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Abstract

Many extensions of the object-oriented model were proposed to provide a better separation
of crosscutting concerns of object-oriented programs. However these approaches are mainly
developed for dynamically typed languages or for languages in simple inheritance.

This paper addresses the same need of separation of crosscutting concerns. We propose a
simple extension of the object-oriented model of statically typed language in multiple inheri-
tance. Our proposition involves two coupled notions of class refinement and module hierarchy.
And is based on a formal analogy between the metamodel of modules and classes and the
metamodel of classes and properties: (i) modules contain a coherent set of class definitions
and can refine classes defined in required modules, (ii) conflicts raised with multiple module
dependence, multiple class refinement, and multiple class inheritance are treated in the same
sound way.

1 Introduction

Object-oriented programming languages give to programmers a powerful development framework
to build both stable and coherent entities (classes) while allowing reusability and maintainability
thanks to specialization and inheritance mechanism [20].

However, several studies show that classes pose some reuse problems [28] especially because
a single concern (ie. a feature of a program) can be dispatched over several classes [17]. Thus,
the observed orthogonality between classes and concerns [1] yields a need for explicit structures
at the concern level. Methodologies like Feature Object Programming [2] and Multi-Dimensional
Separation of Concerns [24] consider that improving reusability can be achieved by the separation
of crosscutting concerns. Such a separation has the following merits:

• programs can be easily extended as new concerns can be added to existing programs,

• units of reuse are no longer classes, but are orthogonal to classes—thus new concerns can
crosscut classes,

• programmers can combine existing concerns and build their own application with very few
(or without) glue code.

Many approaches have been developed to achieve this separation. In Aspect Oriented Pro-
gramming [17] systems, like Hyper/J [24] or AspectJ [16], the programmer can define new
concerns (called aspects) and weave them to existing classes. Mixins [5] are defined as parts of
classes. They are combined to define the classes of a program. Mixins layers [26] are sets of
related mixins. They are an improvement over simple mixins since they make the composition
of related concerns easier. The last approach is based on two coupled notions of class refinement
(a class can be extended while retaining its name) and module hierarchy (a module can refine
classes imported from its ‘required’ modules). One can see this approach either as an incremental
class definition, or as inheritance between class hierarchies. This idea can be found in several
works : Virtual Classes [18], Open Classes [7], Difference-Based Modules [14], Classboxes [4] and
Higher-order hierarchies [13]. However, these works have some limitations since they are based on
single inheritance class hierarchies. Therefore, multiple refinement and combination of refinement
and inheritance are not always fully and correctly handled.

Our proposition belongs to the class refinement family but integrate the specificity of multiple
inheritance and statically typed languages. Hence, the main contributions of the present paper is
a class refinement and module hierarchy approach that permits an incremental class definitions for
statically typed languages in multiple inheritance. Our proposition is formalized with a module and
class metamodel, isomorphic to the class and property metamodel. It extends results on multiple
inheritance for two purposes: multiple dependence between modules is analogous to multiple class
inheritance, and multiple class refinement is handled like multiple class specialization.

The present paper is organized as follows. Section 2 exposes the class refinement and module
hierarchy principle. Section 3 outlines a simple class and property metamodel for statically typed
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object-oriented languages which gives a sound basis to multiple inheritance. Section 4 is about
the module and class metamodel. Section 5 discuss about related class refinement approaches.
Finally, we conclude in Sect. 6 and discuss our perspective.

2 Class Refinement Approach

We first present the two dual notions of class refinement and modules, then we illustrate them
with an example.

2.1 Class Refinement and Modules

Intuitively, one can present the refinement of a class c1 by a class c2 as an incremental class
definition in which the properties (attributes and methods) defined in c2 are added or take the
place of those of c1. In contrast with specialization, once c1 has been refined by c2, the latter takes
the place of the former in all its occurrences in the whole program. Such a mechanism is rather
common in languages with dynamic typing. In many object-oriented extensions of Lisp, like
Flavors and Clos, this is reserved to methods as they are defined outside classes. In Yafool
[9], incremental class definition was the standard use. Without loss of generality, it should be
possible with all languages supporting a metaobject protocol [15] like Clos, even if experiments
show that these protocols are not always really adapted to dynamic class modifications.

Class refinement is coupled with a dual notion of modules, in its simplest and quite traditional
form.

• A module is a class hierarchy, i.e. a set of classes ordered by specialization.

• A module is an unit of reuse [28], which can be separately compiled then linked to produce
a final executable. On the contrary, classes are no longer units of reuse and there is no class
nesting.

• A module depends on a set of other modules (called required modules or supermodules): the
dependence relation is acyclic, like class specialization.

• A module imports classes from its supermodules and can refine them. The class refinement
order is then deduced from the dependence order between the modules.

• Finally, we do not associate with modules a notion of visibility (or export), or even names-
paces, because we do not need it for the present paper.

Regarding class refinement, we identify five atomic mechanisms:

• adding a property, i.e. a method or an attribute (aka instance variable);

• redefining a property—this is more common for methods than for attributes;

• adding a superclass (multiple inheritance);

• generalizing a property, i.e. defining a property in the superclasses of the class which intro-
duced it in the supermodules;

• unifying classes, i.e. asserting that two classes defined in different modules are the same, by
merging their definitions.

However, this is not obvious to extend the intuitive class refinement mechanism to multiple
refinement of one class or to combination of refinement and specialization, since their ordering
does matter. While dynamic languages can follow the run-time chronological ordering, this is not
possible when the effects of class refinement are statically computed at compile-time.
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Figure 1: Concrete Example with Module and Class Refinement

class Computer

def switch_on_off

do ... end

...

end

class PC

inherit Computer

...

end

...

Figure 2: Computer Module Implementation

2.2 Example

This section presents an example of four modules (see Fig. 1) to illustrate a concrete application
of the class refinement mechanism.

This example is written in PRM, a small statically typed object-oriented language currently
under development1 [25]. The syntax has a simple straightforward style: class definitions start
with the class keyword and property definitions (attributes and methods) start with the def

keyword. Class names start with an upper case letter, method names start with a lower case letter
and attribute name start with the @ character (‘at’-tribute). Declarations follow the Pascal style
(identifier: Type). As modules are reuse units, each PRM source file is a module.

2.2.1 Computer Module.

The first considered module models how a computer works (Fig. 2). It contains a Computer class,
subclasses for different computer types and other classes for related computer things. The switch

on/off method of the Computer class is used to power on and off computers.
1The PRM homepage: http://www.lirmm.fr/$\tilde{∼}$privat/prm.
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require computer

class Appliance

def switch_on_off

do ... end

...

end

class Computer

inherit Appliance

end

class Lamp

inherit Appliance

def switch_on_off

do ... end

...

end

class ExpressoMaker

inherit Appliance

def switch_on_off

do ... end

...

end

...

Figure 3: Appliance Module Implementation

class Hypergraph

def @nodes: Array[Node]

def @edges: Array[Edge]

def is_connected: Boolean

do ... end

def diameter: Integer

do ... end

...

end

class Node

def @edges: Array[Edge]

...

end

class Edge

def @nodes: Array[Node]

...

end

Figure 4: Hypergraph Module Implementation

2.2.2 Appliance Module.

The programmer wants to generalize computer behavior with other appliances like lamps or ex-
presso makers. For some reason, the computer module cannot be changed. A module that requires
it has to be built.

A new abstract class, Appliance, is created as an ancestor of Computer class (adding a super-
class), and is specialized by two classes: Lamp and ExpressoMaker. Appliances use electricity, and
can be powered on and off: the switch on/off method defined into the Computer class must be
generalized into the Appliance class (property generalization), and then specialized into both Lamp

and ExpressoMaker subclasses.
The require keyword at the first line of the implementation (Fig. 3) declares that the computer

module is a supermodule. Hence, classes from the computer module are imported and the Computer

class is refined.

2.2.3 Hypergraph Module.

This module models finite hypergraphs i.e. a generalization of graphs in which edges contain any
number of vertices (Fig. 4). Methods of the Hypergraph class implement two algorithms: is con-

nected returning true iff there exists a path between any couple of vertices and diameter computing
the maximal distance between two vertices of the graph.

2.2.4 Network Module.

Both computer and hypergraph modules are independent and might be developed for different
programs by different programmers. Class refinement allows programmers to easily create a derived

5



require hypergraph

require computer

class Computer

inherit Vertex

def @hostname: String

def switch_on_off

do ... end

...

end

Figure 5: Network Module Implementation
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Figure 6: Final Class Model of the Program

module and to model networks (Fig. 5).
On a network, every computer has an hostname. Hence, a new attribute, hostname, is added

to the Computer class (property addition). Moreover, complex networks, for instance the Internet,
can be represented by hypergraphs with computers as vertices. For this reason, a specialization
relation is added between Vertex class and Computer class (adding a superclass). When a computer
is powered on, it becomes reachable on the network and unreachable when it is powered off. Hence,
in order to characterize the computer state on the network, the switch on/off method is redefined
(method redefinition).

All of these modifications made on the Computer class are naturally inherited by PCs and Macs.
Hardware failures implemented in the PC class in the computer module, induce computer shutdown
by a switch on/off message sending. Therefore, they make the PC unreachable on the network.

2.2.5 Final Program.

For the programs which merge these four modules, each class is imported (Fig. 6) and the final
Computer class is made of the combination of the Computer class declarations from the above modules
as follows: Computer is a superclass of PC and Mac (from the computer module), it is also a subclass
of Node (from the network module) and of Appliance (from the appliance module). It has a switch

on/off method (the one declared in the network module overrides the one from the class module)
and a hostname attribute (from the network module).
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3 Class and Property Metamodel

In this section, we present a metamodel made of three main kinds of entities: classes, local proper-
ties and global properties (Fig. 7). It is intended to be both intuitive and universal. It is likely to
be very close to the intuition of most programmers, when they think of object-oriented concepts.
It is universal in the sense that it is not dedicated to a specific language and it is very close to the
specifications of most statically typed object-oriented languages, at least when they are used in a
simple way. For instance, it is an implicit metamodel of Java and Eiffel2, but it has never been
explicitly described in any programming language nor even in UML [23].

In the following, we present successively an informal idea of the metamodel, followed by a
more formal, set-theoretical description, then an analysis of multiple inheritance conflicts, and a
comparison with existing languages.

3.1 Entities, Relations and Inheritance

Metamodeling some part of an object-oriented programming language consists in defining an
object model—i.e. entities like classes, associations, attributes, methods, etc.—for modeling a
subset of the considered concepts of the language. We add to this basic specification the following
requirement: any occurrence in the modeled program of an identifier denoting a modeled entity
must unambiguously maps to an unique instance of the metamodel.

Therefore, when one wants to metamodel properties, late binding (aka message sending) implies
to define two categories of entities. Local properties correspond to the attributes and methods as
they are defined in a class, independently of possible other definitions of the ‘same property’ in
superclasses or subclasses. Global properties are intended to model this idea of the ‘same property’
in different classes. They correspond to messages to which the instances of a class can answer—in
the case of methods, the answer is the invocation of the local property of the dynamic type of the
receiver. Each local property belongs to a single global property and is defined in a single class.
Global and local properties should be in turn specialized into attributes (aka instance variable)
and methods. However, there is no need to detail this here. Note that, in the following, ‘property’
stands for both, though the complication comes mainly from methods—indeed, attributes are
usually quite simpler.

A class definition is a triplet constituted with the name of the class, the name of its superclasses,
presumably already defined, and a set of local property definitions. The specialization relation
supports an inheritance mechanism—i.e. classes inherit the properties of their superclasses. The
two kinds of properties yield two-level inheritance. First of all, the new class inherits all global
properties of its superclasses—this is global property inheritance. Then, each local property defini-

2In the Eiffel case, with a limited use of renaming. Indeed, extreme renaming makes the specification ambigu-
ous.
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class A {
public void foo() { ... }

}

class B extends A {
public void foo() { ... }
public void bar() { ... }

}

Figure 8: A simple Java Example

tion is processed. If the name3 of the local property is the same as the name of an inherited global
property, the new local property is attached to the global property. If there is no such inherited
global property, a new global property with the same name is introduced in the class.

Local property inheritance takes place at run time—though most implementations statically
precompile it. A call site x.foo(args) represents the invocation of the global property named foo
of the static type4 of the receiver x. At run time, this call site is interpreted as the invocation
of the local property corresponding to both the global property named foo, and the dynamic type
(i.e. the class) of the value of x. Therefore, when no local property named foo is defined in the
considered class, a local property of the same global property must be inherited from superclasses.

The Java listing example in Fig. 8 defines seven entities of our metamodel—two classes, A and
B; three local properties, the method foo defined in A and the methods foo and bar defined in B;
two global properties, respectively introduced as foo in A and as bar in B.

3.2 Notations and definitions

Notations. Let E and F be sets. Given a function foo : E → F , the definition of foo is extended
to the parts of E in the usual way—i.e. ∀F ⊆ E, foo(F ) = {foo(x) | x ∈ F}. |E| is the cardinal
of E, and E ] F is the union of the disjoint sets E and F .

Definition 1 A model of a hierarchy, i.e. an instance of the metamodel, is a tuple H = 〈XH,≺H
, GH, LH, NH,nameH, globH,defH〉 where:

• XH is the set of classes.

• ≺H is the class specialization relationship, which is reflexive, antisymmetric and antireflex-
ive, i.e. (XH,≺H) is a strict partial order. �H (resp. ≺Hd ) denotes the reflexive closure
(resp. the transitive reduction) of ≺H.

• GH and LH are the sets of global and local properties.

• NH is the set of property identifiers (names).

• nameH : GH ] LH → NH is the naming function of properties.

• globH : LH → GH associates with each local property a global property.

• defH : LH → XH associates with a local property the class where it is defined.

Moreover, the model H is constraint by the following equations (1–9).

The model is generic, as all its components are parameterized by H. However, for the sake of
readability, in the next two sections, the parameter H will remain implicit. The reader must keep
in mind that all the components of the model H are relative to it and that the parameter must
be explicit as soon as one deals with more than one model, as in Sect. ??.

3The ‘name’ of properties is a shorthand for more complex identifiers. For instance, static overloading of C++,
Java, C#, etc. forces, in these languages, to mangle names with parameter types in order to unambiguously denote
properties.

4The static typing requirement appears here. In a dynamic typing framework, for instance in Smalltalk, there
is no way to distinguish different global properties with the same name. Of course, static typing allows to ensure
that the global propery exists.
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3.2.1 Global Properties.

Given a class c ∈ X, Gc denotes the set of global properties of c. Global properties are either
inherited from a superclass of c, or introduced by c. Let G↑c and G+c be the two corresponding
subsets:

Gc = G↑c ]G+c =
⊎

c�c′

G+c′ , (1)

G↑c =
⋃

c≺dc′

Gc′ =
⊎

c≺c′

G+c′ and G =
⋃
c∈C

Gc =
⊎
c∈C

G+c . (2)

Note that all G+c are disjoint—hence a global property is introduced by a single class. This
implies static typing.

Given a class c ∈ X and two global properties g1, g2 ∈ G, a global property conflict occurs
between g1 and g2 when:

c ≺d c1 ∧ c ≺d c2 ∧ c1 6= c2 ∧ g1 ∈ Gc1 ∧
g2 ∈ Gc2 ∧ g1 6= g2 ∧ name(g1) = name(g2) . (3)

In the following, we assume that there are no global property conflicts:

∀c ∈ X, ∀g, g′ ∈ Gc,name(g) = name(g′) ⇒ g = g′ . (4)

Therefore, the restriction of the function name : G → N to Gc is injective and, in the context of
a class c, the identifier of a global property is unambiguous.

3.2.2 Local Properties.

Given a class c, Lc denotes the set of local properties defined in c and, conversely, the function
def : L → C associates with each local property the class where it is defined:

L =
⊎
c∈C

Lc with Lc = def−1(c) . (5)

The function glob : L → G associates with each local property a global property, in such a way
that:

∀l ∈ L, name(glob(l)) = name(l) , (6)
∀c ∈ X, glob(Lc) ⊆ Gc . (7)

Conversely, the restrictions of glob and name to Lc are injective. Thus determining the global
property associated with a local one is unambiguous:

∀l ∈ Lc,∀g ∈ Gc,name(l) = name(g) ⇒ glob(l) = g . (8)

A local property is either a redefinition of an inherited property, or the introduction of a new
global property. Let L↑c and L+c be the corresponding sets.

Lc = L↑c ] L+c with

{
L↑c = Lc ∩ glob−1(G↑c) ,

L+c = Lc ∩ glob−1(G+c) .
(9)

Moreover, G+c and L+c are in one-to-one correspondence and G+c = glob(L+c).
Redefinition (aka overriding) is defined as the relationship � between a local property in L↑c

and the corresponding local properties in the superclasses of c:

l � l′
def⇐⇒ glob(l) = glob(l′) ∧ def(l) ≺ def(l′) . (10)
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Figure 9: Multiple Inheritance Conflicts

Finally, given a class c and a global property g ∈ Gc, late binding involves the selection of
a local property of g defined in the superclasses of c (including c), hence in the set loc(g, c) =
{l ∈ glob−1(g) | c � def(l)}. Hence, the model is completed by a function sel : G × X → L,
such that sel(g, c) ∈ loc(g, c). Usually, this selection is restricted to the subset of the most specific
properties, i.e. spec(g, c) = min�(loc(g, c)). A local property conflict occurs when |spec(g, c)| > 1.
Discussion of this selection process is not the point here. We just assume that, either there are
no local property conflict—i.e. spec(g, c) = {sel(g, c)}—or the selection function sel chooses an
element of spec(g, c), as linearizations do [11].

3.2.3 Class Definition and Model Construction.

The model is built by successive class definitions.

Definition 2 A class definition is a triplet 〈classname, supernames, localdef〉, where
classname is the name of the newly defined class, supernames is the set of names of its direct
superclasses—they are presumed to be already defined—and localdef is a set of local property
definitions. A local property definition involves a property name and other data which are not
needed here.

A class c with name classname is added to X. For each superclass name in supernames, a new
pair is added to ≺d. G↑c is computed (2) and global property conflicts are checked (3). For each
definition in localdef, a new local property is added to L, with its corresponding name—this
yields Lc. L↑c is determined by (9). Then, G+c is constituted as the set of new global properties
corresponding to each local property in L+c = Lc\L↑c. Lc and G+c are then respectively added to
L and G. Finally, local property conflicts are checked for all inherited and not redefined properties,
i.e. G↑c\glob(L↑c).

3.3 Multiple Inheritance

In multiple inheritance, conflicts are the main difficulty. The metamodel yields two kinds of
conflicts which require different answers. The following analysis is the same as [12], enhanced with
the metamodel.

3.3.1 Global Property Conflict.

A global property conflict (in [12], it was called “name conflict”) occurs when a class specializes
two classes having distinct but homonymous global properties (3). Figure 9(a) shows two classes
(Researcher and Teacher) both having a global property named department. The first one spec-
ifies a department in a research laboratory. The other one specifies a teaching department in a
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university. It is then natural to expect that the common subclass inherits the global properties of
its superclasses. However the name department is ambiguous in the subclass context.

Anyway, a global property conflict is nothing but a naming problem. It must be solved and
a systematic renaming would guarantee the absence of such a conflict. This renaming can be
constraint or free, local or global, according to whether the considered language provides:

Nothing: the language does not specify any answer to global property conflicts. This forces the
programmer to rename at least one of the two properties in every program using them.
Renaming does not only imply the modification of classes (with inherent potential errors)
but it can be impossible (unavailable source code for instance).

Explicit Designation: i.e. an alternative fully qualified syntax, which juxtaposes to the property
name the name of a class where the property name is not ambiguous, for instance the class
that introduces the global property. In the specification of the class Teacher-Researcher of
the example, Teacher::department would denote the global property known as department in
the class Teacher. This solution is used in C++ [27] for attributes5.

Local Renaming: Local renaming changes the designation of a property, as well global as
local, in a class and its future subclasses. In the problematic Teacher-Researcher class
of the example, one can rename department inherited from Teacher as dept-teach and
department inherited from Researcher as res-dept. Thus, department in Researcher and
res-dept in Teacher-Researcher denote the same global property and as expected, in the
class Teacher-Researcher, res-dept and teach-dept denote two distinct global properties.
This solution is used in Eiffel [21].

Unification: Dynamic languages like Clos, Java for interfaces and C++ for functions, consider
that if two global properties are homonymous then they are not distinct. Hence, there is
no global property conflict and the multiple inheritance ambiguities are deferred on local
property inheritance. This solution has a major drawback: it does not allow to express
the programmer intention of distinct global properties—in Fig. 9(a), the two departments
represent distinct concepts. If the programmer intention was a single concept, then the
programmer should have defined a common superclass introducing a single global property
for this concept.

3.3.2 Local Property Conflict.

A local property conflict (in [12], it was called “value conflict”) occurs when a class inherits two local
properties from the same global property, none of them more specific than the other. Figure 9(b)
illustrates two classes (Rectangle and Rhombus), both redefining the method area whose global
property was introduced into the class Quadrilateral. In the common subclass Square, which one
is most specific? Unlike the global property conflict, there is no intrinsic solution to this problem.
Consequently, either the programmer or the language must bring additional semantics to solve
local property conflict:

Nothing: The considered language does not specify any answer to local property conflicts. This
forces the programmer to define a local property in the class where conflict appears. In
this redefinition, an explicit static call, as in C++, can be used to choose among the local
conflicting properties.

Combining: For some values or particular properties, the conflict resolution must be done by
combining the conflicting values: for instance, it is the case for the type with covariant
redefinition (the lower bound of conflicting types, if it exists). Combining is also needed by
Eiffel contracts with disjunction of preconditions and conjunction of postconditions.

5For methods, the operator :: corresponds to a static call—therefore, it denotes a local property.
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Selection: The programmer or the language arbitrarily select the local property to inherit. In
many dynamic languages, such as Clos, Dylan or Python, the choice is made by a lin-
earization [11, 3]; in Eiffel, the programmer can select the desired property by using the
undefine inheritance clause.

3.4 Comparison with Existing Languages

The main contribution of this metamodel is to make unambiguous the specifications of languages
when naming problems occur, i.e. when there are several properties with the same identifier in
the context of a single class. Such naming problems mostly occur with multiple inheritance or
with static overloading [22]. In the absence of these naming problems, there is no need, but
conceptual, to distinguish global properties and property identifiers and all languages agree with
the metamodel. On the contrary, when naming problems arise, different languages present different
behavior, and our claim is that the present metamodel is a good basis for better specifications
of the relationship between object-oriented entities and their names. We review hereafter most
commonly used languages.

In the Smalltalk terminology, methods and method selectors denote respectively local and
global properties. Nevertheless, selectors are simply reified as symbols and there is no equivalent
for attributes (instance variables in Smalltalk terminology). In Clos, methods and generic
functions stand for local and global properties—they are reified, but multiple dispatch changes
the model as they do not belong to classes, hence are not inherited in the usual meaning. As for
attributes (slots in Clos terminology), they are reified into two kinds of slot descriptions, which
can be direct or effective: but both can be understood as local properties, effective slots being only
the result of inheriting slot descriptions from superclasses [15]. Moreover, as previously noticed,
in both Smalltalk and Clos, dynamic typing does not allow to distinguish two entities with
the same name, whether it is a selector, a generic function or a slot. Despite this last point, those
languages are the only one whose terminology is suitable for distinguishing the two key notions
that we have called local and global properties. In the following languages, one word (method,
feature, etc.) stands for the two notions.

Java is almost fully compatible with the metamodel. However, multiple inheritance is possible
with Java interfaces and, when global property conflicts occurs, it is not possible to distinguish two
methods with the same signature. Moreover, there is no reification of global properties, neither
in the introspection facilities (package java.lang.reflect), nor in reflective extensions of the
language, as OpenJava or Javassist [6].

Eiffel also is fully compatible in common usage. In the terminology, “feature” stands for
property, without distinguishing the two kinds, even though a notion of feature seed could be
understood as the introduction of global properties [21]. Feature renaming allows to deal with
global property conflicts in the desired way. However, a full usage of the rename clause is not
compatible with the metamodel: (i) a feature with the new name can coexist in subclasses with
the old-named feature, as two distinct features, (ii) in a class, if two features from different seeds
are inherited under the same name, then they are locally merged.

Among the most commonly used languages, C++ is obviously the less compatible with the
metamodel, as soon as one uses multiple inheritance. Firstly, the keyword virtual is mandatory
in inheritance, for avoiding the duplication of the attributes introduced in a superclass inherited
through multiple paths (e.g., Quadrilateral in Fig. 9(b)). But, this is not enough for distin-
guishing two methods with the same signature, introduced in different unrelated superclasses.

Eventually, one can’t speak of metamodeling without considering UML, where all entities are
metadefined. As a matter of fact, concerning properties, the UML metamodel is left unfinished:
the Features diagram of [23, page 27] shows only one kind of entity called “feature”. Page 38, the
specification says “One classifier may specialize another by adding or redefining features”. Does
it mean that their “features” correspond to our local properties?

Concerning the present metamodel, the specifications of most languages could adopt it with-
out changing but marginally either programming habits or program behavior. It would afford
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Figure 10: Metamodel of Modules and Classes

some terminological and conceptual basis to object-oriented programming, either for program
documentation or teaching.

4 Modules and Classes

Let us now more formally present modules and class refinement, with a strong analogy with the
class and property metamodel previously presented. In the following, we present successively the
metamodel, its formalism, an analysis of multiple import and multiple inheritance conflicts, and
a discussion about static typing.

4.1 Module and Class Metamodel

A more rigorous approach comes from the observation that classes are to modules what proper-
ties are to classes, the dependence relation between modules matches specialization, and import
matches inheritance. It is thus necessary to define two entities associated with the concept of
class, and one entity associated with the concept of module (Fig. 10).

Modules are hierarchies of classes. A module depends on zero, one or more others modules—if
a module m depends on a module n, n is a supermodule of m, and m is a submodule6 of n. Alike
the class specialization relation, the module dependence relation is a strict partial order.

Local classes (alike local properties) are defined in modules. A local class is described by an
ordinary class definition (Def. 2). Global classes (alike global properties) gather local classes and
are orthogonal to the modules. Each module has global classes which correspond to the classes
that it knows, i.e. those that can be used in the module.

A module definition is a triplet constituted with the name of the module, the name of its
supermodules, presumably already defined, and a set of local class definitions7. The dependence
relation supports an import mechanism—i.e. modules import the classes of their supermodules.
The two kinds of classes yield two-level importation. First of all, a module imports all global
classes of its supermodules—this is global class importation. Then, each local class definition is
processed. If the name of the local class is the same as the name of an imported global class, the
new local class is attached to the global class. If there is no such imported global class, a new
global class with the same name is introduced in the module.

For any global class of a module, the existence of the corresponding local class is supposed: it
is either an explicit definition, or an implicit refinement. In the latter case, local classes are said
to be implicit classes since they do not have explicit definitions.

The class refinement relation (alike property redefinition relation) is deduced from the module
dependence relation. However, since modules are class hierarchies, there is a specialization relation

6A submodule is not a module inside a module (nested module). It is a module that depends on another module.
7The local classes are defined in a module like classes in an ordinary object-oriented language
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between local classes of a module. This relation is deduced from the explicit declarations of
superclasses: (i) in a local class of a module, a declaration of a superclass named n is licit if
the module introduces or imports a global class with the same name n. (ii) The specialization
relation is transitive (it is a partial order). (iii) A module imports specialization relation of its
supermodules. Let us notice that an explicit specialization relation between local classes already
in specialization relation by import or by transitivity has no effect.

In figures, we have chosen the following convention: local classes appear as small named boxes,
inside larger numbered boxes, namely the modules. Only specialization relations in a module and
dependence between modules are drawn. Local classes in the same global class have the same
name—the refinement relation between classes thus remains implicit. Moreover, implicit classes
and implicit specializations are illustrated in dotted lines.

Then, a program is a set of modules, closed by the dependence relation. It corresponds to a
main module (possibly implicit) that requires every other module of the program. There are two
intuitive views of the behavior of the program which correspond to a main module m:

• The program can be seen as a class hierarchy (C,≺) where C is the set of all the local classes
of all modules, and ≺ is the transitive closure of the union of the refinement relation and the
specialization relation. In the whole program, each instantiation of a class is interpreted as
the instantiation of the local class of the module m that has the same name—local classes
of the supermodule of m are interpreted as abstract classes.

• The program can be seen as the hierarchy of local class of the module m where the contents
of each local class results from its successive refinements from the required modules.

4.2 Notations and definitions

A module is a hierarchy of classes and a program is a hierarchy of modules.

Definition 3 A model of a program is a tuple
P = 〈XP ,≺P , GP , LP , NP ,nameP , globP ,defP〉 where:

• XP is the set of modules and ≺P is the module dependence relationship, which satisfies the
same equations as class specialization, together with the same notation.

• GP and LP are the set of global and local classes.

• NP is the set of class identifiers (names).

• nameP : GP ] LP → NP is the naming function of classes.

• globP : LP → GP associates with each local class a global class.

• defP : LP → XP associates with a local class the module where it is defined.

All notations and equations available for H are also available for P, apart substituting P (resp.
‘module’, ‘class’) to H (resp. ‘class’, ‘property’).

Module dependence entails class refinement, which is simply the analogue of property redefinition,
i.e. the relation �P (10). Each module M ∈ XP is itself a class hierarchy M = 〈XM,≺M
, GM, LM, NM,nameM, globM,defM〉 where XM = LPM is the set of local classes of M in P and
all NM are the same nameset. Once again, all notations and equations available for H and P are
also available for M, apart from (1) which is slightly modified into (13).

However, modules are not exactly ordinary class hierarchies. Indeed, class refinement in turn
induces inheritance of global properties. When c �P c′, then GM

′

c′ ⊆ GMc —where M = defP(c),
M′ = defP(c′) and M ≺P M′. As a small difficulty arises regarding XM, for simplification’s
sake, one assumes that XM includes a local class definition, possibly empty, for each class in the
supermodules of M, which entails that:

M≺P M′ ⇒ globP(XM′
) ⊆ globP(XM) . (11)
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Moreover, one must also assume that the specialization relationship ≺M include its analogue in
supermodules. Given cM, c′M ∈ XM:

cM �P cM′ ∧ c′M �P c′M′ ∧ cM′ ≺M
′
c′M′ ⇒ cM ≺M c′M . (12)

Finally, the following equation replaces (1):

GMc = (GM↑c ∪GM⇑c ) ]GM+c with GM⇑c =
⋃

c�Pc′
M′=defP (c′)

GM
′

c′ , (13)

and class refinement entails also a redefinition relationship, noted C, on local properties. Given
lp ∈ LM and lp′ ∈ LM

′
, with M≺P M′:

lp C lp′
def⇐⇒ globM(lp) = globM′(lp′) ∧ defM(lp) �P defM′(lp′) . (14)

The program P defined as a module hierarchy is equivalent to a class hierarchy Q = 〈XQ,≺Q
, GQ, LQ, NQ,nameQ, globQ,defQ〉, where XQ = GP is the set of global classes of P and NQ is
the common nameset for all M ∈ XP . In the program P, any reference to a classname actually
references the single corresponding class in XQ. Q gives the semantics of the program P according
to the following definitions.

The resulting class specialization ≺Q, is the union of the image by globP of all local class
specializations, i.e. the smallest set such that:

∀M ∈ XP ,∀c, c′ ∈ XM : c ≺M c′ ⇒ globP(c) ≺Q globP(c′) . (15)

The set of global properties, is merely the union of all sets of global properties:

GQ =
⋃

M∈XP

GM =
⋃

gc∈XQ

GQgc , (16)

and GQgc is defined as the union of the sets of global properties of all local classes of gc:

GQgc =
⋃

lc∈glob−1
P (gc)

M=defP (lc)

GMlc . (17)

Finally the local properties of a class are defined as the most specific, according to C, local
properties of all local classes of the considered global class:

LQgc = min
C

( ⊎
lc∈glob−1

P (gc)
M=defP (lc)

LMlc

)
. (18)

Of course, this is a sound local property set only if the function name : LQ → NQ—defined as the
disjoint union of all nameM—is injective on LQgc (8). Otherwise, a conflict occurs, which must be
solved. The whole program is constructed starting from this last sets LQgc (Section 3.2.3).

4.3 Multiple Import and Inheritance

As a result of the previous definitions, refinement of a subclass automatically induces multiple
inheritance, through class specialization (≺M) and class refinement (�P). Hence, it is impossible
to ignore the problems caused by multiple inheritance. Moreover, the dependence relationship
between modules (≺P) can itself be multiple. In this section, we analyze these new conflicts and
investigate their treatment at the light of the metamodel.
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Figure 11: Class Import and Conflict

4.3.1 Multiple Import.

A global class conflict occurs when a module imports two homonymous global classes from two
different supermodules (Fig. 11(a)). It is analogous to, and has the same definition as the global
property conflict (3) and it can be solved in the same way. As the modules are generally names-
paces, explicit designation is the most natural solution here. However, a class renaming mechanism,
as in Eiffel and its configuration language Lace [21], would be an alternative.

In a similar way, a local class conflict occurs when a local class refines several most spe-
cific classes in supermodules, i.e. when |specP(c,m)| > 1 for a module m and a local class c.
Figure 11(b) illustrates this configuration: module 4 imports A introduced by module 1 and im-
plicitly refines A2 and A3 by a local class A4. Furthermore, the situation must be quite frequent
since all the classes in supermodules are implicitly refined by empty local classes (11).

Nevertheless, apart from the structural analogy, local class conflicts are quite different from
local property conflicts. Whereas a local property is required to be unique and atomic in a class,
local classes can be understood as a set of local properties. Therefore, the natural solution to local
class conflicts is a combination of the conflicting local classes—this is done through refinement
based inheritance of their properties (13). Of course, some property conflicts may follow, that we
will examine hereafter.

4.3.2 Cyclic Specialization and Class Unification.

A new conflict configuration, named specialization conflict, appears in a module when two local
classes specialize each other, after inheritance of the specialization from supermodules (12). Fig-
ure 11(c) illustrates this case. It creates a cycle in the specialization relation which is no longer
a partial order, but only a preorder. A natural solution would be to forbid such conflicts, which
means that for each module M∈ XP , the part of ≺M declared by the programmer should not en-
tail such cycles in conjunction with the part inherited from supermodules by (12). This is however
not enough since the cycle may follow only from the specialization inherited from two unrelated
supermodules.

An alternative would be to unify all the classes on the cycle, since they are presumed to all
have the same instances and the same properties. Moreover, class unification could be an explicit
feature of class refinement language. We shall no more formalize this idea, which seems quite
feasible. Of course, the occurrence of the same property conflicts would be likely.

4.3.3 Global Property Inheritance.

Like usual classes, a local class resulting from specialization, refinement and maybe unification
consists in sets of global and local properties.

A local class has the global properties of its superclasses, i.e. the classes that it specializes
and refines (13). This should entails the usual global property conflicts (3) together with their
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Figure 12: Property Inheritance

generalization to refinement, by replacing ≺Md by �P
d . In Fig. 11(b), A2 inherits the global

property p introduced into A1 while A4 inherits the global properties p, q and r introduced into
the classes it refines.

However, as the programmer of a module m knows the modules required by m, some apparent
global property conflicts can be solved by the identification of global properties. Thus, addition
of local properties to global properties no longer needs to be restricted to redefinition in sub-
classes.Global property generalization allows the extension of global properties from some classes
to their superclasses. The generalization of a global property owned by a local class Cm in a local
class Dn (with n < m) consists in defining a local property in Dn with the same name as the
global property, since Cn ≺ Dn. The example in Fig. 12(a) illustrates the definition of a property
p in a local class B1 and its generalization in the class A2 (since B2 ≺ A2).

Global property conflicts are still possible for specialization or refinement. They must be
individually solved by the techniques of the Sect. 3.3.1. In addition to the global property conflict
related to multiple specialization (Fig. 9(a)), Fig. 12(b) illustrates a conflict related to multiple
refinement, Fig. 12(c) illustrates a conflict implying refinement and specialization, and Fig. 12(d)
illustrates a conflict involved by property generalization.

4.3.4 Local Property Inheritance.

Local property inheritance can present three kinds of apparent conflicts, when there are several
most specific inherited local properties, for a given class and a given global property: (i) usual local
property conflict, when specificity is related to ≺M and �M, (ii) the analogue when specificity
is related to �P and C, (iii) a mixed situation, when the two conflicting properties are inherited
respectively through ≺M and �P . In the two first cases, the conflict must be solved in the same
way as ordinary local property conflicts.

Figure 12(e) illustrate the latter case and raises the question of local property inheritance of
the global property p in the local class B2. The classes B1 and A2 are incomparable by ≺M or
�P , but the intuitive vision considering refinement as an incremental modification of classes gives
to B2 the method p defined in B1. This intuition agrees with the definition of Q, where the local
property p defined in B1 is the local property for B (18).

4.4 Static Typing

4.4.1 Property Conformance.

With redefinition or inheritance of a local property l in a class c, it is necessary to check that this
one conforms to the local properties defined in the superclasses of Cm. In the example in Fig. 12(a),
it should be checked that local property p inherited in B2 (i.e. that defined in B1) conforms with
the one defined in A2. Conformity between local properties can take several forms according to the
considered language: arity, static types of result and parameters, declared exceptions, contracts,
etc.
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Since the refinement semantic is not a specialization semantic, the covariant refinement policy
of [10] does not apply: on the contrary, class refinement may be used to extend a method behavior
by making it accepting more argument values (parameter type contravariance) and giving more
result values (return type contravariance). In accordance to the type theory, parameter type
contravariance is safe whereas return type contravariance is unsafe. Hence, within a safe typing
framework, refinement must use a strict invariance return type rule.

4.4.2 Constructors.

In statically typed languages without class refinement, polymorphism does not apply to instance
constructors: the static type used predetermines the dynamic type of created instances to come.
Thus, in the language specifications, the particular methods with instance constructor role are
either not inherited (Java or C++) or inherited but without their instance constructor role
(Eiffel).

With class refinement, it is a bit different since the dynamic type of newly instancied object
is statically unknown, since the local classes statically handled by the module can be refined
in possible submodules. Thus, during a class refinement, on one hand, constructors must be
fully inheritable. On the other hand, the refining classes must make sure that the constructors
introduced into the refined classes remain coherent (possibly in redefining them).

5 Related Works

Modular open classes [7] (for MultiJava an extension to Java) proposes compilation units, similar
to the modules presented in this present article. They are provided with a dependence relation via
the keyword require. MultiJava makes it possible to extend existing classes by adding functions
by an ad hoc syntax whereas, in opposition to our approach, method redefinition, attribute addition
or declaration of Java interface implementation are not allowed. Nevertheless, MultiJava is
compatible with separate compilation and dynamic loading. It also proposes an implementation
of multimethods.

Classboxes [4] introduce a notion of ‘box of classes’ (kind of modules) for Smalltalk. Classes
can be extended by adding or redefining methods and attributes in classboxes while controlling the
visibility of these additions since these changes have only local impacts: message sending answers
are both determined by the receiver and the classbox. This method sending mechanism is called
local rebinding. Thus, in opposition to the contribution of our article, class amendments made in
a classbox are applied only to this classbox and to classboxes which require it. Hence, message
sending from others classboxes are not affected by the modification.

Package merge is a mechanism proposed by UML 2.0 [23]. It permits an incremental definition
of packages. This mechanism is defined independently of package import. As for property multiple
inheritance, multiple merge is not clearly specified and inherent conflicts are not discussed.

Difference-based modules [14] (for MixJuice a language based on Java) proposes modules in
dependence relation and refinement of classes authorising method (re)definition, attribute addition
and declaration of Java interface implementation. In the case of multiple dependencies between
modules, global property conflicts are solved by explicit designation; local property conflicts are
solved by linearization. The approach is compatible with separate compilation but does not allow
dynamic loading. In contrast with our proposition, MixJuice neither reveals the analogy between
classes and modules nor analyzes the various conflict configurations and their resolutions. The
other main difference with our proposition is that classes are in single inheritance. Therefore
adding super-classes to existing classes is not possible.

Virtual classes [18] of Beta introduces a mechanism where a inner class c0 (called virtual) is
defined in an outer class c1, then c0 can be extended (refined) in any outer class c2 subclass of c1.
Using the vocabulary of our proposition, outer classes are modules, and inner classes are classes.
The main difference with our proposition is that instances of a virtual class and instances of its
redefinition are distinct and can exist simultaneously in a same program.
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Higher-order hierarchies [13] are quite similar to our modules. Motivations are identical and
isomorphism of the metamodels of classes (order 1) and modules (order 2) would allow any order
generalization. It is however not our goal and we do not push the class metaphor so far: finally, as
[28] says it, our modules are not classes, given that they do not have instances. Moreover, techni-
cally, both approaches are quite different concerning multiple inheritance, which is unavoidable as
we saw it. Higher-order hierarchies proposes a combination of completely ordered mixins whereas
our proposal relies on the interpretation of multiple inheritance in the metamodel. Since [12], it
seems to us the only good way to understand multiple inheritance.

6 Conclusion and Perspective

We proposed in this article, class refinement, an extension of the object-oriented model for stati-
cally typed languages with multiple inheritance. It provides a concept of module and a mechanism
of refinement between classes—i.e. modules can modify classes imported from their supermodules.
This approach allows an explicit separation of concerns, therefore a better reusability of object
oriented programs. Contrary to some other proposition, it requires only a light syntactic addition—
i.e. a rudimentary module language to express that a module depends on another module and that
a class (re)definition belongs to a module8.

Although the use of modules and classes are fundamentally different [28], our proposal is
based on a strict structural analogy between these two concepts since they are described by
similar metamodels9. The metamodels enhances the distinction between local and global entities,
properties or classes. This distinction allows a consistent conflict management which respects the
semantics of class specialization.

6.1 Implementation limitation and perspective.

Implementation of programs using class refinement is almost similar to implementation of any
object-oriented program. Global techniques à la SmartEiffel [8] may be used. The content of
the classes of the program results from their successive refinements.

However, modules are good candidates for being compilation units in a separate compilation
scheme. The PRM compiler prototype use the separate compilation scheme we developed in [25].
In a local phase, modules are separately compiled and produce incomplete executable code (it
contains unresolved symbols). Such a separate module compilation is quite independent of other
modules: only the metamodel of supermodules is needed, and this phase can be recursively done.
In a link phase, compiled modules composing the program are gathered, their symbols are resolved,
then a complete executable is produced.

This compilation scheme is incompatible with dynamic loading of modules since it implies
that compiled modules of programs (executable code and metamodel) are entirely known before
execution, as module dependence and class refinement are statically computed. Moreover class
refinement is not a realistic approach with dynamic loading, i.e. refinement of classes during
the execution of a program, since it requires instance modification and needs implementation
techniques similar to instance migration ones.

6.2 Modeling limitation and perspective.

The main limitation of our proposition is that it does not support revision of models: like class
specialization, class refinement is monotonous. For instance, class refinement cannot be used to
suppress properties and specialization relation, to unify global properties nor to split a class into
two classes. Although suppression is not clearly useful, global property unification would be an
answer to some conflicts, with the proviso that one correctly formalizes it. But class splitting is
clearly out of bounds of refinement.

8This one can be implicit if modules are source files and local classes are defined in these files.
9“Import is inheritance—why we (still) need both.” to counter-paraphrase [28].
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However, the language specification perspective is to answer remaining open questions. For in-
stance, refinement and visibility (public, private, etc.) or refinement and genericity (parameterized
classes).
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