that $j \leqslant j_{*} \vee j^{\prime}$.

Suppose that $j \not j_{*} \vee j^{\prime}$ and let $m^{\prime} \in M(L)$ be a maximal element of $\left\{z \in L \mid z \ngtr j\right.$ and $\left.z \geqslant j_{*} \vee j^{\prime}\right\}$. By definition of m^{\prime}, we have $j \uparrow m^{\prime}$. Moreover $j \downarrow m^{\prime}$ since $j_{*} \leqslant m^{\prime}$. Thus $j \rightsquigarrow m^{\prime}$.

Consider now the meet-irreducible $m(j)$ associated with j. Then $j^{\prime} \nless m(j)$ since $j B j^{\prime}$. Thus since $j^{\prime} \leqslant m^{\prime}, m^{\prime}$ and $m(j)$ are two distinct elements such that $j \downarrow m^{\prime}$ and $j \downarrow m(j)$. This contradicts the fact that L is \wedge-semidistributive.

We can now define a particular set of implications associated to a \wedge-semidistributive lattice L. Let $\Sigma_{1}=$ $\{j \rightarrow J(j)\}, \Sigma_{2}=\left\{P_{j j^{\prime}} \rightarrow j \mid j^{\prime} \in J(L)\right.$ and $\left.j B j^{\prime}\right\}$ and $\Sigma=\Sigma_{1} \cup \Sigma_{2}$.

For example, the sets of implications Σ_{1} and Σ_{2} for the lattice in Fig. 1 are $\Sigma_{1}=\{b \rightarrow a b, d \rightarrow c d, e \rightarrow$ $c d e, f \rightarrow c d e f, g \rightarrow c d g\}$ and $\Sigma_{2}=\{a c d \rightarrow e, a b c \rightarrow$ d, acdef $\rightarrow b$, acd $g \rightarrow b, c d e g \rightarrow f\}$.

The following theorem shows that Σ is an implicational basis for \mathcal{C}_{L}.

Theorem 1. Let L be a \wedge-semidistributive lattice. Then the set of implications Σ is an implicational basis for \mathcal{C}_{L}.

Proof. We need to show that $\mathcal{C}_{\Sigma}=\mathcal{C}_{L}$.
Let $X \in \mathcal{C}_{L}$. By Lemma $2, X$ is Σ_{1}-closed. By Lemma 3, X is Σ_{2}-closed. Then X is Σ-closed and $\mathcal{C}_{L} \subseteq \mathcal{C}_{\Sigma}$.

Now let us show that $\mathcal{C}_{\Sigma} \subseteq \mathcal{C}_{L}$. Let $X \in \mathcal{C}_{\Sigma}$. Let $x_{0}=\bigvee X$, i.e., the least closed set containing X. Clearly X is an ideal since it is Σ_{1}-closed. Suppose that $X \notin \mathcal{C}_{L}$ and let j be a minimal element of $J\left(x_{0}\right) \backslash X$. Since $j \leqslant$ x_{0}, we have $x_{0} \nless m(j)$. Moreover $X \nsubseteq J(m(j))$, otherwise one would have $\bigvee X \leqslant m(j)$ and then $\bigvee X \neq x_{0}$. Thus there exists an element $j^{\prime} \in X$ such that $m(j) \in$ $\gamma\left(j^{\prime}\right)$ and therefore $P_{j j^{\prime}} \rightarrow j \in \Sigma$ with $P_{j j^{\prime}} \subseteq X$ and $j \notin X$. Then X is not Σ-closed, which concludes the proof.

Corollary 1. Let L be $a \wedge$-semidistributive lattice. Then there exists an implicational basis for \mathcal{C}_{L} with at most $|B|+|J(L)|$ implications, where $|B|$ is the number of arcs in the relation B.

```
Data: Let \(L\) be a \(\wedge\)-semidistributive lattice and \(\mathcal{M}\left(C_{L}\right)\) the set of meet-irreducible elements of \(\mathcal{C}_{L}\).
Result: A minimum basis \(\Sigma\) of the closure system \(C_{L}\). begin
\(\Sigma=\emptyset ;\)
for \(j \in J(L)\) do
\[
\Sigma=\Sigma \cup\{j \rightarrow \varphi(j)\}
\]
for \(j^{\prime} \in J(L)\) do \(P=(\varphi(j)) \backslash\{j\} \cup \varphi\left(j^{\prime}\right) ;\) \(\Sigma=\Sigma \cup\{P \rightarrow(P)\} ;\)
\(\Sigma=\) a nonredundant cover of \(\Sigma ;\)
end
```

$$
\text { Algorithm 1. Minimum- } \operatorname{Basis}\left(\mathcal{M}\left(C_{L}\right)\right)
$$

Clearly the set Σ of implications obtained as above is in general not minimum. For instance, for the set Σ associated to the lattice in Fig. 1, the implication $a c d g \rightarrow b$ is redundant ${ }^{2}$ and can be removed from Σ without changing $\mathcal{C}(\Sigma)$.

In the following we give a polynomial time algorithm to compute a minimum basis for a \wedge-semidistributive lattice.

3.1. Algorithm

This is based on Theorem 1 and the algorithm in [13]. Indeed, the algorithm in [13] computes a minimum basis (called there a minimum cover) from any given basis in polynomial time.

Let $\mathcal{M}\left(\mathcal{C}_{L}\right)$ be the set of meet-irreducible elements. Consider the closure operator $\varphi: 2^{J} \rightarrow 2^{J}$, with for $X \subseteq$ $J, \varphi(X)=\bigcap\left\{M \in \mathcal{M}\left(\mathcal{C}_{L}\right) \mid X \subseteq M\right\}$. The images of the mapping φ are said closed sets, and they correspond to the elements of the closure system \mathcal{C}_{L}.

Remark 1. We replaced $P \rightarrow j$ by $P \rightarrow \varphi(P)$ to guarantee the minimality after the calculation of a nonredundant cover of Σ.

Remark 2. Let us note that Algorithm 1 does not compute the same Σ as that of Theorem 1. This to avoid the computation of the relation B. But like the whole of the implications calculated by Algorithm 1 contains all implications of Theorem 1 (relative with the preceding remark), this guaranteed to us to have a cover of \mathcal{C}_{L}.

Theorem 2. Let L be a \wedge-semidistributive lattice. Then Algorithm 1 computes a minimum implicational basis Σ

[^2]of \mathcal{C}_{L} in $\mathrm{O}\left(|J|^{5}+|J|^{3}\left|\mathcal{M}\left(\mathcal{C}_{L}\right)\right|\right)$ time complexity. Moreover, the size of Σ is at most $|J(L)|^{2}$ implications.

Proof. Theorem 1 guarantees that Σ is a basis for the closure system \mathcal{C}_{L}. Since the conclusions of all implications are closed by the mapping φ, the result in [13] guarantees that a not redundant basis is minimum.

Computing the closure of a set $X \subseteq J(L)$ by φ can be done in $\mathrm{O}\left(\left|J(L) \| \mathcal{M}\left(\mathcal{C}_{L}\right)\right|\right)$ time complexity. Thus the total time complexity for computing a basis is in $\mathrm{O}\left(|J(L)|^{3}\left|\mathcal{M}\left(\mathcal{C}_{L}\right)\right|\right)$. Now computing a not redundant basis can be done in $\mathrm{O}\left(|J(L)||\Sigma|^{2}\right)$. Since Σ has at most $|J(L)|^{2}$ implications, we conclude that the time complexity of Algorithm 1 is in $\mathrm{O}\left(|J(L)|^{5}+\right.$ $\left.|J(L)|^{3}\left|\mathcal{M}\left(\mathcal{C}_{L}\right)\right|\right)$.

Uncited references

[9]

Acknowledgements

The authors are very grateful to the referees for very helpful comments.

References

[1] N. Caspard, B. Monjardet, The lattices of closure systems, closure operators, and implicational systems on a finite set: A survey, Discrete Applied Mathematics 127 (2) (2003) 241-269.
[2] V. Duquenne, The core of finite lattice, Discrete Mathematics 88 (1991) 133-147.
[3] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and related problems, SIAM Journal on Computing 24 (6) (1995) 1278-1304.
[4] T. Eiter, G. Gottlob, Hypergraph transversal computation and related problems in logic and AI, in: European Conference on Logics in Artificial Intelligence (JELIA'02), 2002, pp. 549-564.
[5] M.L. Fredman, L. Khachiyan, On the complexity of dualization of monotone disjunctive normal forms, Journal of Algorithms (21) (1996) 618-628.
[6] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer-Verlag, Berlin, 1996.
[7] J.L. Guigues, V. Duquenne, Families minimales d'implications informatives resultant d'un tableau de donnes binaires, Mathétiques et Sciences humaines 95 (1986) 5-18.
[8] R. Freeze, K. Jezek, J.B. Nation, Free Lattices, American Mathematical Society, Providence, RI, 1995.
[9] P. Janssen, L. Nourine, A simplicial scheme for meet-semidistributive lattices and interval collapsing, Universalis Algebra 50 (2) (2003) 171-178.
[10] D. Maier, The Theory of Relational Data Bases, Computer Science Press, Rockville, MD, 1983.
[11] J.B. Nation, Unbounded semidistributive lattices, Algebra and Logic 39 (2000) 87-92.
[12] L. Nourine, Une structuration algorithmique de la théorie des treillis, Habilitation à diriger des recherches, Université de Montpellier II, France, July 2000.
[15] R. Wille, Subdirect decomposition of concept lattices, Algebra Universalis 17 (1983) 275-287.

[^0]: * Corresponding author.

 E-mail addresses: pja@lirmm.fr (P. Janssen), nourine @ isima.fr (L. Nourine).

 0020-0190/\$ - see front matter © 2006 Published by Elsevier B.V. doi:10.1016/j.ipl.2006.04.004

[^1]: 1 An implication is known as optimal if the sum of the cardinality of the premises and the conclusions of all the implications is minimal.

[^2]: ${ }^{2}$ An implication $A \rightarrow B$ in Σ is said redundant in Σ if it can be derived using Armstrong rules from $\Sigma \backslash\{A \rightarrow B\}$.

