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Abstract.—In the Bayesian paradigm, a common method for comparing two models is to compute the Bayes factor, defined
as the ratio of their respective marginal likelihoods. In recent phylogenetic works, the numerical evaluation of marginal
likelihoods has often been performed using the harmonic mean estimation procedure. In the present article, we propose
to employ another method, based on an analogy with statistical physics, called thermodynamic integration. We describe
the method, propose an implementation, and show on two analytical examples that this numerical method yields reliable
estimates. In contrast, the harmonic mean estimator leads to a strong overestimation of the marginal likelihood, which is all
the more pronounced as the model is higher dimensional. As a result, the harmonic mean estimator systematically favors
more parameter-rich models, an artefact that might explain some recent puzzling observations, based on harmonic mean
estimates, suggesting that Bayes factors tend to overscore complex models. Finally, we apply our method to the comparison
of several alternative models of amino-acid replacement. We confirm our previous observations, indicating that modeling
pattern heterogeneity across sites tends to yield better models than standard empirical matrices. [Bayes factor; harmonic

mean; mixture model; path sampling; phylogeny; thermodynamic integration.]

Bayesian methods have become popular in molecu-
lar phylogenetics over the recent years. The simple and
intuitive interpretation of the concept of probabilities
underlying the Bayesian paradigm makes it an appeal-
ing framework of scientific inference in general (Jaynes,
2003). On the other hand, the Bayesian practice also en-
tails mathematical difficulties, which have prevented its
use in most practical fields until recently. Over the last
10 years, the situation has changed, mainly due to the
impressive advances in computational power. In addi-
tion, general numerical methods based on Markov chains
Monte Carlo (MCMC) have been developed, allowing
one to conduct Bayesian inferences under a large cat-
egory of probabilistic models, with few constraints on
dimensionality or analytical integrability (Gelman et al.,
2004; Holder and Lewis, 2003; Huelsenbeck et al., 2002).

However, this new freedom in model exploration has
to be complemented by efficient and reliable methods
of model evaluation and selection. More fundamentally,
it raises the question of whether devising more com-
plex evolutionary models is indeed relevant in the first
place, given the problems that such a project might imply
(Rannala, 2002). At first sight, current phylogenetic mod-
els offer a good compromise between complexity and
tractability. They account for unequal rates of substitu-
tion among amino acids through general time-reversible
matrices determined empirically or directly inferred
from the data (Jones et al., 1992; Whelan and Goldman,
2001). They also allow different positions along the se-
quence to evolve at different speeds (Yang, 1993, 1994).
Both aspects seem to have a significant impact on the
quality of the phylogenetic estimates (Brinkmann et al.,
2005; Yang, 1996). Yet, this may not be sufficient, as evi-
denced by all the inconsistencies still observed in many
phylogenetic analyses (Gaut and Lewis, 1995; Philippe
et al., 2005; Stefanovic, 2004; Sullivan and Swofford,
1997). In an otherwise coherent statistical framework,
such as maximum likelihood or the Bayesian method,
inconsistencies are a clear indication of model misspeci-

fications, suggesting that some simplifying assumptions
common to most current models (e.g., absence of gene
conversions or lateral gene transfers, homogeneity of the
equilibrium frequencies across sites, stationarity of the
substitution process across lineages) may need to be re-
laxed as well. Hence, in the aim of obtaining more reliable
phylogenetic inference, a wider diversity of models than
those currently considered has still to be investigated,
calling for good methods to perform both parameter es-
timation and reliable model choice.

Bayesian inference is in general tantamount to explor-
ing the posterior probability distribution over the pa-
rameters of interest. Given a model M, with parameter
vector § € O (specifying, for instance, the tree topology
and branch lengths), and applied on a dataset D, the pos-
terior probability distribution is givenby Bayes’ theorem:

p(D |6, M)p(6 | M)

p@ | D, M) = (D] M)

@

where p(6 | M) is the prior distribution, p(D | 8, M) the
likelihood function, and

p(D|M>=/®p<D|9,M>p<9 Mds (@)

is the normalization constant, also called the predictive
probability, or marginal likelihood.

As for model fit, the normalization constant, p(D | M),
is of primary importance. As a function of M, it can liter-
aly read as the likelihood of model M, given the data D.
Accordingly, among several models, one is led to choose
the one of greatest marginal likelihood. When two mod-
els My and M are being compared, one usually defines
the Bayes factor in favor of M; over M as the ratio of their
respective marginal likelihoods (Jeffreys, 1935; Kass and
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Raftery, 1995): ily as long as the models being compared are formulated
along similar parameterizations; for instance, alternative

By, = p(D| M) ‘ 3) substitution matrices (Huelsenbeck et al., 2004), or differ-

p(D | M) ent number of classes for a mixture model (Lartillot and

Values of the Bayes factor greater (smaller) than 1 will
be considered as evidence in favor of M; (M). Other
approaches for evaluating model fit in a Bayesian con-
text have been proposed, such as cross-validation (Stone,
1974), posterior predictive approaches (Gelman et al,,
1996; Meng, 1994; Rubin, 1984) applied in phylogenetic
model comparison (Bollback, 2002), as well as fractional
(O’Hagan, 1995), posterior (Aitkin, 1991), or intrinsic
(Berger and Pericchi, 1996) Bayes factors. But in the fol-
lowing, we will focus exclusively on the traditional Bayes
factor, which is more intuitive in a model-likelihood in-
terpretation perspective.

In practice, posterior expectations can be efficiently
estimated by sampling from the posterior distribu-
tion, using, for instance, MCMC methods such as the
Metropolis-Hastings or the Gibbs sampling algorithms.
These methods are now applied extensively in molecular
phylogenetics (Huelsenbeck and Ronquist, 2001; Larget
and Simon, 1999; Lartillot and Philippe, 2004; Pagel and
Meade, 2004; Suchard, 2001). In contrast, the numerical
evaluation of the marginal likelihood, and thereby of the
Bayes factor, is anything but easy, in particular for high
dimensional models, and for large datasets (Han and
Carlin, 2000; Kass and Raftery, 1995). Note, in this respect,
that the MCMC algorithms used for posterior sampling
only involve the ratio of two posterior probabilities (i.e.,
of the current and the newly proposed parameter value),
in which the normalization constant p(D | M) cancels
out:

p621 D, M)  p(D |6, M)p®6: | M)

This implies that these algorithms, however efficient at
sampling from the posterior, do not allow one to estimate
p(D | M) directly.

Among the methods available for evaluating Bayes’
factors, many are valid only under very specific
conditions. For instance, the Dickey-Savage ratio
(Verdinelli and Wasserman, 1995), applied in phylo-
genetics (Suchard, 2001), assumes nested models. The
Laplace estimator (Kass and Raftery, 1995), or the
Bayesian Information Criterium (Schwartz, 1978), ap-
plied in phylogenetics (Minin et al., 2003; Waddell et al.,
2002) are large sample approximations around the max-
imum likelihood, which cannot always be easily evalu-
ated for complex models. The Laplace estimator (Kass
and Raftery, 1995) relies on a normal approximation
around the maximum likelihood (ML), which may not be
valid for parameter-rich models. The reversible-jump ap-
proach (Green, 1995), where a MCMC is devised to jump
between models according to the Metropolis-Hastings
rule, canin principle be made as general as desired. Yet, in
practice, the Metropolis-Hastings moves between mod-
els have to be accepted at a sufficient rate for the method
to be practical. This requirement can be met quite eas-

@

Philippe, 2004). In contrast, the reversible-jump method
is not easily applicable when comparing models based
on an entirely different parametric rationale.

We are thus left with only a few methods of po-
tentially general applicability, among which (1) the
importance sampling estimators, and particularly the
harmonic mean estimator (HME) (Newton and Raftery,
1994), and (2) thermodynamic integration, or path sam-
pling (Gelman, 1998; Ogata, 1989). The HME is by far
the simplest method, only requiring a sample from the
posterior distribution. It has been applied repeatedly, in
particular in phylogenetic model comparison (Irestedt
et al., 2004; Nylander et al.,, 2004; Pagel and Meade,
2004). Because its variance may be infinite, a modified,
stabilized version has also been proposed (Newton and
Raftery, 1994), also used in phylogenetics (Suchard et al.,
2003). Thermodynamic integration, on the other hand,
is based on a completely different rationale, relies on
a more elaborate and computationally more intensive
MCMC sampling scheme, but is statistically more well-
behaved (Gelman, 1998). Its name stems from an analogy
with physics, where the marginal likelihood is equivalent
to the so-called partition function and its logarithm to
the free energy. In fact, physicists have had to evaluate
probabilities formulated in terms of high-dimensional
integrals for a long time now (Neal, 2000). Therefore,
transposing their well-tried methods into other numeri-
cal problems could be a promising approach.

In this work, we have implemented the HME and the
method of thermodynamic integration. We have applied
them to the comparison of models of sequence evolu-
tion. We show by several means that, whereas thermody-
namic integration yields reliable quantitative estimates
of Bayes’ factors, the HME is unreliable and can even
lead to qualitative reversions of the comparisons being
conducted. Altogether, considering that some Bayes’ fac-
tor evaluations performed in a phylogenetic context thus
far have relied on the harmonic estimator, we advocate
that more caution should be applied, and that thermo-
dynamic integration, or other methods not investigated
here, should be used instead. Finally, using thermody-
namic integration, we compare several models of amino-
acid replacement, among which are site-heterogeneous
models that we have proposed previously (Lartillot and
Philippe, 2004).

DATA AND MODELS

Five datasets were considered in this study. The fol-
lowing nomenclature specifies, for each dataset, the type
of protein, the number of taxa (P), and the length of the
alignment (N):

¢ PGK30-276: sequences of phosphoglycerate kinase
of 30 eubacterial species

e EF30-627: sequences of elongation factor 2 from 30
eukaryotes
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e POL39-888: RNA polymerase Rpb2 of 39 eubacteria

o DLIG40-430: DNA ligase of 40 eubacteria

e UVR30-719: DNA excision nuclease subunit A of 30
eubacteria

For each dataset, the amino-acid sequences were re-
trieved from the databases and aligned using ClustalW
(Thompson et al.,, 1994). The alignments were hand-
corrected using the MUST package (Philippe, 1993), and
regions ambiguously aligned were removed with the
help of the GBlocks program (Castresana, 2000).

We assume a uniform prior over topologies, and an ex-
ponential distribution on branch lengths, with mean de-
termined by a hyperparameter A. Rates across sites can be
either uniform (UNI model) or distributed according to
a Invariant + Gamma (I+T") distribution (RAS), in which
case both the @ parameter and the proportion of invariant
sites (pp) are considered as free parameters. We propose
three alternative sets of priors on hyperparameters:

e P1: an exponential prior of mean 1 on A and on «
(default prior)

e P2: an exponential prior of mean 1 on A and on 1/«

e P3: a fixed value for A (A = 10), and a flat prior on
a, with the restriction that & < 100, for the prior to
remain proper.

In all cases, we assume a uniform prior on pq.
For the amino-acid replacement model, we consider
five different cases:

¢ WAG: the WAG empirical matrix (Whelan and
Goldman, 2001). Stationary probabilities (equilib-
rium frequencies) will either be set equal to the val-
ues reported in the original article (WAG model), or
considered as free parameters, with a flat Dirichlet
prior (WAG+F model).

e Poisson: a Poisson process, which is characterized
by its stationary probability vector. We use the same
combination of stationary probabilities as for WAG
(i.e., Poisson, or Poisson+F).

e GTR:themost general time-reversible matrix, which
is implemented as described previously (Lartillot
and Philippe, 2004).

e MAX: each site has its own amino-acid replacement
matrix, which is a Poisson process, whose profile, de-
fined by the 20 equilibrium frequencies, is a random
variable distributed according to a flat Dirichlet.

e CAT: the distribution of amino-acid replacement
matrices across sites is modeled by a mixture of a
free number of Poisson processes. Each component
is defined by a stationary probability vector. The
prior is specified by a Dirichlet process (Lartillot and
Philippe, 2004).

General MCMC Settings

The methods and implementation for MCMC sam-
pling under these models have been described previ-
ously (Lartillot and Philippe, 2004). Briefly, the different

components of the parameter vector (topology, branch
lengths, site-specific rates, stationary probability vectors,
hyperparameters) are updated separately, according to
a sequence of calls to all available update mechanisms.
One such sequence defines a cycle. The number of cycles
required for a given chain to reach its stationary equi-
librium (burn-in), as well as the total number of cycles
and the saving frequency, are first determined empiri-
cally. In a second step, the effective size of the sample
is determined a posteriori by a time-series variance esti-
mation method based on the empirical autocovariances
of the log-likelihood time series (Geyer, 1992). We used
a Tukey-Janning lag window (Raftery and Lewis, 1992),
with a cutoff at K /4, where K is the total number of saved
points. Given K and the decorrelation time z, the effec-
tive size of the sample is then estimated as Koy = K /7.

For each dataset, a first MCMC run under the WAGH+F,
I+I" model was conducted, and the consensus of 1,000
trees sampled from the posterior was computed. This
consensus was then used for any analysis conducted un-
der a fixed topology.

All source codes, data files, and trees are available from
http:/ /systematicbiology.org. Data matrices can also be
downloaded from TreeBase (http://www.treebase.org,
accession numbers 51388, M2476-M2480).

MARGINAL LIKELIHOOD ESTIMATION
Importance Sampling Estimators

Given an unnormalized density g(#), an unbiased es-
timate of p(D | M) is given by the importance sampling
formula

E, [ p(DI8, M)ggewz]

86)
, ®)
p@IM)
Eg [ 8(0) ]

p(D | M) =

where Eg[- - -] is the expectation over g (Kass and Raftery,
1995). Using Monte Carlo procedures, a sample (6 )k=1..x
can be drawn from g and used to approximate the ex-
pectations Eg[- - -]:

ZK p(DI8k, M) p(6 | M)

k=1 86k)
P(D | M) i~ K p(6IM) . (6)

The simplest application of this method is to use the
prior as the importance sampling distribution (g(f) =
p(@ | M)), in which case Egs. (5) and (6) lead to the prior
arithmetic mean estimator (AME):

P(D | IVI) = Eprior[p(D I 9, M)] (7)
K

~ 2P0l M @
k=1

However, a well-known problem with this estimator
is that the high-likelihood region can be very small.
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Therefore, unless K is very large, the sample drawn from
the prior will contain virtually no points from the high-
likelihood region, resulting in a very poor estimate of
p(D | M).

An alternative, proposed by Newton and Raftery
(1994), is to draw from the posterior, rather than from the
prior (g(8) = p(D | 8, M)). Intuitively, this should have
the advantage of enriching the sample in points from the
high-likelihood region. This results in the posterior har-
monic mean estimator (HME):

1

1
p(D | M) } ©)

= E*’“‘[ D10, M

-2 (10)

Mx

P(D I 9k, M)

The HME converges almost surely to the inverse of
the marginal likelihood. However, in many practi-
cal situations, its variance is infinite. To circumvent
this problem, Newton and Raftery (1994) proposed
a third importance sampling scheme, called the
stabilized harmonic mean estimator (SHME), based on a
mixture of the prior and the posterior: g(6) = ép(6 |
M)+ (1 - 8)p(6 | M). Typically, § is chosen equal to 0.1.

General Principles of Thermodynamic Integration

This method, also called path sampling, is explained
in greater details elsewhere (Gelman, 1998; Neal, 2000).
Here, we give a slightly less formal introduction to its
principles and show how it can be applied to phyloge-
netic problems.

Let us suppose that we have two unnormalized densi-
ties, go(6) and 41(6), defined on the same parameter space
©. The corresponding true probability densities are de-
noted by

p,(@) = Zlq,(e), 1= 0, 1, (].1)

where
Zi = / qi(0)d8, i =0,1 (12)
®

are the normalization constants. Typically, in a Bayesian
context, qi(6)=p(D |6, M)p6 | M), Z;=p(D|M),
and thus, pi(9) = p(6 | D, M;).

We wish to perform a numerical evaluation of the log-

ratio
=l (?i) 13)

=InZ ~InZ. (14)

To do this, we define a continuous and differentiable path
(98)o<p<1 in the space of unnormalized densities, joining
qgo and g;. By extension, for any 8,0 < 8 <1, pg and Zg

are defined as

ps(6) = Ziﬂqﬁw), (15)

25 = [ antod. 16)

When B tends to 0 (resp. 1), pg converges pointwise to
po (resp. p1), and Zg to Zy (resp. Zy).
Taking the derivative of In Zg with respect to :

dinZs 1 87
= =—— 17
0B Zﬂ 8ﬁ (17
Sy / 45(0)d0 (18)
9q5(6)
= — de 19
= |7 (19)
1 994(0) q5(0)
= a6 20
/@ qs(0) B Zs )
dlngg(6
= [ 2RO e Q)
) B
91ngp(0)
= —_— 22
25 )
where Eg[. - -] stands for the expectation with respect to
pg- Defining the potential
dlngg(6
ue) = 22122, @3)
one has thus the first moment identity:
31n Z,
=E . 24
", plU] (24)

Integrating over [0, 1] yields the log-ratio one is looking
for:

u=Inz —InZ (25)
31n Zs
_ /O Stap (26)
1
- /0 Es[U14B. 27)

The key idea of thermodynamic integration is that, for
any value of B between 0 and 1, one can run a Markov
chain Monte Carlo in which g is used as the unnormal-
ized density in the Metropolis-Hastings ratio. By defi-
nition, this yields a sample of parameter values drawn
from the probability distribution pg. Expectations over
pp can then be estimated as averages over this sample,
which in particular allows one to evaluate Eg[U]. This
computation can be done for a series of values of B reg-
ularly spaced between 0 and 1, which implies running
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FIGURE1. Rationale of the thermodynamic integration method. a, A series of independent chains are run under different values of 8, and for
each of them, the mean posterior expectation of the potential U = 9 Ing;/38 is computed (horizontal lines). b, These mean posterior expectations
are plotted against 8. ¢, The integral of the curve is estimated by the Simpson procedure. d, Illustration of the quasistatic version, in which g

moves continuously from 0 to 1 during MCMC (see text for details).

a Markov chain for each value of 8 (Fig. 1a, b). These
sample expectations are finally used to approximate the
integral over [0, 1] (Eq. (25)) using Simpson'’s triangula-
tion method (Fig. 1c).

Specifically, assuming a discretization step of AS =
1/C, with C an integer (e.g., C = 10), for eachd =0..C,
we define By = d x A, and run a Markov chain having
ps, as its stationary distribution. The resulting sample is
denoted by

(Glg)k=1”1< ~ P8s- (28)

From that, Eg,[U] is estimated as

K
0= 2 3 Ua (6) 9)
k=1

and by Simpson’s triangulation, one gets the discrete ther-
modynamic estimate of u = In Z; — In Zy:

*—lGU+§U I (30
fas = = | 5o 2 it c>. )

We used this discrete method previously (Lartillot and
Philippe, 2004). In the present work, we also introduce
a continuous (or quasistatic) version, which has the ad-

vantage of yielding a greater accuracy. The quasistatic
method consists in equilibrating a MCMC under 8 =0,
then smoothly increasing the value of 8, by adding a
constant increment 38 after each series of Q cycles, un-
til B =1 is reached (Fig. 1d). During this procedure,
points 6; are saved, for instance, before each update of B.
Let us denote (B, fk)k—o.x the series of points obtained
in this way. One has in particular gy =0, Bx =1, and
Vk0 <k < K, Bs1 — Bx = 88. Then, the quasistatic esti-
mate of In Z; — In Z is given by:

K-1
1

1 1
fs = (U@ + L@+ 3u60). 6D

Equivalently, one can start at =1, equilibrate the
MCMC, and then progressively decrease 8, while sam-
pling along the path down to py. We will make use of
this bidirectional method below.

Many different schemes of thermodynamic integra-
tion can be devised, depending on the type of path
considered. In the present work, we have used two main
schemes.

Annealing-Melting Integration

This first scheme involves only one model (M) at a
time, the path going from the prior to the unnormalized
posterior defined by M. This path is defined as follows:

q5(0) = p(D |6, M’ p(6 | M). (32)

81.0Z 1990300 91 Uo Jasn WINYIT Ad 008029 1/G6 |/2/SSA0BISR-B]oI1E/0IqSAS/WOD dNODIWapeoE//:SARY WOl) PEPEojuUMO(]



200 SYSTEMATIC BIOLOGY VOL. 55
Note that go(0) = p(6 | M), and g1(8) = p(D | 6, M)p(6 | -8000 T T T T
M). The corresponding normalization constants are Zy = a—
land Z, = p(D | M). The integrand takes a simple form: e
-12000 E
u@e) = —=227 (33) ,
©) - 0B D> -16000 K .
=Inp(D |6, M), (34) g
. . . ) -20000 .
so that the integration defined above directly leads to an
estimate of
-24000 —L ' L L
Inp(D|M)=InZ -InZ, (35) 0O 02 04 06 08 1

1
=/0 Es[inp(D |6, M)|dB.  (36)

In a thermodynamic perspective, the inverse of 8 can
be seen as the equivalent of a temperature. Raising the
likelihood to a power B < 1 is equivalent to smoothing
out the likelihood surface, which will yield a “looser”
Markov chain, more prone to accepting less likely pa-
rameter configurations. This is analogous to the behavior
of a thermodynamic system, which has a higher proba-
bility of visiting high-energy microscopic configurations
at higher temperature. Thus, slowly moving from g =0
to B =1 is equivalent to a quasistatic cooling down,
or annealing, of the MCMC. Conversely, moving from
B =1to g = 0 amounts to a warming up, or melting, of
the MCMC. Note that the heated chains of the parallel
Metropolis-coupled Markov chains (Altekar et al., 2004)
are defined in a similar way (except that in their case, the
posterior, rather than only the likelihood, is raised to the
power B).

As an illustrating example, the annealing-melting in-
tegration method was applied to the PGK dataset, under
a simple version of the rate-across-site (RAS) model, as-
suming a Poisson+F amino-acid replacement matrix, a
prior mean branch length of A =10, and y-distributed
rates across sites, with « =1, and no invariant sites.
The topology was constrained to the posterior consen-
sus. Figure 2 shows the evolution of In p(D | 6, RAS) as
a function of 8. The increment was 88 = £0.001 and was
applied every Q = 10, 000 cycles. The area situated be-
tween the curve and the zero axis is equal to the loga-
rithm of the marginal likelihood under RAS and can be
estimated using Eq. (31). In the present case, one obtains
In p(D | RAS) = —9922.1 natural log units (nits).

Note that the curve shown in Figure 2 is strictly in-
creasing. This can be shown theoretically: above, we have
seen that the first derivative of In Z was related to the ex-
pectation of U (Equation 24). By a similar argument, the
second derivative of In Z can be related to the variance
of U:

32In Zg au
where V3[U] = Eg[U?] — E3[U]. In the present case, U =
In p(D | ) does not depend on B, so that this simplifies

FIGURE 2. Annealing integration under the RAS model for the
PGK dataset. The 1,000 values of In p(D | §, M) sampled during the
quasistatic integration are plotted against 8, shadowing the curve of
Es[ln p(D | 8, M)] as a function of B. The logarithm of the marginal
likelihood, as the integral of E4[In p(D | 8, M)] over [0, 1], can then be
estimated as the integral of the curve.

into

= VU] > 0. (38)

We will make further use of this identity when evaluating
the error on the estimate.

The annealing method was applied on the same
dataset, under the Poisson+F model and without rate
variation across sites (UNI model), yielding an esti-
mate of In p(D | UNI) = —10,309.0 nits. The logarithm
of Bayes’ factor between the two models UNI and RAS is
then obtained by taking the difference between the two
estimated supports:

p(D | RAS)
2 9922, 0 = 3869,
(D [ON) 9922.1 + 10, 309.0 = 386.9, (39)

i.e., the PGK dataset gives a support of approximately
386.9 nits in favor of RAS over UNL

Model-Switch Integration

As is clear in the previous example, the difference be-
tween the logarithm of the marginal likelihoods of the
two models can be small compared to these two val-
ues. This can lead to poor estimates, unless the precision
on each marginal likelihood is very high. For this rea-
son, rather than performing two quasistatic moves from
the prior to each of the two models’ posterior distribu-
tions, it might be more convenient to make a single, and
shorter, path directly connecting the two models in the
space of unnormalized densities. This is the rationale of
the model-switch method.

Suppose that we want to compare two models M, and
M that are defined on the same parameter space ©. Note
that this does not restrict the generality of the procedure,
because parameters specific of, say, My can be included
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in the common parameter vector, but not be involved in
the computation of the likelihood according to M;. The
model-switch scheme involves a path that goes directly
from model M; to model M;:

qs(0)=[p(D 6, Mo)p(6 | Mo)]*#[p(D |6, M) p(6 | My))?.

(40)
Forg=0or1:
q0(6) = p(D | 6, Mo)p(6 | M), (41)
Zy = p(D | M), (42)
71(6) = p(D | 6, M1)p(6 | M), (43)
Z, = p(D | My). (44)

Therefore, in the present case, performing the thermo-

dynamic integration leads to computing the logarithm

of the Bayes’ factor between the two models.
Differentiating pg with respect to g yields

ue) = ﬂ-‘“aifj(g—’ (45)
=Inp(D|6, Mi)+1Inp(@ | M) ~1Inp(D |6, My)
— Inp(6 | My). (46)

The Bayes’ factor between the two models UNI and
RAS was recomputed using this alternative integra-
tion scheme, using an increment §8 = 0.001, and every
Q = 1,000. Figure 3 shows the collection of values of
U@@) =Inp(D |6, RAS) — In p(D | 6, UNI) collected un-
der a quasistatic transformation from UNT to RAS. In the
present case, the two models have the same prior density,
so that we only need to compute the difference between

1000 T T T T
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-500 [ .

-1000 ' ' : '
0O 02 04 06 08 1
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FIGURE 3. Model-switch integration between the uniform-rate
(UNI) and the rate-across-site (RAS) models for the PGK dataset.
The 1,000 values of In p(D | 6, RAS) — In p(D | 6, UNI) sampled dur-
ing the model-switch integration are plotted against 8. The logarithm
of the Bayes’ factor can be estimated as the algebraic area between the
curve and the x-axis.

their log-likelihoods. In graphical terms, the logarithm
of the Bayes factor is equal to the algebraic area situated
between the curve and the x-axis, and as before, can be
estimated by averaging over the sample (Eq. (31)). In the
present case, it yields an estimate of 386.7 nits, very close
to our previous estimate obtained with the annealing-
melting method.

Note that, as in the case of the annealing-melting
scheme, the function being integrated is monotonous (its
derivative being equal to V4[In p(D | 6, RAS) — In p(D |
6, UNI))).

Error Estimation

We will consider the discrete and the quasistatic pro-
cedures separately. For the discrete estimator, two main
sources of errors have to be considered: the sampling er-
ror and the error induced by the discretization. First, the
sampling variance is equal to

1/1 = 1
Vi) = g (V1061 + 3 VI + 3VIcl ), @)

d=1

where
1 K
V(] = — Uy (6) — Up)? (48)
4 Keﬁg( 5(6k) — Up)

and Ky is the effective sample size. The corresponding
standard error is o5 = v/ V[Uy]. As for the discretization
error, because Eg[U] is a monotonous function of g, the
worst-case upper (resp. lower) error is given by the area
between the piecewise continuous function joining the
measured values of Eg[U] and the upper (resp. lower)
step function built from them. Both areas are equal to:

_{Ea[U] = Eo[u]l _ 1Gh — Uy
o4 = ~ .

2C 2C (*9)

The total error can then be estimated as the worst-case
discretization error, combined with the 95% confidence
interval of the sampling error: o = o4 + 1.64505.

Concerning the quasistatic estimator, the discretiza-
tion error is again equal to

_E1[U] - EolUl]
oy = ——————,

2K (50)

Assuming independence between the successive points
of the chain, the sampling variance is given by

1 /1 - 1
Vitg) = 2 (W01 + S Valll + Vi) 6)
k=1

1
= —W(V(J[U] + WlU])
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1 1 K-1
+3(3 Wl + 3= Vil + 5 vl[U]) 52)

1
- g hlUL+ AIUD + ¢ [ veluldp. 53)

Using the second moment identity (Eq. (38)), the second
term of Eq. (53) can be reformulated as

1 /1 1 142Inz
% [ vetunap = [ T2 4
1 /9InZ, d1In Zg
:E( B op ) 9)
- %(El[m — EqlU)), (56)

so that the sampling variance of the quasistatic estimate
is

Viigs] = — = (VlU] + W[U])

4[(2

n E(El[u'] — EolU)), (57)

and the associated standard error is equal to o; =
v/ Vlugs]. As in the case of the discretized estimate, the
total error is o = gy + 1.6450;.

All this is valid only if the points are truly indepen-
dent draws from their respective pg distributions. If this
is not the case, then a factor t = K/Kgf (i.e., the decorre-
lation time) has to be put in front of the right-hand side
of Eq. (57), to account for the effective sample size. Here,
the situation is slightly more complicated due to the fact
that, as 8 moves from 0 to 1, the decorrelation time of the
chain might change. In general, we did not observe large
variations of the decorrelation time for different valus
of B. In practice, we compute the decorrelation time at
B =0(1) and B =1 (1) and take the larger of the two.

In addition, because B changes continuously during
sampling, the chain is never exactly at equilibrium, and
this will cause a “thermic lag” of the MCMC: when sam-
pling a value of 6 at the current value of 8, one is in
effect sampling from pg, with g’ slightly smaller than
B. Because U(P) is an increasing function of g, one ex-
pects this lag to result on average in an underestimation
of u when going from 0 to 1. In contrast, performing
a quasistatic move from 1 to 0 will lead to an overesti-
mation of u. These under- and overestimations obtained
by performing a bidirectional estimation are interesting,
because they allow us to bracket the true value. Specif-
ically, each direction yields a confidence interval of the
form [p — o, u + o]. In the present article, we will always
display these two intervals together, but they could as
well be merged into a definitive confidence interval (i.e.,
the smallest interval of R containing them). This will ac-
count for worst case errors due to thermic lag and dis-

cretization, as well as the 95% level confidence related
to the sampling error. In principle, there is less than 5%
of chances that the true value lies outside. In practice,
however, when the discretization error or the thermic
lag dominate the sampling error, the true risk is much
lower.

In summary, we propose the following overall proce-
dure, allowing to estimate all sources of errors for the
quasistatic method:

1. Equilibrate MCMC at 8 = 0, and obtain a first sample
of K; points, on which to estimate Eg[U], Vp[U] and
0,

2. Perform the quasistatic sampling, as explained above,
moving B progressively from 0 to 1;

3. Once B = 1, perform an additional series of K; steps,
to evaluate E{[U], Vi[U] and ;.

An estimate of u is obtained at step 2 (which we call
fi_ to mean that it potentially underestimates u because
of the thermic lag). The corresponding discretization and
sampling errors can be computed from steps 1 and 3, and
combined into o_. Doing the same sampling procedure
from 1 to 0 yields another estimate fi, with an error of
o, Finally, the two estimates and their respective errors
can be combined together, as explained above.

Toillustrate the interplay between the different sources
of errors, we applied both the discrete and the quasistatic
estimators to the evaluation of the Bayes’ factor between
the two models UNI and RAS. First, the discrete method
was applied, using C = 10 intervals across [0, 1]. This
implies running 11 chains, each of which was run for
a total of 110,000 cycles, including a burn-in of 10,000
cycles, and saving 1 point every 100 cycles. The esti-
mated decorrelation time of the chains varied between
1 and 2.6 saved points (or equivalently, between 100
and 260 cycles). The logarithm of the Bayes’ factor was
estimated at 379.3 nits, with a total error of 44.2 nits.
Not surprisingly, the discretization error is dominant in
this case (04 = 43.0), whereas the sampling error is small
(05 = 0.74).

Next, we applied the bidirectional model-switch qua-
sistatic method, under several values of Q and 48
(Table 1). In each case, the two separate confidence

TABLE 1. Bayes’ factor between the RAS and the UNI models for
the PGK dataset: precision of the model-switch estimate as a function of
8B and Q. For each condition, a bidirectional model-switch integration
is performed and the total confidence interval is evaluated as indicated
in the text. The discretization (¢4) and sampling (o;) errors are reported,
as well as the estimated decorrelation time of the chain (in each case,
the largest value among the two directions is indicated).

8B Q UNI to RAS RAS to UNI 7 05 T
0.01 10 [306.9;368.3] [392.7,472.6] 85 192 22
0.01 100 [372.3;405.5] [369.6,406.0] 8.5 59 2.1
0.001 10 [372.4;389.6]) [379.7;400.0} 0.9 56 19
0.001 100 [378.8;388.1] [383.1;391.0] 0.9 23 31
0.001 1,000 [383.7;389.7] [381.6;387.9] 0.9 14 1.1
0.001 10,000 [382.6;388.9] [381.1;387.9] 0.9 15 1.0
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intervals are indicated, together with the estimated dis-
cretization and sampling errors, and the decorrelation
times. The discretization error is much smaller than with
the discrete method: it is of the same order of magni-
tude as the sampling error for 8 = 0.01, and negligible
(less than a natural unit of logarithm) under 58 = 0.001.
The sampling error also decreases with §8, as expected.
As for the thermic lag, it manifests itself by the fact that
the two intervals are shifted with respect to each other
(except when Q > 1, 000, but then, the observed shift is
within sampling error). In all cases, the two intervals
are overlapping, except when 8 = 0.001 and Q = 10.
Note, however, that in the latter case, the combined inter-
val encompasses all other intervals obtained under more
stringent settings. The quasistatic method can thus work
under two regimes: either the thermic lag is negligible,
in which case the two estimates obtained by the bidi-
rectional method are congruent within sampling error,
or it is dominant, and then, what one obtains is modulo
sampling error, a bracketing of the true value.

COMPARING IMPORTANCE SAMPLING
AND THERMODYNAMIC INTEGRATION

Technically, the estimation of the marginal likelihood
of a model amounts to the numerical evaluation of an
integral. Therefore, a simple way of validating an esti-
mation method consists in applying it to cases where the
integral can be computed in a closed form. This estimate
can then be compared with the analytical value.

A Gaussian Model

We first considered a simple model, parameterized by
a vector x = (x1, Xz, - - -, X4) of dimension d. The prior on
x is a product of independent normals on each x;, i =
1...d, of mean 0 and variance 1. The likelihood is

L(x) = He-lf:, (58)

where v is a hyperparameter. The posterior is then also a
product of independent normal distributions, with mean
0 and variance v/(1 + v), and the log of the Bayes’ factor
is d[In(v) — In(1 + v)]/2. The prior, the posterior, as well
as the posterior’s B-heated form, are all Gaussian, and
sampling independent values of x from them is straight-
forward. The importance sampling estimators (HME,

SHME, and AME) and the annealing-melting thermody-
namic integration methods can therefore all be applied
directly.

As shown in Table 2, for v =1 and d = 1, all meth-
ods perform reasonably well, with a relative error less
than 0.1% for samples of 10° points. However, still in the
univariate case (d = 1), when the variance of the likeli-
hood is small compared to that of the prior (v = 0.01), the
HME is not reliable, even for large samples. More pre-
cisely, it systematically overestimates the marginal likeli-
hood. The stabilized version does better but, in fact, even
the primitive AME performs a correct estimation in this
case. The thermodynamic method also yields a reliable
estimate. Finally, under both high dimension (d = 100)
and small variance (v = 0.01), all three importance sam-
pling methods fail, whereas thermodynamic integration
remains well-behaved. Note that the HME and SHME
lead to a systematic overestimation, and the AME to an
underestimation.

Evaluating the Averaged Likelihood of a Tree

In order to evaluate the reliability of these alternative
methods in a phylogenetic context, one would need to
find a model for which analytical integration is possi-
ble, which is in general not the case. However, there is
a very common situation, where an integral (in fact, a
sum), is performed analytically: the classical likelihood,
evaluated at a given site, is a sum over the 207 =3 possible
configurations specifying the amino-acid state at each in-
ternal node of the tree (for that reason, it is sometimes
called the averaged likelihood). Denoting such a configu-
ration by s:

p(Ci16,M)= p(s|6, M), (59)

where C; stands for the ith column of the alignment. Usu-
ally, this summation is done by dynamic programming,
using the well-known “pruning” algorithm (Felsenstein,
1981), but we can also perform this summation using
the harmonic or thermodynamic methods, and compare
the resulting estimates with the true value, obtained by
pruning.

To compute the HME, we have to be able to sam-
ple values of s, according to p(s | 6, M), which we can
do using the algorithm proposed by Nielsen (Nielsen,
2001). As for the thermodynamic integration, a straight-
forward generalization of this algorithm (obtained by

TABLE2. Logarithm of the marginal likelihood of a Gaussian model, evaluated by the harmonic mean estimator (HME), its stabilized version
(SHME, using § = 0.1), the prior arithmetic mean estimator (AME), and the annealing thermointegration procedure. For each setting, the mean

and standard error of 10 independent estimations are displayed.

Settings and true value Sample size HME SHME AME Thermointegration

v=1d=1 10° —0.3354 £ 0.0073 —0.3472 & 0.0064 —0.3450 4 0.0026 —0.3447 £ 0.0019
—0.346574 10° —0.3460 £ 0.0003 —0.3468 + 0.0002 —0.3465 £ 0.0001 —0.3462 £ 0.0005
v=001,d=1 10° —1.2166 £ 0.1020 —~2.2363 £+ 0.0465 —2.3415 + 0.0250 ~2.2656 £ 0.0835

—2.30756 108 —1.5475 £ 0.0787 —2.2720 4+ 0.0019 —2.3066 £ 0.0008 ~2.3083 £ 0.0017
v=001,4d =100 10° —68.365 + 0.9807 —69.470 + 0.9196 —3035.9 + 37.323 —230.933 £ 0.5476
—-230.756 108 —77.619 £ 0.6912 —76.486 + 0.3166 —2353.2+16.918 —230.781 & 0.0230
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TABLE 3. Logarithm of the integrated likelihood of the mean pos-
terior consensus topology, for the PGK dataset. For each setting, the
mean and standard error of 10 independent estimations are displayed.

True value Sample size Harmonic mean Thermointegration
—-10,534.4 10? —10,302.4 +£45 -10,501.6 £7.4
10° —-10,336.5£2.5 -10,536.1 1.7
10* —10,3485+£4.1 -10, 534.0 £ 0.9
10° —10,369.3£3.0 —-10,534.2+0.7

replacing all instances of p(s | 6, M) by p(s | 6, M)? in
the computations) allows one to sample as well from
the heated distribution p(s | 6, M) forany g € [0, 1]. We
applied this rationale to the evaluation of the integrated
likelihood under the PGK dataset. Specifically, we com-
puted the likelihood of the marginal posterior consen-
sus tree, assuming a simple model with uniform rates
across sites, and a Poisson process of amino-acid replace-
ment, with uniform stationary probability vector (Table
3). Here again, whereas the thermodynamic integration
method yields estimates close to the true value, the HME
is not reliable, even when samples of 10° independent
points are used.

APPLICATION: MODELS OF AMINO-ACID REPLACEMENT

Finally, we applied the HME and thermodynamic in-
tegration to the comparison of alternative models of
amino-acid replacement (Tables 4 to 6). Concerning ther-
modynamic integration, we used both the discretized
method, with C = 10, and the quasistatic model-switch
schemes (with §8 = 0.01 and Q = 100). For the HME, we
ran chains of 1,100,000 cycles, saving one point every
100 cycles. The effective sample sizes ranged from 150 to
2000.

Bayes’ factors are known to be sensitive to the choice
of the prior. In the present cases, we used by default ex-
ponential priors of mean 1 on the two hyperparameters
tuning the mean of the prior on the branch lengths (1) and
the variance of the rate distribution («). However, to mea-
sure the impact of the choice of the prior, we also tried

TABLE 4. Logarithm of the marginal likelihood of alternative
amino-acid replacement models evaluated on the PGK dataset, by
model-switch (MS, the two confidence intervals are reported), discrete
(DS) thermointegration, and harmonic mean estimation (HME). The
three alternative sets’ priors over the hyperparameters (P1, P2, P3,
see Data and Models) were considered (P1 is the default prior). All
evaluations were performed on a predefined topology, except one bidi-
rectional quasistatic run, performed under free topology (FT). Poisson
is taken as the reference model. Highest scores are indicated in bold
face.

Dataset Poisson+F  WAG  WAGHF GTR MAX CAT
PGK-MS-P1  [94;118] [952;955] [969;993] {825,878] [142;181] [733;791]
[91,115)  [952;955] [959;983] [847;898) [140;183] [768;817]
PGK-MS-P2 [90;114] [951,954] [965;990] [839;899] [149;191] [718;765)
[93;120] [953;956] [969;995] [839;897] [138;177] {754;804]
PGK-MS-P3  [81;111] [965;968] [976;1002] [852;901] [136;177] [732;777}
[87;115] [964;968] [986;1011] [861,915] [140;178] [781,826]
PGK-DS [3;139] [926;955] [828;985] [629;928] [47;284] [591;870]

PGK-HME 153 925 985 1030 917 1557
PGK-FT [81;107] [950,954] [965;991] [842;892] [147;185] [745;797]
[92;121] [950;954] [962;985] [835;889] [143;182] [765;821]

TaBLE 5. Logarithm of the marginal likelihood of alternative
amino-acid replacement models evaluated on the EF dataset, by model-
switch (MS) discrete (DS) thermointegration and harmonic mean esti-
mation (HME), under fixed (default) or free (FT) topology. Poisson is
taken as the reference model. Highest scores are indicated in bold face.

Dataset Poisson+F  WAG WAG+F GTR MAX CAT

EF-MS  [191,227] [1818;1823] [1911;1948] [2024;2109] [866;938] [2133;2220]
[186,228] [1813;1820] [1904;1940] [1997,2081] [868;941) [2184;2273]
EF-DS  [44264] [1783;1822] [1671;1951) [1532;2178] [645;1152] [1762;2408)

EF-HME 277 1796 1957 2324 2521 3830
EF-FT  [189;229] [1797;1805] [1906;1945] [198372071] [845:916] [2097;2184}
[199247] [1815;1821] [1892;1929] [2001,2087] [869;940] [2152;2241}

two alternative sets of priors on the PGK dataset (see
Data and Models). This did not fundamentally change
the results (Table 4), indicating that Bayes’ factors are
robust to the choice of the prior on these parameters.

According to the results obtained by model-switch
thermodynamic integration, for all the investigated
datasets, the empirical matrix WAG is much better than
Poisson (Tables 4 to 6). In addition, considering the sta-
tionary probabilities as free parameters (WAG+F) yields
abetter fit than fixing them to their default values (WAG),
a fact that was also observed by the authors of the WAG
matrix, by a likelihood ratio test (Whelan and Goldman,
2001). The general reversible model, GTR is in general
better than WAG+F, except for the smaller dataset, PGK.
In the case of POL, the confidence intervals obtained for
the two models, GTR and WAG+-F, are overlapping, and
it is thus not clear which model has a better fit. Finally,
in all cases, MAX is worse than all models but Poisson.
In contrast, the fit of CAT is dataset dependent, as it per-
forms better than WAG on the DLIG and EF alignments,
but not on POL, nor on PGK. In the case of UVR, there is
again a slight overlap between CAT and GTR.

All these Bayes’ factors were computed under a fixed
topology, constrained according to external criteria (see
Data and Models). However, as shown for the PGK and
the EF datasets, the ordering of the models is totally iden-
tical when averaging over topologies (Tables 4, 5).

In general, the discrete version of thermodynamic inte-
gration yields estimates consistent with those computed
using the model-switch method (Tables 4, 5), but with
a much greater uncertainty. In most cases, the confi-
dence intervals obtained for the alternative models are
widely overlapping, which makes it difficult to decide
which model is best. In contrast, the estimates obtained

TABLE 6. Logarithm of the marginal likelihood of alternative
amino-acid replacement models evaluated on the POL, DLIG, and UVR
datasets, by model-switch (MS) thermointegration and harmonic mean
estimation (HME). Poisson is taken as the reference model. Highest
scores are indicated in bold face.

Dataset
POL-MS

Poisson+F  WAG  WAG+F GTR MAX CAT
[324;376] {2642;2649] [2723;2770] [2706;2805) [691,775] [2347;2449]
[321;367] [2647;2655] [2754,2787) [2689;2812] [694;776] [2423,2519]

POL-HME 451 2680 2818 3130 2707 4477

DLIG-MS  [307;351] [2241;2248] [2380;2430] [2281:2380] [1419;1526] [2688;2803]

[321;364] [2240;2246) [2399;2438] [2305,2405] [1422;1522] [2748;2868]

DLIG-HME 442 2153 2360 2571 3616 4416

UVR-MS  [238284] [2640;2652] [2681;2716] [2668;2780] [1027;1125] [2733;2853]
[228281] [2636,2647) [2665:2716] 26602780} [1019;1117] [2790;2909]
UVR-HME 359 2629 2743 3053 3392 4972
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by the HME are incongruent with those computed using
thermodynamic integration (Tables 4 to 6), except when
comparing models having a similar number of param-
eters (such as WAG+F and Poisson+F). When compar-
ing models of widely differing dimensionality, however,
the estimated Bayes’ factors are so different that the
two methods even differ in their conclusions. For in-
stance, the HME always gives CAT as the best model,
whereas thermodynamic integration sometimes favors
WAG (PGK) or GTR (POL).

DISCUSSION
Reliability of Marginal Likelihood Estimators

In this work, we have applied two main alternative
methods of Bayes’ factor evaluation: the harmonic mean
estimator (HME) and thermodynamic integration. Our
comparative analysis shows a striking discrepancy be-
tween them, and comparisons with true values that can
be analytically computed, in the case of the normal model
(Table 2) or in the context of pruning (Table 3), indicate
that this is due to a lack of reliability of the HME. At
the same time, these comparisons provide a validation
of our implementation of the method of thermodynamic
integration.

To see why the HME is misleading, we can rely on the
following intuitive reasoning. Supposing, for simplicity,
that the likelihood is unimodal, the marginal likelihood
is more or less the product of two factors: the likelihood
reached in the high-likelihood region (the mode height)
and the relative size of this region (the mode width). This
latter factor, the mode width, is more precisely defined
as the ratio of the size of the region under the posterior
mode to the overall size of the parameter space. It acts as
an Ockham factor (Jaynes, 2003), as it will be smaller for
more ad hoc models, which reach a significant likelihood
only under very specific values of the parameters. Note
also that, in general, it will tend to be smaller for higher
dimensional models.

For an estimator such as the HME to work, it has to
retrieve reliable information about both the mode height
and the mode width from a posterior sample. Concerning
the mode height, the value of the likelihood reached at
equilibrium is a good indication. As for the mode width,
the only way to extract information about it is by measur-
ing the relative frequency at which points of the sample
fall inside and outside the mode. However, obtaining
reliable estimates of this frequency requires that a suffi-
cient number of points outside the mode be included in
our sample. Yet, in practice, the contrast between the low
and the high likelihoods is in general so great that even
a posterior sample of astronomical size will be virtually
confined within the mode. The estimated frequency at
which the low-likelihood region is visited is then 0, which
means that, in effect, the HME behaves as if the mode was
occupying the entire parameter space (Ockham factor =
1), and therefore, completely underestimates the dimen-
sional penalty.

As a result, the HME overestimates p(D | M). Fur-
thermore, this overestimation will be more pronounced

in the case of higher dimensional models, for which
the Ockham factor is smaller, which implies that the
harmonic estimator will be effectively biased in favor
of such models. This is, in fact, exactly what we see
when comparing models of amino-acid replacement
(Tables 4 to 6): whereas the HME yields a more or
less correct value of the Bayes’ factor between models
of equivalent dimensions (i.e., Poisson versus WAG),
it completely reverses the conclusions when compar-
ing models of widely differing dimensionality, such
as WAG versus CAT. This is particularly striking in
the case of MAX, the most parameter-rich model, for
which the error is more than fourfold on the logarithm
scale.

The fact that the HME systematically overestimates
the marginal likelihood may well explain a few odd re-
sults obtained recently. First, it was observed that Bayes’
factors tend to support higher dimensional models in a
too systematic way, to the point that it was concluded
that Bayes’ factors may not “strike a reasonable balance
between model complexity and error in parameter es-
timates” (Nylander et al., 2004). Second, and more dis-
turbingly, in simulation studies, Bayes’ factors seemed to
favor models more complex than the actual model used
to simulate the data (Pagel and Meade, 2004). Given what
we have shown above, these outcomes could also be due,
not to a fundamental lack of reliability of the Bayes’ fac-
tor, but instead to the systematic distortion of the HME
in favor of more complex models.

Our analysis stresses the importance of using more
robust and well-validated methods for Bayes’ factor
evaluations. Neither the HME nor its stabilized ver-
sion fall into this category. We have also tested other
estimators based on the importance sampling princi-
ple (Geyer, 1994; Meng and Wong, 1996), in particular
the estimator proposed by Meng and Wong, which can
be shown to be optimal in its category (that includes the
HME and the AME). Yet none of them gave reliable re-
sults (not shown). More generally, our experience is that
importance sampling estimators do not work well on
large datasets.

As a general alternative, we propose to employ ther-
modynamic integration. This method is certainly not
straightforward. It is theoretically quite involved, re-
quires additional code-writing for sampling along paths
in the space of distributions, and, furthermore, is com-
putationally intensive. According to our experience, as a
rule of thumb, thermodynamic integration will require
about 10 times more CPU time than a plain posterior
sampling under the more demanding among the two
models being compared. In general, this means running
a chain for several days, up to several weeks for models
like CAT, for which mixing is more challenging. On the
other hand, it seems to be more reliable. In the present
work, it has led to correct estimates in the two cases in
which we can compute the corresponding integral in a
closed form. In addition, it has better theoretical prop-
erties (Gelman, 1998). In particular, its variance is well
within control: as can be seen from our error estimation,
the variance is at most quadratic in the logarithm of the
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likelihood of the dataset, which is itself linear in the size
of the alignment. Hence, using more complicated meth-
ods, such as thermodynamic integration, seems to be the
price to pay for correctly evaluating high-dimensional
integrals such as the marginal likelihood. Thus far, no
other method of equivalent precision and generality is
yet available, although some ideas have been proposed
{(Chib, 1995; Chib and Jeliazkov, 2001), which we are cur-
rently exploring.

Our comparison of alternative models of amino-acid
replacement confirms and extends what we have pre-
sented previously (Lartillot and Philippe, 2004), except
in one case: we previously reported that GTR was less fit
than WAG+F on the EF dataset, whereas we now find
that GTR is in fact better than WAG+F (Table 5). As we
can check by the error analysis developed in the present
article, this is due to the lack of precision of the discrete
version. The quasistatic method thus appears to be much
more precise than the discrete version, all the more so as
the error can be controlled with great flexibility (Table 1).

The disrete and quasistatic schemes that we have in-
troduced here are not the only possible approaches to
thermointegration, however. For instance, an alternative
method consists in simulating the joint distribution on
(B, 6) (Gelman, 1998). This has the advantage of elimi-
nating both the thermic lag and the discretization error.
In the applications presented in this article, the thermic
lag and the discretization error are not too problematic,
thanks to the monotony of the integrand. However, there
are many other potentially interesting paths, not all of
which have this monotony property. On the other hand,
simulating from the joint distribution on (8, 6) also en-
tails some practical difficulties. In any case, the two ap-
proaches need to be compared in practice.

Otherwise, two major conclusions can be drawn from
these comparisons. First, in the cases investigated here,
the ordering of the models is the same, whether the topol-
ogy is fixed to that obtained under the standard model
(WAGHFE I4T), or whether it is averaged away. This con-
firms that model comparisons seem to be robust to the
choice of the topology, as long as this topology is reason-
able (Posada and Crandall, 2001). Nevertheless, we do
not think that this should be considered as a generaliz-
able rule. In particular, this might not hold anymore if
uncertainty is high in the tree, or if each model strongly
supports a distinct phylogeny. In such situations, it may
be more reasonable to average over topologies, at least if
CPU requirements are not limiting.

Second, accounting for pattern heterogeneity across
sites by a mixture model results in a better fit in the ma-
jority of the cases, although, importantly, some datasets
give a greater support for simpler models, like GTR or
WAG+F for POL, or WAG for PGK. This could mean
that the Dirichlet process requires alignments larger than
those investigated here to correctly learn its parameters.
Alternatively, it could be due to our approximation con-
sisting in considering only mixtures of Poisson processes,
instead of more general mixtures. A different mixture
model was proposed recently in which, in contrast to
CAT, the stationary probabilities are set equal across the

mixture, whereas the relative exchangeability parame-
ters of the matrix are category specific (Pagel and Meade,
2004). Obviously, a combination of the two, i.e., a general
mixture of GTR matrices, should be tested.

More generally, many other models of protein evolu-
tion can be imagined, allowing for diverse kinds of het-
erogeneity across sites, or across lineages, which raises
a problem of how to choose among all these possibili-
ties. In this article, we have proposed a general method
for this purpose. This method can be used as a guide,
allowing one to progressively focus on better models of
molecular evolution.
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