
HAL Id: lirmm-00102627
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102627

Submitted on 7 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy Data Mining for the Semantic Web: Building
XML Mediator Schemas

Anne Laurent, Pascal Poncelet, Maguelonne Teisseire

To cite this version:
Anne Laurent, Pascal Poncelet, Maguelonne Teisseire. Fuzzy Data Mining for the Semantic
Web: Building XML Mediator Schemas. Capturing Intelligence, 1, Elsevier, pp.249-264, 2006,
�10.1016/S1574-9576(06)80014-6�. �lirmm-00102627�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102627
https://hal.archives-ouvertes.fr

Fuzzy Data Mining for the Semantic Web:

Building XML Mediator Schemas

A. Laurent a P. Poncelet b M. Teisseire a

aLIRMM - CNRS UMR 5506
161, rue Ada

34392 Montpellier Cedex 5 - FRANCE
{laurent,teisseire}@lirmm.fr

bLGI2P
EMA - Site EERIE - Parc scientifique G. Besse

30035 Nı̂mes Cedex 1 - FRANCE
pascal.poncelet@ema.fr

Abstract

As highlighted by the World Wide Web Consortium, XML has been proposed to
deal with huge volumes of electronic documents and is playing an increasing im-
portant role in the exchange of a wide variety of data on the Web. However, when
dealing with such large and heterogeneous data sources, it is necessary to have an
idea on the way these data sources are structured. This information is indeed es-
sential in order to build mediator schemas. These mediator schemas are required to
query data in a uniform way. Moreover, this information is interesting since it pro-
vides users with a semantic structure of the data they can query. Recently schema
mining approaches have been proposed to extract in an efficient way the commonly
occurring schemas from a collection. Nevertheless, according to the semantic point
of view, such approaches suffer from different drawbacks. In this work, we propose
thus a fuzzy approach, showing why and how fuzziness is useful in order to extract
frequent approximate schemas.

Key words: Fuzzy Logic, Semi-Structured Data, Mediator Schemas, XML,
Semantic Structures, Frequent Patterns

1 Introduction

Large amounts of data are available in XML format, and even if large volumes
of legacy data are still marked up in HTML, efficient approaches have been

Preprint submitted to Elsevier Science 29 March 2005

proposed to transform HTML documents into XML documents [12]. These
XML documents, stored in many sources distributed over the Web, contain
useful information. For instance, many scientists have to manage and share
large amounts of data (e.g. biologists have to deal with huge amounts of com-
plex data). In this framework, XML is of great interest in order to represent
this complicated knowledge.

Recently, sharing data has become very popular. For instance, Peer-based
Data Management [23,14] has become a great challenge for scientific data
sharing, as Peer-to-Peer (P2P) systems are becoming more and more popu-
lar. Nevertheless the information stored in heterogeneous collections of XML
documents has to be integrated in order to be processed or to be queried in
a uniform way. In all fields like biology and medicine, there will never be a
centralized database, which would be impossible to build. Scientists need thus
to be provided with tools in order to reach the data they require from multiple
databases. Database concepts can help to solve these problems. One result of
the research led in data integration and in database federations is mediator-
based information systems [13]. For instance, Xyleme is a huge warehouse
integrating XML data on the Web [30]. This integration can be performed
by providing mediator schemas. A mediator schema can be considered as a
shared structure through which queries can be defined [15], as shown on Fig-
ure 1. However, no complete automatic tool is available to extract semantic
knowledge from these large amounts of distributed and heterogeneous data. It
is indeed still hardly possible to automatically build mediator schemas, which
are thus still hand-crafted.

Fig. 1. Querying Data Distributed over the Web

In the past few years, data mining has been extensively studied in the frame-
work of the semantic web. In this paper, we consider the problem of mining
XML mediator schemas from a database perspective. By considering that a
collection of XML documents could be modelled by labelled ordered trees [1,6]

2

(e.g. Figure 2 illustrates such a transformation [19]), we focus on schema min-
ing which provides tools to mine frequent sub-schemas from large databases.

Articles

Sigmod
Record

Title endPage initPage Authors

Article

Issue

Volume Number

<SigmodRecord>
<Issue>

<Volume>19</Volume>
<Number>7</Number>

<Article>
<Title>Example XML</Title>
<initPage>2</initPage>
<endPage>3</endPage>
<Authors>

<Author>Peter</author>
</Authors>

</Article>

</SigmodRecord>
</Issue>

<Articles>

</Articles>

<Articles>

Author

Fig. 2. An XML document modelled by a labelled ordered tree

These frequent sub-schemas are then merged in order to build mediator schemas.
We show that schema mining approaches have some drawbacks and that a
fuzzy approach is very useful to mine approximate schemas. Moreover, fre-
quent mediator schemas mined from our approach provide an interesting
source of information about the data available on the web since these schemas
can be seen as semantic structures describing the information. Our approach
is based on the definition of the tree inclusion. We define several ways to in-
troduce fuzzy logic in this problem. The main idea is to propose a definition of
soft inclusion, meaning that a tree is no more included or not in another one,
but gradually included within it. A degree of inclusion is defined, depending on
the way the fuzzy inclusion is considered. Finally, we introduce fuzzy frequent
patterns which aim at representing the strength of the links from a frequent
tree.

The sequel of the paper is organized as follows. Section 2 goes deeper into
presenting the problems of schema mining. In Section 3 we propose our moti-
vations for introducing fuzzy logic in order to provide approximate mediator
schemas. Section 4 addresses the Fuzzy Tree Inclusion while in Section 5 we
propose to extend the knowledge on the mined semantic structures by provid-
ing fuzzy links within the frequent trees. Section 6 concludes the paper.

3

2 Schema Mining Principles

This section is devoted to stating the schema mining principles. As proposed
approaches are mainly extensions of level-wise approach for candidate and fre-
quent generation, we first propose an overview of the association rules problem.
Second we consider the schema mining problem. We broadly summarize the
problem statement and give an overview of the core of this process.

2.1 A Brief Overview of the Association Rules Problem

The problem of mining association rules, firstly introduced in 1993 in [2], has
received a great deal of attention. In brief, the problem is the following.

Let I = {x1, . . . , xn} be a set of distinct literals called items. A set X ⊆ I
with k = |X| is called a k-itemset or simply an itemset. Let a database D be
a multi-set of subsets of I. Each T ∈ D is called a transaction. We say that a
transaction T ∈ D supports an itemset X ⊆ I if X ⊆ T holds. An association
rule is an expression X ⇒ Y, where X, Y are itemsets and X∩Y = ∅ holds. The
fraction of transactions T supporting an itemset X with respect to database
D is called the support of X, supp(X) = |{t ∈ D|X ⊆ T}|/|D|. The support
of a rule X ⇒ Y is defined as supp(X ⇒ Y) = supp(X∪Y). The confidence of
the rule is defined as conf(X ⇒ Y) = supp(X ∪ Y)/supp(X). As the number
of rules grows exponentially with |I|, the rule sets are typically restricted by
minimal thresholds for the measures of support and confidence, minSupp and
minConf respectively.

According to this restriction, the problem can thus be decomposed into two
subproblems:

• Find all itemsets having support greater than or equal to minSupp where
the support for an itemset is defined as the number of transactions that
support the itemset. Such itemsets are called frequent itemsets.
• Use the frequent itemsets to generate the set of rules according to minConf.

As solving the second subproblem is straightforward we will now have a look
on how to obtain efficiently itemsets. In [3], the Apriori algorithm was defined
to mine such associations. It makes multiple scans over the data (level-wise
approach). In the first scan, the support of individual items is counted in order
to determine which items are frequent. These frequent items are thus called
frequent 1-itemsets. From them, new 2-candidates considered as potentially
frequent itemsets are generated. A new scan is performed on the database in
order to verify the support of each 2-candidate. The process goes on until no
new frequent itemset is found.

4

2.2 Schema Mining: Problem Statement

Firstly introduced by [27,28], schema mining has attracted a lot of attention
[5,26,33,37]. The problem is much more complicated than the classical asso-
ciation rule one since complex structures in the form of labelled hierarchical
partially ordered data have to be considered.

The problem could be formulated as follows. A rooted labelled tree T = (V, E)
is a direct, acyclic, connected graph with V = {0, 1, . . . , n} as the set of vertices
(nodes), E = {(x, y)|x, y ∈ V } as the set of edges. We assume that there is a
special vertex r ∈ V designated as a root and for all x ∈ V , there is a unique
path from r to x. Then if x, y ∈ V and if there is a path from x to y then
x is called an ancestor of y (i.e. y is a descendant of x). If the length of the
path from two vertices x, y is reduced to one, then the ancestor relationship
is considered as a parent relationship. For an internal node x ∈ V , we assume
that its children x1, x2, . . . , xn (n ≥ 0) are ordered from left to right (i.e. there
is a sibling relationship between children).

Let denote supp(S) the number of occurrences of the subtree in a tree T . The
support of a subtree in a database D is defined as the number of trees in D
that contain at least one occurrence of S. A subtree is frequent if its support is
greater than or equal to a user-specified minimum support (minSupp) value.
The schema mining problem is thus reduced to mine all subtrees in D where
the support value holds.

The core of the process for mining frequent subtrees is usually quite similar
to the association rule approach and is briefly described in algorithm 1. The
Gen Cand function builds candidates. If k = 1 then all nodes are considered
as potential subtree candidates. Otherwise, candidates of size k (i.e. having
k nodes) are built by considering frequent subtrees of size k − 1. At each
step a scan is performed over the database in order to verify if the minSupp
constraint holds. The process goes on until no new frequent subtree is found.
Refer to [5,38] for details.

3 Why considering Fuzzy Approaches

From the problem statement presented so far, one problem remains about
the subtree inclusion. In [16], the author defines ten different tree inclusion
relations and in [24], different definitions are proposed for strict, exact, ordered
and weak tree inclusion. Let us have a closer look on these inclusion differences.

• The strict constraint addresses the labels of trees. When two nodes of dif-

5

Algorithm 1: Mining Frequent SubTrees

Data: Tree Database D
Result: Frequent Subtrees F

F ← ∅;
k ← 1;
repeat

Ck ← Gen Cand(k);
foreach c ∈ Ck do

c.cpt← 0;
foreach T ∈ D do

if c is a subtree of T then

c.cpt++;

/* minSupp stands for a user-specified minimum support value */
if c.cpt ≥ minSupp then

F ← F ∪ {c};

k++;

until F does not grow any more;

ferent trees have similar labels then the inclusion is called strict.
• When the parent relationship is preserved, the inclusion is exact and the

subtree is called induced. Otherwise, i.e. when the ancestor relationship is
preserved, the inclusion is not exact and the subtree is called embedded.
• If the children order is preserved the inclusion is ordered.
• When two labels of a tree correspond to a unique label into the other tree,

the inclusion is called weak.

Figure 3 gives examples of a tree S included in a tree T .

E

A

B C

A

CB D

S T

A

C

T

B D

A AA

D

AA

D

S

DC B

S T

D B C

E

E

Induced and Ordered Embedded and Ordered

Embedded and UnorderedInduced and Unordered

S T

B C

E

D

Fig. 3. Inclusion examples

6

According to the previous inclusion definitions, lot of algorithms were proposed
for mining subtrees. Generally they consider strict and not weak inclusions.
For example, in [27,28], the authors propose a new approach for discover-
ing frequently occurring subtrees in XML documents. This algorithm is an
extension of the level-wise Apriori approach where induced subtrees are con-
sidered. The FreqT approach proposed in [5,7] also considers induced and
ordered trees and an Apriori-like algorithm is proposed. In [36], TreeMiner

was defined to mine labelled, embedded, and ordered subtrees. This work was
extended in order to build a structural classifier for XML data [38]. In [37],
the author introduces Sleuth for mining frequent, unordered and embedded
subtrees. The TreeFinder algorithm [25] also considers embedded trees and
its extension Dryade [26] considers closed frequent subtrees, i.e. trees not
any more included in another one. Other approaches such as gSpan [32] and
closeGraph [33] generalize the problem by mining subgraphs.

These works mainly focus on the database scan and on data representation in
order to propose scalable algorithms. Furthermore all the existing approaches
consider crisp inclusion when mining frequent subtrees, i.e. a subtree is in-
cluded or not into another one, which is too restrictive from a semantic point
of view. In order to avoid this crisp inclusion problem, we propose to fuzzify
this definition in order to better describe the data available on the Web. It is
indeed very interesting to mine approximate schemas in order to have a better
idea of the semantic structures we are provided with.

In a general framework, some works have been proposed in order to integrate
fuzzy mining methods with the web [4,20]. In the more precise framework
of tree and semi-structured data mining, some works have been proposed,
especially to deal with approximate tree matching. [11] introduces a method to
compare XML documents based on fuzzy bags. In [10,9], XML data are mined
to build clusters of XML data, thus defining a distance measure between XML
documents. [29] proposes an approximate method for graph schema extraction.
Approximation is achieved by summarizing the semi-structured data graph
using an incremental clustering method.

However as far as we know, no fuzzy method for mining frequent subtrees
from huge databases has been proposed. We propose thus:

• to define the notion of fuzzy tree inclusion within this framework and
• to mine fuzzy frequent patterns.

7

4 Fuzzy Tree Inclusion

As shown on algorithm 1, a tree candidate has to be fully included within a
tree from the database to be considered when computing its support. In this
work, we argue that a tree may be considered to a certain extent within this
computation even if it not fully included. For this purpose, we define four ways
to consider fuzzy inclusion of a tree within another one:

• The first way aims at considering the vertical paths of trees. Contrary to in-
duced one, embedded inclusion allows us to soften the ancestor-descendant
relationship. Nevertheless, no methods exist to control this degree of rela-
tionship.
• In the second way, we address the horizontal paths of trees. While classical

approaches consider that sibling nodes are ordered or not, there is no way
to consider the proportion of sibling nodes included.
• The third way generalizes the previous one by considering the proportion

of nodes.
• The last one considers similarities between nodes.

These definitions are then integrated within a new algorithm (algorithm 2)
which mines frequent subtrees in a fuzzy way. They aim at describing the
extent to which a tree is included in another one. While classical approaches
deal with crisp inclusion, meaning that a tree is or is not included within
another one, we propose to use a degree, defined between 0 and 1. The four
ways this degree can be obtained are described below. It corresponds to four
ways the function Fuzzy Inclusion Degree from algorithm 2 may be defined.

In algorithm 2, the degree cpt of a candidate is updated after each tree scan-
ning by the Compute new cpt function. Several possibilities are given when
merging these degrees, depending on the way the counting is performed. These
possibilities are described in algorithm 3 by considering several counting meth-
ods: sigma-count, thresholded-count, thresholded sigma-count. This method is
supposed to be known, as well as the associated threshold value ω if necessary.

For all these four ways fuzzy inclusion may be defined. We consider a node
by node computation as done in the classical approach. However, this compu-
tation does not aim at matching exactly one node from the candidate tree to
another one from the database tree but rather to compute to which extend
a node corresponds to another one. This computation node by node leads to
a degree deg returned by a Fuzzy Match function. This function takes into
account the node n being considered, the tree S from which this node is origi-
nated, and the target tree T . The tree S has to be considered in order to keep
the tree structure, and not only the nodes without any connections. We have
thus to deal with a set of fuzzy degrees, ranging between 0 and 1 to be merged

8

Algorithm 2: Mining Fuzzy Frequent SubTrees

Data: Tree Database D
Result: Frequent Subtrees F

F ← ∅;
k ← 1;
repeat

Ck ← Gen Cand(k);
foreach c ∈ Ck do

c.cpt← 0;
foreach T ∈ D do

c.cpt← Compute new cpt(c.cpt, Fuzzy Inclusion Degree(c, T));

/* minSupp stands for a user-specified minimum support value */
if c.cpt ≥ minSupp then

F ← F ∪ {c};

k++;

until F does not grow any more;
return F ;

Algorithm 3: Merging Fuzzy Degrees. Compute new cpt Function.

Data: od: old degree, i: degree of fuzzy inclusion to be merged

Result: d: new degree

if counting method = sigma-count then

d← od + i;

/* ω stands for a user-specified minimum degree */
if counting method = thresholded count with minimum degree ω then

if i ≥ ω then

d← od + 1;

else

d← od;

if counting method = thresholded sigma-count with minimum degree ω then

if i ≥ ω then

d← od + i;

else

d← od;

return d;

in order to compute the Fuzzy Inclusion Degree.

In order to provide the user with a large set of solutions, we consider the OWA
operators (Ordered Weighted Aggregator) [31], as illustrated by algorithm 4.

9

An OWA operator of dimension n is a mapping

F : Rn → R

that has an associated n vector W = (w1, w2, . . . , wn)
T such that wi ∈ [0, 1]

and
∑n

i=1
wi = 1. We have F (a1, a2, . . . , an) =

∑n
j=1

wj · bj where bj is the jth

largest value of the ai.

In this framework, it is thus possible to compute the final degree in multiple
ways. In the most pessimistic way, the minimum is computed (logical and),
representing the lower boundary. In the very optimistic way, the maximum
is computed (logical or), representing the upper boundary. Between these two
boundaries, all possibilities are offered by tuning the weights, defining several
degrees of andness/orness. The measure of orness is defined as follows:

orness(W) =
1

n− 1

n∑

i=1

((n− i) · wi)

The measure of andness is defined as andness(W) = 1− orness(W).

Therefore, the user can choose whether he wants all nodes to be similar, some
of them (using any desired degree of andness/orness), or at least one in a very
flexible manner.

Algorithm 4: Computing the Fuzzy Inclusion Degree.
Fuzzy Inclusion Degree Function.

Data: S candidate tree, T target tree

Result: Fuzzy Degree d ∈ [0, 1]

foreach node n ∈ S do

degn ← Fuzzy Match(n, S, T);

d← OWA
|S|
n=1degn;

return d;

Note that all the OWA operators are not associative. This is the reason why
the computation of the degree d in algorithm 4 can only be done after the
whole scan of the database. In some cases, this degree is computed using an
associative operator (e.g. minimum), which allows for computing it on the
fly. This way, it may be possible to cut off the calculus. For instance, when
computing the minimum, the process can be stopped as soon as the degree
becomes lower than the minimum threshold, if one threshold is considered in
algorithm 3.

10

4.1 Fuzzy Vertical Paths

Let us consider fuzzy indirect links within trees. For instance, Figure 4 shows a
tree S which is embedded within a tree T . When taken into account, embedded
trees are counted within the final support whatever the ancestor-descendant
relationship may be. There is no consideration of the number of nodes separat-
ing the ancestor node from the descendant one. Even if it is of great interest
to consider two nodes as being related even if they are not directly linked, we
argue that it becomes irrelevant to consider that two nodes are related if they
are separated by a high number of nodes.

C

AA

C

S T

B

Fig. 4. Fuzzy Vertical Paths

In our approach, we propose thus to give a scope to this ancestor-descendant
relationship. This scope is defined considering the number of nodes between
ancestor and descendant nodes. Since it does not make sense to consider crisp
boundaries, we propose to consider a fuzzy scope for the ancestor-descendant
relationship. We consider fuzzy membership functions describing the ancestor-
descendant relationship depending on the number of nodes separating the two
nodes being considered, as shown on Figure 5 when considering no more than
five nodes in a fuzzy way. For this purpose, we use fuzzy quantifiers [34,35].
Fuzzy set theory enables to represent fuzzy quantifiers, such as at least 2,
most, by membership functions (as illustrated by Figure 5 and Figure 7).
In this framework, absolute quantifiers like at least 2 are distinguished from
relative ones (most for instance).

Fig. 5. Fuzzy Ancestor-Descendant Degree. Absolute Fuzzy Quantifier.

The Fuzzy Inclusion Degree from algorithm 2 is then computed by merging
the degrees to which nodes can be matched. This matching degree results from

11

the extend to which a node may be linked to another one within a user-defined
fuzzy ancestor-descendant relationship.

4.2 Fuzzy Horizontal Paths

In this section, we now consider fuzzy level inclusion. When considering or-
dered trees in the crisp approaches, a subtree S is included within a tree T
only if all nodes of S can be mapped to nodes of T in the same order. In our
approach, we propose to soften this definition by considering the proportion
of nodes being included and well-ordered. For instance, Figure 6 shows an or-
dered tree S which is not embedded within an ordered tree T in the classical
approaches since one of the node is misordered.

T

C

AS

B D

A

DB C

Fig. 6. Fuzzy Horizontal Paths

In our approach, we consider S as being included in T with a certain degree
since the other nodes satisfy the inclusion. This degree is reported in the
Fuzzy Inclusion Degree used in the algorithm. It depends on the proportion
of nodes that are well-ordered within the nodes of the level. We consider thus a
fuzzy membership function defining the degree (ranging from 0 to 1) to which
most nodes are well-ordered, as illustrated by Figure 7.

Fig. 7. Relative Fuzzy Quantifier: Proportion of Nodes

4.3 Partial Inclusion

In this section, we consider partial node inclusion. In a general way, all the
nodes of a subtree S must be included in a tree T if S is included in T .
However, we argue that this is too restrictive when mining data from the real

12

world when imperfections are often present. For instance, Figure 8 shows a
tree S having 75% of its nodes included in T .

F

A A

E

TS

D C B C E

Fig. 8. Partial Inclusion

In our approach, we propose thus to define partial inclusion by considering the
proportion of nodes of S being present in T . This proportion is then related
to a fuzzy quantifier which estimates to which extent the node has to be taken
into account when computing the function Fuzzy Inclusion Degree.

Note that in the classical case, mining totally included trees allows to cut
in the database scan since whenever a node cannot be matched, there is no
need looking for the other ones. In our approach, outliers are accepted, which
may be considered as a drawback considering scalability. However, it is still
possible to cut off the search when the proportion has been overpassed.

4.4 Similar Trees

In this section, we consider fuzzy similarities [8]. These similarities are related
to some knowledge about the domain we are dealing with. For instance, when
dealing with biological data, it is possible to know to which extent the node
labelled by some bacteria is similar to the node labelled by another one. Let
us now consider that we are provided with this kind of knowledge on the
data. One of drawbacks of schema mining approaches is that the inclusion
detection is only performed on nodes having same labels (C.f. Section 3 -
strict inclusion). According to the semantic Web point of view, this restriction
is usefulness since two different labels could describe similar concepts.

In our approach, we consider fuzzy approaches to overcome this drawback.
For instance, Figure 8 shows a tree S that should be matched with T if we
know that the concept D is close to B. For this purpose, we consider fuzzy
ontologies as done in [21], and more generally fuzzy relations [17] describing
to which extent two nodes are similar.

Let us recall that a fuzzy relation R between two reference sets X and Y is
defined as a fuzzy subset from X×Y . In particular, when X and Y are finite,

13

the relation can be described by a matrix M(R) including the values of its
membership function.

It is possible to compute the transitive closure of a fuzzy relation. Let G be
the graph associated to the fuzzy relation R and let fR be its membership
function. The transitive closure of R is the RT such that fRT

(x, y) 6= 0 iff
there exists a path in G from the node x to the node y.

Let RT be the max-min transitive closure of R and R ◦ R be the max-min
composition of R and R. RT is computed as follows:

(1) R′ = R
(2) While R′ changes
• R = R′

• R′ = R
⋃

(R ◦R)
(3) Stop. RT = R′

In our approach, we consider a fuzzy relation R defined on the universe of
node labels N . We have thus R : N × N → [0, 1] describing to which ex-
tent a node n ∈ N is similar to a node n′ ∈ N . By computing the transitive
closure of R, all nodes can be compared to every other nodes. Symmetric
relations are considered since we deal with similarities. This degree of similar-
ity is taken into account in the Fuzzy Match function when computing the
Fuzzy Inclusion Degree, as illustrated by algorithm 5. In this algorithm, the
tree structure preservation is checked. This verification is required in order to
prevent the tree structure from being destroyed. This verification must thus
take into account the previous nodes that have been matched together.

Algorithm 5: Computing the Fuzzy Node Matching. Fuzzy Match Func-
tion.
Data: n node, S candidate tree, T target tree

Result: Fuzzy Degree d ∈ [0, 1]

foreach node n′ ∈ T do

if n matches n’ and respects the S tree structure then

degn′ ← fR(n, n′);

d← OWA
|T |
n′=1

degn′;
return d;

Algorithm 5 proposes to compute the final degree as a merged value from all
the similarity degrees with nodes from T . In the classical case, the algorithm
is more efficient since there is no need to scan all nodes from T . Another
possibility is thus to stop the scan of T as soon as a similar node n′ ∈ T
is found, leading to algorithm 6. In this case, we consider a user-defined γ
threshold.

14

Algorithm 6: Fuzzy Node Matching with Stop Criterion. Fuzzy Match
Function.
Data: n node, S candidate tree, T target tree

Result: Fuzzy Degree d ∈ [0, 1]

foreach node n′ ∈ T do

/* γ stands for a user-specified threshold */
if n matches n’ and respects the S tree structure and fR(n, n′) ≥ γ then

return fR(n, n′);

Fuzzy morphisms may also be considered in order to deal with this problem
[22,18].

5 Fuzzy Frequent Subtrees

Classical approaches mine frequent trees that do not provide much information
about the occurrences within the database except the fact that these subtrees
are embedded in a sufficient number of trees from the database (depending
on the user-defined minimum support value). We propose thus to extend the
knowledge on the mined semantic structures by providing fuzzy links within
the frequent trees. These fuzzy links are more or less thick. They help knowing
whether they are very shared, middle shared or a little shared, as illustrated
on Figure 9.

A

B

C D

Fig. 9. Fuzzy Tree

In this framework, frequent subtrees are fuzzy acyclic graphs. Each link be-
tween two nodes is labelled by a degree ranging from 0 to 1. This degree is
obtained by considering the proportion of trees from the database that con-
tain the link. This proportion is then mapped to fuzzy quantifiers such as very
shared, middle shared or little shared, as shown by Figure 10. It is graphically
represented by taking into account the fuzzy quantifier having the greatest
membership degree. Each fuzzy quantifier is then represented by a different
thickness.

15

Fig. 10. Fuzzy Quantifiers for Fuzzy Trees

6 Conclusion

Recently mediator-based integration of heterogeneous data sources over the
web has shown that it is a very efficient way for dealing with different types
of Web documents such as XML ones. One of the main advantages of such
approaches is that an heterogeneous collection of XML documents could be
integrated into mediator schemas in order to be processed or queried in a uni-
form way. However, we have seen that no complete automatic tool is available
to extract semantic knowledge from these large amounts of distributed and
heterogeneous data. It is indeed still hardly possible to automatically build
mediator schemas, which are thus still hand-crafted. Even if schema mining
approaches exist to extract in an efficient way the commonly occurring schemas
from a collection, they suffer from different drawbacks. The main drawback
is that they consider crisp inclusion when mining frequent subtrees, i.e. a
subtree is included or not into another one. In the semantic web context this
constraint is too restrictive. In this paper we have thus proposed to soften
such an inclusion in order to better describe the data available on the Web.

Data mining is of great interest for the semantic Web. In coming years, the
Internet is likely to become one of the principal application areas of fuzzy
logic. In this framework, mining fuzzy XML mediator schemas is crucial (i) in
order to be automatically provided with a mediator schema to query data and
(ii) in order to get semantic structures from the huge amounts of distributed
and heterogeneous data. The approach we propose here can be used in order
to mine frequent web structures from web sites. Moreover, mediator schemas,
fuzzy or not, can be used in the framework of fuzzy queries over web data.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan Kaufmann,
2000.

16

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large database. In Proceedings of the International Conference on
Management of Data (ACM SIGMOD 93), pages 207–216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proceedings of the 20th International Conference on Very Large Data Bases
(VLDB 93), pages 487–499, 12–15 1994.

[4] D. Arotaritei and S. Mitra. Web mining: a survey in the fuzzy framework. Fuzzy
Sets and Systems, 148:5–19, 2004.

[5] T. Asai, K. Abe, S. Kawasoe, H. Arimura, and S. Arikawa. Efficient substructure
discovery from large semi-structured data. In Proceedings of the 2nd SIAM
International Conference on Data Mining (SDM 02), Arlington, VA, USA, April
2002.

[6] T. Asai, H. Arimura, K. Abe, S. Kawasoe, and S. Arikawa. Online algorithms for
mining semi structured data stream. In Proceedings of the IEEE International
Conference on Data Mining (ICDM 02), pages 27–34, Maebashi, Japan,
December 2002.

[7] T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent substructures
in large unordered trees. In Proceedings of the 6th International Conference on
Discovery Science, pages 47–61, Sapporo, Japan, October 2003.

[8] B. Bouchon, M. Rifqi, and S. Bothorel. Towards general measures of comparison
of objects. Fuzzy Sets and Systems, 84(2):143–153, 1996.

[9] P. Ceravolo and E. Damiani. Mining class hierarchies from XML data:
Representation techniques. In FUZZY DAYS, 2004.

[10] P. Ceravolo, E. Damiani, and B. Oliboni. Fuzzy techniques for metadata
construction. In Proceedings of the Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU 2004). Special Session “Fuzzy
Logic in the Semantic Web, a New Challenge”, pages 1019–1026, 2004.

[11] P. Ceravolo, M. C. Nocerino, and M. Viviani. Knowledge extraction from
semi-structured data based on fuzzy techniques. In Proceedings of the
8th International Conference on Knowledge-Based Intelligent Information &
Engineering Systems (KES 04), pages 328–334, 2004.

[12] C.Y. Chung, M. Gertz, and N. Sundaresan. Reverse engineering for Web data:
From visual to semantic structure. In Proceedings of the 18th International
Conference on Data Engineering (ICDE 02), pages 53–63, 2002.

[13] D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the world
wide web: A survey. ACM SIGMOD Record, 27(3):59–74, 1998.

[14] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: data management
infrastructure for semantic web applications. In Proceedings of the 12th
International World Wide Web Conference (WWW 03), pages 556–567, 2003.

17

[15] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In Proceedings of the 19th International Conference on
Data Engineering (ICDE 03), pages 505–515, 2003.

[16] P. Kilpelinen. Tree matching problems with applications to structured text
databases. PhD thesis, University of Helsinski, November 1992.

[17] G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty, and Information. Prentice
Hall, 1988.

[18] L. J. Kohout. Defining homomorphisms and other generalized morphisms of
fuzzy relations in monoidal fuzzy logics by means of bk-products. In Proceedings
of the 7th Joint Conference on Information Sciences (JCIS 03)(Subsection: 9th
International Conference on Fuzzy Theory and Technology), page 13, 2003.

[19] H. P. Leung, F. L. Chung, and S. C. Chan. On the use of hierarchical information
in sequential mining-based XML document similarity computation. Knowledge
and Information Systems, 7(4), 2005.

[20] S.K. Pal, V. Talwar, and P. Mitra. Web mining in soft computing framework:
Relevance, state of the art and future directions. IEEE Transactions on Neural
Networks, 13(5):1163–1177, 2002.

[21] D. Parry. A fuzzy ontology for medical document retrieval. In Proceedings of
the 2nd Australasian Workshop on Data Mining and Web Intelligence (DMWI
04), pages 121–126. Australian Computer Society, 2004.

[22] A. Perchant and I. Bloch. Fuzzy morphisms between graphs. Fuzzy Sets and
Systems, 128(2):149 – 168, 2002.

[23] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, X. Dong,
Y. Kadiyska, G. Miklau, and P. Mork. The Piazza peer data management
project. SIGMOD Record, 32(3):47–52, September 2003.

[24] A. Termier. Extraction of Frequent Trees in an Heterogeneous Corpus of Semi
Structured data: Application to XML documents mining. PhD thesis, Paris
South University, April 2004.

[25] A. Termier, M.C. Rousset, and M. Sebag. TreeFinder: a first step towards
XML data mining. In Proceedings of the IEEE International Conference on
Data Mining (ICDM 02), pages 450–457, Maebashi City, Japan, 2002.

[26] A. Termier, M.C. Rousset, and M. Sebag. Dryade: A new approach for
discovering closed frequent trees in heterogeneous tree databases. In Proceedings
of the IEEE International Conference on Data Mining (ICDM 04), pages 543–
546, Brighton, UK, 2004.

[27] K. Wang and H. Liu. Discovering typical structures of documents: A road map
approach. In Proocedings of the 21 ACM SIGIR International Conference on
Information Retrieval, pages 146–154, Melbourne, Australia, August 1998.

[28] K. Wang and H. Liu. Discovering structured association of semistructured data.
IEEE Transactions on Knowledge and Data Engineering, 12(3):353–371, 2000.

18

[29] Q.Y. Wang, J. X. Yu, and K.F. Wong. Approximate graph schema extraction
for semi-structured data. In Proceedings of the 7th International Conference on
Extending Database Technology (EDBT 00), pages 302–316, 2000.

[30] L. Xyleme. A dynamic warehouse for XML data of the web. IEEE Data
Engineering Bulletin, 24(2):40–47, June 2001.

[31] R. Yager. Families of owa operators. Fuzzy Sets and Systems, 57(3):125 – 148,
1993.

[32] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In
Proceedings of the IEEE International Conference on Data Mining (ICDM 02),
pages 721–724, Maebashi City, Japan, December 2002.

[33] X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns.
In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 03), pages 286–295, Washington, DC, USA,
August 2003.

[34] M. Ying and B. Bouchon. Quantifiers, modifiers and qualifiers in fuzzy logic.
Journal of Applied Non-classical Logics, 7(3):335–342, 1997.

[35] L. A. Zadeh. A computational approach to fuzzy quantifiers in natural
languages. Computing and Mathematics with Applications, 9(1):149–184, 1983.

[36] M. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 02), pages 386–395, Edmonton, Canada, July 2002.

[37] M. Zaki. Efficiently mining frequent embedded unordered trees. Fundamenta
Informaticae, 65:1–20, 2005.

[38] M.J. Zaki and C. Aggarwal. Xrules: An effective structural classifier for
XML data. In Proceedings of the 9th International Conference on Knowledge
Discovery and Data Mining (ACM SIGKDD 03), pages 316–325, 2003.

19

