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Abstract

The aim of this paper is to study local configurations for discrete rotations. The
algorithm of discrete rotation we consider is the following: a discretized rotation is
defined as the composition of a Euclidean rotation with a rounding operation, as
studied in [NR03,NR04,NRO05]. It is possible to encode all the information concerning
a discrete rotation as two multidimensional words Cy, and C!, that we call configura-
tions. We introduce here two discrete dynamical systems defined by a Z?-action on
the two-dimensional torus that allow us via a suitable symbolic coding to describe
the configurations C,, and C/; we then deduce various combinatorial properties for
both configurations, and in particular, results concerning densities of occurrence of
symbols.

Key words: Discrete rotations, discrete geometry, word combinatorics,
two-dimensional words, symbolic dynamics.

1 Introduction

Symbolic dynamics and more generally, discrete dynamical systems have nat-
ural and deep interactions with combinatorics on words. This interaction is
particularly well-illustrated in the Sturmian case, see e.g. |[Lot02,Fog02|. The
combinatorial objects involved are the Sturmian words, while the dynami-
cal systems are the irrational rotations of the torus T! = R/Z. A Sturmian
word is indeed a coding with respect to a particular two-interval partition of
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the one-dimensional torus T' of the orbit of a point under the action of an
irrational rotation. This point of view allows one to deduce many combina-
torial properties of Sturmian words, as discussed in [BFZ05]|, such as, e.g.,
the densities of occurrences of factors that can be computed thanks to the
equidistribution properties of irrational rotations, or such as powers of factors
in Sturmian words [Van00|, or the characterization of Sturmian words fixed
points of substitutions [BEIR].

Several attempts of generalization of this fruitful interaction have been pro-
posed. For more details, see the survey [BFZ05]. One of the first idea which
comes to mind is a rotation of the two-dimensional torus T? = R?/Z?. As
an example, the Tribonacci word, that is, the fixed point of the substitution
1+ 12, 2 13, 3 — 1 codes the orbit of a point of the torus T? under the
action of a translation in T? with respect to a partition of T? into three pieces
with fractal boundary [Rau82,Lot05]. More generally, fixed points of Arnoux-
Rauzy sequences over n letters [AR91] code orbits of points of the torus T"!
under the action of a translation in T"~! with respect to a partition of T"!
into n pieces with fractal boundary [AIO1].

A second approach, which is dual to the previous one, consists in working with
two rotations of T!. It is indeed convenient to describe arithmetic discrete
planes in the sense of [Rev91| by use of the coding with respect to a three-
interval partition of a Z%-action by two irrational rotations on T' |BFJP].
One thus gets two-dimensional words over a three-letter alphabet that can be
considered as two-dimensional Sturmian words [BV00|. The study of the un-
derlying dynamical system allows one here to obtain a better understanding of
the combinatorial and geometric properties of arithmetic discrete planes, such
as the enumeration of some local configurations, the so-called (m,n)-cubes,

as well as their densities of occurrence, or their centrosymmetry properties
[BEJP].

In all these cases connections between word combinatorics, symbolic dynam-
ics, arithmetics and discrete geometry prove to be natural and enligthening.
We consider in the present paper a further generalization motivated by dis-
crete geometry, and more precisely, arithmetic discrete geometry, in the sense
of [Rev91]. We study indeed configurations associated with a discrete rota-
tion; there exists several extensions of the the notion of Euclidean rotation
in discrete geometry, such as reviewed in [And92]. We consider here discrete
rotations defined as the composition of a Euclidean rotation with a rounding
operation. It is possible to encode all the information concerning a discrete
rotation as two multidimensional words C,, and C’, that we call configurations.
These configurations have been introduced and studied in [NR03,NR05,NRO5].
The main purpose of the present paper is to prove that both configurations are
codings of a Z?-action by two rotations on T? with respect to a partition into
a finite number of rectangles. We then deduce in particular results concerning



the density of each symbol in C, and C’,.

This paper is organized as follows. We introduce the first definitions and con-
ventions in Section 2. Section 3 is devoted to the dynamical study of the
configuration C,, from which combinatorial properties are deduced in Section
4. A similat study for C/, is performed in Section 5. Let us note that results
presented here extend those of [BNO5].

2 Definitions and conventions

We work in the discrete plane Z?. For each point v € Z?, z, stands for its
horizontal coordinate and vy, for its vertical coordinate.

Let = be a real number. We recall that the floor function = +— |z | is defined
as the greatest integer less or equal to x. The rounding function is defined as
[z] :== [z + 0.5] and {z} := = — [z]. These applications can be extended to
vectors in Z2, by independent application on each component.

The discretization cell of the point v € Z? is defined as the set of elements w
in R? which have the same image by discretization as v, i.e., [v] = [w]. Hence
the discretization cell of v is defined as the half-opened unit square centered
at [v].

We use the canonical bijection between the torus T? = (R/Z)? and the square
{v e R4z, € [~ i[and y» € [—3,3[}, Le., the discretization cell of 0.
By abuse of notation, we also denote by {v} the image under the canonical
projection from R? onto T? of a point v € R2. Let us stress the fact that the

map z — {z} is thus an additive morphism from R? onto T?.

Without loss of generality, we assume throughout this paper that a € [0, 7 /4]:
the arguments used here can easily be extended to the case of any other octant.
We denote by 7, the Euclidean rotation of angle a:

e B2 SR v cos(a) — sin(a) .
sin(a) cos(a)

The discrete rotation [r,] is defined as
[ro] : Z* — 72, v [ra(v)].
By {r.} we mean the map

{r.}: 7> -T2 v {r.(v)}.



We denote by (i,j) the canonical basis of the Euclidean space R%. We set
io :=1a(i) and jo == ra(j)-

Let Q be a finite set called alphabet. A two-dimensional word in QZ” is called a
configuration over (). An application from {0,1,--- ,m—1}x{0,1,--- ,n—1}
to @ is called a pattern of size [m,n|. Let C' be a configuration in Q%. A
pattern y of size [m,n| occurs at position v in C' if C(v +p) = x(v), for all p
with zp,yp, € {0,1,--- ,m—1}x{0,1,---,n—1}. The rectangular complexity
function of the configuration C is defined as the function po: N*> — N, that
counts the number of patterns of size [m,n] in C.

The density of the symbol p € Q in the configuration C' € Q% is defined as
the following limit (if it exists):

2 _— D —
ne(p) = lim Card{v € Z*, 2,3, € {—N,---,N} and C(v) p}‘

We similalry define the density of a pattern y in the configuration C as the
following limit (if it exists):

. Card{v € Z* z,,y, € {—N,---,N} and y occurs at position v}
ne(x) = lim :
N0 (2N +1)°

A dynamical system (X, T) is defined as the action of a continuous and onto
map T on a compact space X. Given two continuous and onto maps 77 and
T, acting on X and satisfying T} o Ty = T5 o T}, the Z?-action by T and T
on X, that we denote (X, T7,T5), is defined by

Y(m,n) € Z*, Vo € X, (m,n)-z=T"oTy(x).

It is natural to associate with two-dimensional symbolic dynamical system to
the triple (X, 7}, T») by coding the orbits of the points of X under the Z2-
action as follows: given zy € X and given a labelling function | defined on X
with values in a finite set () that takes constant values on the atoms of a finite
partition of X, the configuration C' defined by

Y(m,n) € Z*, C(m,n) = I1(T7" o Ty (x0))

is called the coding of the orbit of o under the Z*-action (X,T;,T5) with
respect to the labelling function (.



3 Dynamical system associated with C,

According to [NRO3], we associate a first configuration C, with the discrete
rotation [r,] that encodes local information concerning the discrete rotation:
the configuration C,, is defined at point v € Z? according to the action of the
discrete rotation on the 4-neighbours of v; furthermore, there exists a planar
transducer that uses the configuration C, as input and gradually computes
the action of the discrete rotation [NRO5].

More precisely, for a given v € Z?, we denote by V,(v) the set of 4-neighbours
of v, that is, V4(v) = {v+1i, v+]j, v—1i, v—j}. The configuration C, maps
each point v of Z? to the set [r,](Vi(v)) — [ra][v], that is,

C.(v) :={ap,a;,as, a3} with (a = [ra(v—i-?“fr/Q(i))]—[ra(v)], for k=0,---,3).
One easily checks that C, contains either 3 or 4 non-zero elements; for a

detailed proof, see [NR03|. Let @), stand for the finite set of values taken by
Cy,.-

| ] 4 ] i
H | 1 | 1 | i 1 |
oy b | ] i i | e
- e e - - [
| I 1+ Olal i i ’k | I I I |
| LT | R i Lo e
a \_aT e [\ VI e S N R W S U L \ Voot W S W S
I | | | i | i i i | i i
I I o 1 I I o 1 I I I o 1 I
I i I I I i I I I i I I
.
| | | | | | | | | | I | | |
I I I I I I I I I I I

Figure 1. A progressive construction of the configuration C,: we represent the set of
vectors that leads to the relative positions of the 4-neighbors of v after the action
of the discrete rotation.

We define a frame of the torus T? = [—3, [ X[—3, 3[ as a rectangle of the form
la,b[x[c,d], with —3 < a <b< 1 and —; < ¢ < b < 3. The interpretation of
C, as a coding a Z*-action is based on the following result:

DO [0 | =

Theorem 1 ([NRO5]) There exists a partition P, = {I,, p € Qu.} of the
torus T? into a finite number of frames such that

VW eZ? Co(v)=p< {ro(v)} €1,

More precisely, the partition P, is defined as follows: if « € [0,7/6] (resp.
[7/6,m/4]), then the torus is divided into at most 25 frames, delimited by the

(at most ) 10 lines with equation © = —3, © = 3 — cos(a), z = sin(a) — 3,
=1 —sin(a), z = cos(a) — 3,3, y = —3, y = 3 — cos(a), y = sin(a) — 3,
y = 5 —sin(a), y = cos(a) — 1, 4, (resp. z,y = —3, 3 — cos(a), 5 — sin(a),
sin(a) — %, cos(a) — %[, %) More precisely, the alphabet @, has exactly 25

elements if o # 0,7/4, /6, 16 elements if « = 7/6, and 9, if « = 7/4.



(0,0) =1 (1,00 =F0 (2,0) =7 (3,00 =5 (4,0) =% (5,0) —FE
0,1) =5 (L= 21~ (3,1) -1 (4, )H (5,1) =5
0,2) =5 (1,2) =5 (2,2) =1 (3,2) =% (4,2) —

(0,3) a0 (1,3) e (2,3) >4 (3,3) = (4,3) —il8 (5,3) e
(0,4) 5. (1,4) o5 (2,4) o (3,4) vt (4,4) ot (5,4) it
(0,5) =& (1,5) =i (3,5) =& (4,5) =ik (5,5) -

Figure 2. Table describing the action of ¢.. The symbols represent the directions of
the vectors of Cy(v).

Consider now the following two actions
T, :T> =T v—a+{i.}, Ti.: T° =T z— 2+ {jo}-

One has
W e 2%, {r}(v) = T o T (0).
We then associate with the partition P, the labelling function
lCa: TQ - QOU V= d)c(fca(xv)? fCa(yv))7
where ¢. : {0,1,2,3,4}*> — Q, if a € [0,7/6] (resp. ¢. : {0,1,3,4,5}* —

Qo if a € [r/6,7/4]) is described in Figure 2, and fo, : [-1/2,1/2] —
{0,1,2,3,4,5} is defined by

if a € [0, 7/6]: if o € [7/6,7/4]:
[, 5 — cos(a)[ —0 [—3.3 — cos(a)] — 0
4 — cos(a),sin(a) — 3 — 1 4 — cos(), 3 — sina)[ — 1
sin(a) — 4,4 — sin(a)[ 2 1 — sin(a), sin(a) - [ — 5
1 — sin(a), cos(a) — 3[ — 3 sin(a) — L, cos(@) — 1 - 3
cost@) ~ 13 o costa) ~ L3 e

The values taken by C,, i.e., the elements of (), are depicted in Figure 2
according to the directions of the vectors of C,(v), for v € Z2.

Theorem 1 can then be reformulated as follows:

Corollary 2 Let C, be the configuration associated with the discrete rotation
[ra] We use the notation introduced above. The configuration C,, is the coding
of the orbit of O under the Z*-action (T* T;,,T;,) with respect to the labelling
function lc,.



Corollary 2 means that the position, in the discretization cell of a point v € Z2,
of the point {r,}(v) of the lattice Zi, + Zj, determines the directions of the
images of the neighbours of v under the action of the discrete rotation.

Ezample : the case a = /4

We detail here the case o = 7/4. In this case, the alphabet @),/ has 9 ele-
ments. Consider the sequences in lines of the two-dimensional word C /4. One
has mi, ), = m(%, %), for m € Z. One easily checks that the one-dimensional
words (Cr/a(m,ng))mezz are codings of the rotation Ry, st R/(V2Z) —
R/(V2Z), x +— =+ %, with respect to the three intervals [—1/2, —3/2 + /2],
[—3/2 4+ v/2,1/2[, [1/2,/2 — 1/2[. By renormalizing by %, one obtains a
coding of the rotation by 1/2 over T' = R/Z with respect to three inter-
vals of length 1 — 1/4/2, v/2 — 1, and 1 — 1/v/2. One obtains a similar result
for the sequences in columns. Furthermore, the two-dimensional word C; /4
presents some intriguing self-similarity properties studied in [Nou|. We plan
to explore them by exploiting the self-similarity of the underlying dynamical
system provided by Corollary 2, such as illustrated in Fig. 3, and by exhibiting
a two-dimensional substitution generating the two-dimensional word C7 /4.

] ] Rl Bl ey e el ] B e

2 |[y|  [REEEntal
Onaidqigaioqal

=120 [&] [= =] [=] [=120a] [}

A XK SEREsa
EE::II:II:JI:ILHJI

[a I.r|.|l.-||-IJ-||

i L

% :II.E.IlnlLEE:II-EE-I

Figure 3. Left: the partition Py /4. Right: an illustration of the self-similarity of C7 /4.

4 Distribution of symbols in C,

We can now deduce from the Z?-action introduced in Section 3 combinatorial
properties of the two-dimensional word C,, and in particular, results concern-
ing densities of symbols, by using classical tools from symbolic dynamics and
ergodic theory.

Let G, C T? stand for the orbit of O under the Z*-action (T?,T;,,T;,) with
respect to the labelling function [, : this very orbit is the orbit coded by the
configuration C,. In other words, (G, is the image by the canonical projection



x +— {x} onto T? of the lattice L, := Zi, + Zj, of R?* G, is invariant by
rotation by /2.

Let us recall that an angle « is said Pythagorean if cosa and sin a are both
rational. The density of GG, is a key ingredient of our combinatorial study. Let
us distinguish two cases according to the fact that o is Pythagorean or not.

Lemma 3 The group G, is dense in T? if and only if o is not Pythagorean.
If a is not Pythagorean, then the two-dimensional sequence (Umn)(m,n)cz2,
defined by U, = T{" o T}* (0) is equidistributed in T>. If a is Pythagorean,
then the configuration C, is periodic, and its lattice of periods has dimension
two.

PROOF. Let us assume that « is not Pythagorean. We prove the equidis-
tribution of the two-dimensional sequence (Um,n)m,neW in T? by using a clas-
sical argument on Weyl sums. Indeed, for p,q € Z?, we set f,,: R? — R?,
(x,y) — e*™P7+®) One first checks that [f 2 fpq(2, y)da dy # 0 if and only
if p = ¢ = 0. Furthermore one has

2imp(m cos a—nsina) | ,2imq(m sin a+n cos a)

Joq(Umn) =€ e

— p2imm(p cos a+gsin )

e 2imn(—p sin a+q cos a)

- € .

By hypothesis, one has either cos(a) or sin(«) irrational. Then one cannot
have simultaneously pcos(a) + ¢gsin(a) € Z and —psin(a) + gcos(a) € Z.
One thus gets that for (p,q) € Z2, (p, q) # (0,0), then

: 1
nETOO (2N + 1)2 Z foa(tmpn) =0,

Iml,In|<N
which yields the equidistribution of (wm, ), ,cz2-

We assume now that « is a Pythagorean angle. There exists a unique prime
Pythagorean triple (a,b,c) € N that satisfies 1 < b < a < ¢, ged(a, b, c) = 1,
cos(a) = ¢, sin(a) = 2, and hence a® + b? = ¢*. Let u,v € Z* such that
ua —bv = ged(a, b). The vector ui, +vj, generates G, which is hence a finite
cyclic group of order c. Moreover, the vectors ¢i, and ¢j, are period vectors
for C,, hence the lattice of periods of C, has dimension two. This ends the
proof. U

Let us note that more information on rotations with Pythagorean angles can
be found in [NR04]. We can now decduce from Lemma 3 density results for

Cl.

Theorem 4 Let C, be the configuration associated with the discrete rotation
[ra]. For every symbol p € Q., its density nc, (p) in Cy exists and is equal to



o the area of the frame I, defined in Theorem 1, if o is not Pytahgorean,
e and to 1/c- Card (G,N1,), if a is Pythagorean, where ¢ stands for the order
of the group G.,.

PROOF. By definition, one has

no.(p) = lim ({ray({=N, -+, NY)N 1)/ (2N +1)°.
If « is not Pythagorean, then the result comes directly from Lemma 3.
Let us assume now « Pythagorean. One first checks that nc, (p) =
limy oo ({ra}({—c|N/c],...,c|N/c|}*) N I,) /(2N + 1)?). But as G,, is cyclic
_ {ra}({0, =130, _ Card (Ganly) 0

C

and of order ¢, then n¢,_ (p)

We can similarly deduce the following combinatorial properties of the two-
dimensional word C',. Let us note that we have focused here on the statistical
properties of repartition of the symbols in (), because of their interest for the
study of the discrete rotation [r,].

Theorem 5 Let C, be the configuration associated with the discrete rotation
[ra] The density of rectangular patterns exists in C,, for every pattern x that
occurs in C,. The two-dimensional word C,, is uniformly recurrent, i.e., for
every positive integer n, there exists a positive integer N such that every square
pattern of size [N, N| of C,, contains every square patternof size [n,n| of C.,.
Furthermore, there exists a positive constant A such that the rectangular com-
plexity function of C, satisfies

VYm,n, pc,(m,n) < A-mn.

ProOOF. We first deduce from Corollary 2 that given two positive integers
m, n, there exists a finite partition of T? into finite unions of frames po[[m,n} =
{Jy, x pattern of size [m,n] of C,} such that x occurs at position v in C,
if and only if {r,}(v) € I,. Let us stress the fact that the sets J, are not
necessarily frames, nor even connected sets; indeed, they are obtained as finite
intersections of frames I, associated with symbols p € @),. More precisely, I,
is obtained as follows:

L, = No<k<m—1, o<e<n—1T} © Tjilx(k;,l)‘
This allows us to deduce the existence of densities for all rectangular patterns
of C,. We thus obtain analogously as for Theorem 4 that they are equal to

the measure of I, in the non-Pythagorean case, and to the cardinality of the
intersection of G, with I, in the Pythagorean case.

Let us assume that « is non-Pythagorean. We assume w.l.0.g. that cos(a) € Q.



According to [S1a67], given any interval I of T!, there exists ng such that among
any finite sequence of points {k cos(a)}, {(k+1) cos(a)}, - - -, {(k+no) cos(a)},
at least of them belongs to I. Let us fix a pattern y and a position v € Z%. We
apply the previous result to the interval 7, N [—1/2,1/2[, and to the sequence
(TF (v) N [=1/2,1/2))kez = (zy + kcos(a))yez- Hence given any v € Z?, the
pattern x occurs at position v + k(1,0), for some k with 0 < k& < ng, of the
configuration C\, which yields the uniform recurrence. If o is Pythagorean,
then the uniform recurrence follows from the fact that C, has a lattice of
periods of rank 2.

We obtain an upper bound on the complexity function by counting the con-
nected components of the sets obtained by taking intersections of the form
No<k<m—1, oggn,lTi’Z Oﬂi[x(k,l)' We thus get Po, (m+1,n)— Pg,(m,n) < 5n,
for all n € N, which yields the desired result by a simple induction. [J

Remark 6 Let us note that we deduce from Lemma 3 that the symbols that
appear in C,, at indices of the form 2v, for v € Z? are exactly the elements of
Qa- Indeed, in the non-Pythagorean case, the sequence (Uaman)(mn)cz2 5 still
dense. Otherwise, we use the fact that the Pythagorean triple (a, b, ¢) introduced
in the proof of Lemma 3 is assumed to be a prime triple, i.e., ged(a,b,c) = 1.
We will use this remark hereafter.

5 Distribution of Symbols in C,

We consider now a second configuration C’, studied, e.g., in [NRO5]:

Vv e 7% Cl(v) = U Co(W).

w such that [ro(w)]=v

The configuration C!, codes the action of [r,] on the 4-neighbours of preia-
mages of points of Z2.

Let @), stand for the set of values taken by C!. We want to state a result
analogous to Theorem 1 in order, first, to interpret the configuration C’, as a
coding of a symbolic dynamical system, and second, to compute the densities
of the symbols in C!,. Let us note that Corollary 1 in [NR05]| does not directly
yield a dynamical interpretation of C”,.

Let us note that there exist elements v € Z? that have no antecedent by [r,].
Such an element is called a hole. An example of a hole is depicted in Figure
5 below. According to [NRO4], two holes can never be adjacent, i.e., if v is a
hole, then neither v+i, nor v+j is a hole. Our strategy in order to describe C/,
as a coding of a Z2-action is thus to create a “block configuration” by working

10



with patterns of size [2,2] that occur in C!. According to Remark 6, there is
no restriction in working with even indices, rather than with odd indices.

We then introduce a particular domain of R? that is a fundamental domain
for the lattice Zi, + Zj., such that if we know the projection of a point
p € Zi, + Zj, in that domain, then we can recover the symbols that appear
in the block configuration; therefore we find out what are the symbols that
appear in C!. We thus deduce a symbolic dynamical system for the block
configuration. Finally, we use this dynamical system, in order to get the density
of the symbols both in the block configuration and in C,.

5.1  Dynamical system for C_

We denote by (Q’,)!>? the set of patterns of size [2,2] that occur in C’,. Let
(C")[22 be the configuration with values in the finite alphabet (Q’,)?? that
maps v to to the pattern of size [2,2] that occurs at position 2v in C!. Since
(C')22(v) is an application that returns patterns of size [2,2], then C' (v)
is obtained by taking the value at position (z, mod 2,y, mod 2) in the [2, 2]
pattern (Co)*?(|w/2], [yv/2]).

For any v € Z?, one sets

3 1 3
FB(V):[xv——,xv+§[x[yv—§,yv+§[.
Let
1 1\?2 1 1 1 1
Fp, = ([—i,cosa— 5[) U([cosa— é,cosoﬁ—sina— i[x[—é,sina— 5[)

The set Fpp, is a fundamental domain for the lattice L, = Zi,+Zj, (see Figure
4), i.e., User., Fp, +7 is a partition of R%. We thus set T? := R?/(Zi, + Zja).
Furthermore, we denote by v — {v} the canonical projection on T2, T?
being in one-to-correspondence with Fp_.

Figure 4. An exchange of pieces between Fp,_ and the canonical representation of
R?/L,, obtained by performing translations in L.

Theorem 7 Let Let a € [0, 7/4]. Let C!, be the configuration associated with
the discrete rotation [r.]. There ezists a partition P, = {Jy, p' € Q.} of Fp,

11
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Figure 5. From a point pg € Ziy + Zj, contained in the domain Fp_(2v) (in dark
gray), we can recover all the symbols that contribute to the block of size [2,2] at
position 2v in C/; Fp(2v) is depicted in light gray.
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Figure 6. A partition of the domain Fp,, for o ~ 0.464705 rad. This partition
gives the pattern of size [2,2] that appears in (C",)[>2(v), according to the position
of —{2v}, inside that domain. On the axis the positions are labeled by expres-
sions of the form kc + k’s + k", meaning that the corresponding line is located at
kcos(a) + K sin(r) + k” — § in Fp, . For readability reasons, the scale is monotone

but not linear.

into a finite number of frames such that

v e Z?, (C)PA(v) =p <= —{ov}_ € J,.

We define by iy T2 — (Q)22 the labelling function that associates
with elements of the frame J, € P. of Fp, the corresponding pattern p' of
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size [2,2], i.e.,
vv € 2, (CLPA(v) = Ly (—{2v1,).

The configuration (C')?? is thus a coding of the orbit of 0 under the Z>-action
(T2, v v+ {—2i} v v+ {—2j} ) with respect to the labelling function

Z(C&)[Q,Q] .

PROOF. The proof is based on the following idea: for any v € Z2, there
exists a unique v € L, = r,(Z) such that —v € v+ Fp_, i.e., for any v € Z?
there exists a unique w € Z? such that —2v € —r,(w) + Fp,_. One thus has
ro(w) —2v ={ —2v}_ = —{2v},. Let us prove that it is possible to deduce
the value of (C?,)?/(v) from the location of { — 2v}, in Fp,.

For that purpose, we first check that for all points w of Z? that have their
image by r, in F5(2v) we can compute C,(w), according to Theorem 1 and
Remark 6. Indeed, let w be the unique element Z?* such that 7,(w) € v+ Fp_;
if T, (w)—2v < 3, [Fa(W) —2v] =0, else [ro(w) — v] = 1; we thus deduce the
value of C,(w), according to Theorem 1. ence, we get a first partition of Fp_
into a finite number of frames yielding the value of C,(w).

The same argument applies for all points w' = r,(w) of Z;, + Z;, that are
inside Fp(2v). We thus refine our first partition by intersecting it by translates
by vectors of L, which ends the proof. [

5.2 Application

We can perform the same combinatorial study as in Section 4. In particular,
Lemma 3 extends in a natural way. We do not detail here the corresponding
results but focus on the following application to density of symbols. We assume
in particular that « is not a Pythagorean angle. Similarly as in the study of
C.,, the orbit of 0 under the Z?-action is dense and uniformly distributed in
T2. We thus deduce that

VpeQ,, ne(p)= Y, n@,p)ulfy),

p'e(Q)22

where n(p’,p) is the function that returns the number of occurrences of p in
the pattern p’ of size [2, 2], and u(.J,/) denotes the area of frame .J,, associated
with the symbol p’ according to Theorem 7.

However practically, the computations for these symbolic maps are quite te-
dious. For each symbol p, there exist 40 patterns p’ of size [2,2] to compute.
This leads to approximatively 360 inequations... and there are approximatively
25 symbols p to consider! The results describing the densities of the symbols
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in C! have been summarized in Figure 7. In the Pythagorean case, the study
is also similar to the one developed for C,,.

o

¥ 1N )

[0.. arctan(v2/4)]

2sinl

B
o

2cos(a)sin(a) — 2cos(a) — 2sin(a) +2 | —(c
=

0s(a))” — cos(a)sin(a) + 2cos(a) +sin(a) — 1

(a)sin(a) (@) (@)
[arctan(v2/4).. arctan(1/2)] || 2cos(a)sin(a) — 2cos(a) - 2sin(a) +2 | 2cos(a)sin(a) - 2cos(a) - 2sin(a) +2 cos(a))* + 2 cos(a)sin() + cos(a) — 2sin(a)
larctan(1/2)..7/6] 2cos(a)sin(a) — 2 cos(er) — 2sin(a) +2 | 2cos(a)sin(er) — 2cos(ar) — 2sin(a) +2 0
[7/6... arctan(3/4)] 2cos(a)sin(a) — 2cos(a) — 2sin(a) + 2 —2cos(a)sin(a) +1 0
[arctan(3/4)..7/4] 2 cos(a)sin(a) — 2 cos(a) — 2sin(a) + 2 —2cos(a)sin(a) + 1 0
a R S AN
0. arctan(v/2/4)] (cos())? = 2cos(a) + 1 —2(sin(a))* — 2 cos(a)sin(a) + cos(a) + 3sin(a) - 1 3cos(a)sin(a) — cos(a) — 3sin(a) + 1
[arctan(v/2/4).. arctan(1/2)] (cos(a))? — 2cos(a) + 1 ~2(sin(a))* — 2 cos(a)sin(a) + cos(a) + 3sin(a) — 1 0
[arctan(1/2)..7 /6] 2cos(a)sin(a) — cos(a) — 2sin(a) + 1 | =2(sin(a))® - 2cos(a)sin(a) + cos(a) + 3sin(a) - 1 0
[w/6..arctan(3/4)] 0 0 0
[arctan(3/4)..7 /4] 0 0 2(cos(a))* — cos(a)sin(a) — 3cos(a) +sin(a) + 1
ﬁ TR TR RNy
[0.. arctan(v/2/4)] 0 0 0
[arctan(v/2/4).. arctan(1/2)] —3cos(a)sin(c) + cos(a) + 3sin(a) - 1 ) 0 0
[arctan(1/2)..7/6] —2(cos(a))? + cos(a)sin(a) + 3cos(a) —sin(a) = 1 | (cos(a))® - 2cos(a)sin(a) — cos(a) + 2sin(a) 0
[w/6..arctan(3/4)] ~2(cos(a))* + cos(a)sin(a) + 3cos(a) - sin(a) — 1 (cos(a))? — 2cos(a) + 1 ~2(sin(a))? + 2 cos(a)sin(a) — cos(a) + sin(a)
[arctan(3/4)..7 /4] 0 ~(cos(a))? + cos(a)sin(a) + cos(a) — sin(a) | ~2(sin(a))* + 2cos(a)sin(a) - cos(a) + sin(a)

. SHELE R X i

[0.. arctan(v/2/4)] 0 —(cos(a))? - cos(a)sin(a) +2cos(a) +sin(a) — 1 0 4(sin(a))? - 4sin(a) +1
[arctan(v/2/4).. arctan(1/2)] 0 ~(cos(a))* - cos(a)sin(c) +2cos(a) +sin(a) - 1 0 4(bin(a))'2 —4sin(a) +1
larctan(1/2)..7/6] 0 ~(cos(a))? — cos(a)sin(a) +2cos(a) +sin(a) - 1 0 4(sin(a))? - 4sin(a) +1
[7/6...arctan(3/4)] —2cos(a)sin(a) + cos(a) + 2sin(a) — 1 —(cos(a))* + cos(a)sin(a) + cos(a) —sin(a) | 4(sina))* — 4sin(a) + 1 0
larctan(3/4)..7/4] —2cos(a)sin(a) + cos(a) + 2sin(a) — 1 —(cos(a))? + cos(a)sin(a) + cos(a) — sin(a) 4(sin(a))? — 4sin(a) + 1 0

Figure 7. Table describing nc: (p) for each symbol p that appears in Cy,, with respect
to the value of a.
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