
HAL Id: lirmm-00102784
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102784

Submitted on 3 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Leak Resistant Architecture Against Side Channel
Attacks

Daniel Mesquita, Lionel Torres, Benoit Badrignans, Gilles Sassatelli, Michel
Robert, Fernando Gehm Moraes

To cite this version:
Daniel Mesquita, Lionel Torres, Benoit Badrignans, Gilles Sassatelli, Michel Robert, et al.. A Leak
Resistant Architecture Against Side Channel Attacks. FPL: Field-Programmable Logic and Applica-
tions, Aug 2006, Madrid, Spain. pp.881-884, �10.1109/FPL.2006.311335�. �lirmm-00102784�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102784
https://hal.archives-ouvertes.fr

A LEAK RESISTANT ARCHITECTURE AGAINST SIDE CHANNEL ATTACKS

Daniel MESQUITA
1*
, Benoît BADRIGNAN

1,2
S,

Lionel TORRES
1
, Gilles SASSATTELL

1
, Michel

ROBERT
1
, Jean-Claude BAJARD

1
,

Fernando MORAES
3

1
Laboratoire d’Informatique, de Robotique et de

Microélectronique de Montpellier (LIRMM)

 Université Montpellier II

 161 rue Ada, 34392 – Montpellier – France

{LASTNAME}@lirmm.fr

2
NETHEOS

 Cap Omega – rond Point Benjamin Franklin

34.000 Montpellier – France

 b.badrignans@netheos.net

3
Faculdade de Informática (FACIN)

Pont. Universidade Católica do RS (PUCRS)

 Av. Ipiranga 6681 Prédio 30 – 90.619-900

Porto Alegre – Brasil

 moraes@if.pucrs.br

ABSTRACT

Hardware implementations of cryptographic algorithms may leak

some information that can be used to recover cryptographic keys.

This work combines reconfigurable techniques with the recently

proposed Leak Resistant Arithmetic (LRA) to thwart some Side

Channel Attacks (SCA). The introduced architecture outcomes the

performance of classical implementation of modular

multiplication, for key size exceeding 2048 bits, with a reasonable

extra area overhead. Nevertheless, this is not a drawback, but a

cost, since the main issue of the proposed architecture is the

improved robustness in terms of security.

1. INTRODUCTION

Information leaked by cryptographic processors, as

computing time, power consumption and electromagnetic

emissions during an encryption or decryption process are

known as side channel. Side channel attacks (SCA) are

based on side channel information.

In the past, cryptographic attacks were performed by

analyzing known cyphertext (cyphertext-only attacks) or by

choosing the plaintext and then seeing the result of

encryption (chosen plaintext attacks). SCA appeared more

recently and do not rely on purely cryptanalytic

considerations, but rather focus the VLSI implementation of

the cryptographic algorithm.

For instance, the power consumed by a cryptographic

engine has a strict relation with the data computed. This

characteristic is due to the fact that power consumed by

every single logic gat differs depending on the output states

before and after switching (i.e. switching from logic 0 to

logic 1 or from logic 1 to logic 0) [1]. An encryption

process generates a power signature depending on the

encrypted text and the cryptographic key used for

encryption. If the cryptographic hardware does not have

any protection measures, a Simple Power Analysis (SPA)

attack can be performed. But even with some

countermeasures present, the Differential Power Analysis

(DPA) may be still efficient.

This paper gives a brief introduction concerning DPA

attacks and countermeasures. Then, as the base of the

proposed architecture, the Leak Resistant Arithmetic is

explained. This technique can be considered as an efficient

algorithmic countermeasure, because this algorithm is

based on run-time changes of the number base, which leads

to changes in the intermediate results (without modifying

the final result). Afterwards, a reconfigurable architecture

resistant against some SCA attacks is introduced. Finally

some results, conclusions and further works are discussed.

2. DPA ATTACK AND COUNTERMEASURES

Differential power analysis consists not only visual (as the

SPA), but also statistical analysis and error-correction

methods to recover keys of hardware implementation of

cryptographic algorithms [1].

The most significant part of power consumption of an

integrated circuit is due to the logical gates and the parasitic

capacitance of the internal wires. But the variant part of

power consumption is given by the data processed. So, the

DPA has the ability to find the correlated data in hardware’s

power consumption, without requiring any information

about the implementation details.

For a typical attack, an adversary repeatedly samples the

target device’s power consumption through each of several

thousand cryptographic computations. These power traces

can be obtained using high-speed analog-to-digital

converters. Figure 1 illustrates this method used to attack a

secure device, but experiments were performed also against

FPGA implementations.

As an illustration, a DPA attack conducted against a

device implementing the DES algorithm is given. The Data

Encryption Standard (DES) [2] is used because of its

widespread use and simplicity. The DES is composed by 16

rounds of substitutions, with initial and final permutations.

In each of the 16 rounds, the DES encryption algorithm

performs eight S-box operations. The 8 S-boxes take as

input the XOR between the six key bits and the six bits of

an internal register (R register) and produce four output

bits.

Figure 1 - A DPA attack platform

The attack consists in to guess the sub-keys at the input

of the S-box, and predict the output. If the assumption is

incorrect, the criteria used to create the subsets will be

approximately random. Any randomly-chosen subset of a

sufficiently-large data set will have the same average as the

main set. As a result, the difference trace will be near to

zero, and the adversary repeats the process with a new

guess. If the hypothesis is correct, however, choice of the

subsets will be correlated to the actual computation. In

particular, the second-round bit would have been ‘0’ in all

traces in one subset and ‘1’ in the other. When this bit is

actually being manipulated, its value will have a small

effect on the power consumption, which will appear as a

statistically-significant deviation from zero in the difference

trace.

The main idea behind this method is that prediction of a

single output bit leads the attacker to the 6 bits of the input

sub-key, and then, to the rest of the key bits.

3. DPA COUNTERMEASURES

But this paper focuses into algorithmic

countermeasures. For the hardware ones, refer to [3].

In practice, to discover a 64bits key of a DES algorithm

(without any countermeasure), around 100 plaintext are

needed, with 1000 power acquisitions per text. Considering

a fully automated process, in the worst case it takes less

than 8 minutes to discover the secret key.

3.1. Algorithmic Countermeasures

There are several algorithmic (or software)

countermeasures to thwart DPA attacks. Some of the first

ones were proposed in [4], and the three proposed

countermeasures are efficient against SPA and classical

DPA attacks. For RSA cryptosystems [5] the first method

described by Coron is applicable, and the second one is just

an adaptation of the Chaum’s blind signature [6]. The third

method is only suitable for ECC (Elliptic Curve

Cryptosystems). But the recently proposed Refined Power

Analysis (RPA) [7] overrules these countermeasures.

The BRIP method counteracts the RPA but is also

targeted to ECC, not tailored to work with the widely used

RSA algorithm [8]. The message blinding proposed by P.

Kocher [9] seems to be an efficient countermeasure against

the MRED [10], an attack targeting CRT (Chinese

Remainder Theorem) implementation of RSA.

In general, the countermeasures protecting the RSA

algorithm of DPA attacks relies on message or exponent

blinding. These methods contribute or not to the security of

the system, depending on the way they are implemented

and the kind of attack. It is not rare that the defense against

one attack may benefit another kind of attack.

So, the best way to counteract DPA attacks is to target

the DPA principle: the correlation between the data

computed and the power consumption. Differently of the

works that generally proposes CRT to accelerate RSA, like

[13], another proposes a full RNS (Residue Number

System) representation to compute RSA [14], [15]. Besides

the acceleration, a full RNS implementation of RSA can

intelligently be used to counteract DPA and DFA attacks,

as shown below.

4. LEAK RESISTANT ARITHMETIC (LRA)

The Leak Resistant Arithmetic (henceforth called LRA) is

based on the RNS representation and the RNS

Montgomery’s modular multiplication proposed in [12].

 It uses the Residue Number System, which relies on the

Chinese Remainder Theorem. The CRT indicates that is

possible to represent a large integer using a set of smaller

integers, so that computation may be performed more

efficiently.

 The version of the Montgomery’s modular

multiplication presented below was proposed in [14]. In the

RNS representation the value M is taken from (1):

∏
=

=
k

i

imM
1

 (1)

So, M is chosen as the Montgomery constant instead β
k

in the classical representation. Then, with A, B, R and N

represented in RNS within the base β1={m1, m2, m3, ... mk}.

The result of the algorithm must be:

R = A.B.M1
-1
mod N

However, the value M1
-1
cannot be computed in β1. So

another base β2 is defined as an extension of β1, with k

extra moduli all co-primes among them and with β1. So,

before calculate (Algorithm 1, [14] points 3 and 5) M1
-1
a

base extension from β1 to β2 is performed.

So, the Figure 2 describes the algorithm for

Montgomery’s modular multiplication in RNS. As inputs

we have two RNS bases β1 and β2, such that M and M’ can

be computed as the product of the moduli that composes

respectively β1 and β2. The inputs A, B and N are also

represented in both β1 and β2 bases. Besides a redundant

modulus mr such that gcd(mr,mi)=1 is needed. Also, N and

M must be co-primes. The result is given by R in β1.

The points 1, 2 and 4 of the algorithm consist of full

RNS operations that can be realized in parallel. Therefore,

the most complex operations rely on the base extensions

(points 3 and 5). There are some methods to compute a

base extension, but here the Mixed Radix System,

described in [11] that has the advan that it requires only a

of k values for each base modification [12]. Due to space

constraints, the algorithm for modular exponentiation was

omitted in this paper, but details can be obtained in the

same reference [12].

4.1. THE SECURITY PROVIDED BY THE LRA

Besides performance due to the intrinsic parallelism, RNS

algorithms provide also the possibility of randomize the

basis: the algorithm’s robustness relies on this concept. The

LRA proposes two approaches of data randomization: one

at the circuit level (spatial randomization) and the data level

(arithmetic masking). They represent a good trade-off

between security and implementation cost. The considered

approaches are:

• Random choice of initial bases: Randomization of the

input data is provided by randomly choosing the elements

of β1 and β2 before each modular exponentiation.

• Random change of bases before and during the

exponentiation: A generic algorithm is proposed in [12],

offering many degrees of freedom in the implementation

and at the security level.

The main goal of these approaches is to lead to a

randomization of all intermediate data computed at the

cryptographic circuit for the same input data and output.

Based on the same principle of the DPA, if the data change

during an operation, consequently the power consumption

became random, thwarting DPA attacks. The security of

this method was demonstrated in [12].

5. RECONFIGURABLE ARCHITECTURE

As the RNS implementation of RSA leads to parallel

operations, we conceived a parallel reconfigurable

architecture to run the Leak Resistant Arithmetic called

“Leak Resistant Reconfigurable Architecture” (LR²A).

Besides, the LR²A intends to be a flexible solution for

cryptographic algorithms, so it can be viewed as a coarse

grain reconfigurable architecture, because it is possible to

reconfigure this architecture to perform other cryptosystems

based on modular arithmetic, like ECC or RC6.

Furthermore, the LR²A can be easily modified to run

supplementary applications, like data compression or image

processing, but the discussion about the flexibility exceeds

the scope of the paper.

The LR²A is built around three main structures: a

configuration and data injection controller, some

homogeneous processing elements (PE), and memory

resources. A controller is responsible of data injection and

configuration control to/of the PEs. There are k PE, where k

is given by the number of bases used for the LRA. The

LR²A memory schema is non-uniform memory access

architecture, i.e. the memory organization can be viewed as

a local memory for each PE, but accessible for all PEs and

the controller.

The following subsections describe the controller, the

PE, the memory structure and the configuration model.

5.1. The controller

The main difference from the LR²A and some common

reconfigurable architectures is that the LR²A is not only a

loop-core (asic, hardware, rever) for a specific algorithm

class. The proposed reconfigurable architecture includes a

controller to bring the configuration specific to each node,

to inject the data into the distributed memory, and after

that, to recover the computed data. The Figure 2 shows an

overview of the LR²A.

Figure 2 - The LR²A overview

To perform these operations the Plasma processor was

chosen, due to its availability and the fact it has a C

compiler, which makes easier the configuration model

programming. The Plasma CPU is an open source

processor, based on the MIPS R3000 instruction set, ant it

has as an advantage the software compatibility with others

processors used for embedded systems.

When the system starts, the controller reads the

configuration for each PE from the configuration memory,

sending it to the target PE. Also, the controller stores

internally the status of each node into a data structure.

After, the initial data supposed to be computed is loaded

into the local memories. Since configuration and data are in

place, the controller starts the computation. Finally, is the

controller the element charged to recuperate the computed

data and to store it into the main memory.

For the next changes (i.e., data arriving, or other

configuration needed), the controller verifies the current

status of the PEs and their respective memories before send

the new information. In fact, controlling the LR²A consists

in running the configuration framework explained in the

reference [16].

5.2. The processing element

The LR²A’s processing element is a load-store architecture

similar to Plasma: the logic and arithmetic instructions are

executed using internal registers only, while the memory

access instructions execute either the reading from (load) or

the writing to (store) one memory position. In fact, the

processor’s organization is similar to the Plasma, but the

PEs are optimized for cryptographic operations, and

consequently, simplest and smaller.

Due to the load/store architecture option, the processor

must have a relatively large set of data manipulation

general-purpose registers, to reduce the number of memory

accesses (this always represents a time penalty with regard

to the processor internal operation). Regarding the

instruction format, all instructions have exactly the same

size, occupying 1 memory word each. The instruction

contains the operation code and the operands specification,

in case they exist. The processor datapath includes specific

cryptographic operators. Because the LRA’s basic

operations are the modular ones, the following operations

are hardwired and incorporated to the ALU.

6. RESULTS

The architecture was synthesized in AMS 0.35 technology,

for different scenarios of key and datapath sizes. Taking

the 32bits datapath configuration, and considering the size

of the controller being around 40k gates, a LR²A composed

by 32 PEs (capable of performing 1024bits exponentiation),

occupies 352k gates on silicon. Comparing with state-of-art

hardware accelerators for the same purpose, the LR²A takes

five to eight times the commonly use area.

But in terms of performance, as shown in the Figure 3, for

cryptographic keys larger than 1024 bits, the LR²A

outcomes classical implementations. The comparison was

made taking into account the square and multiply method to

perform modular exponentiation. The reference

implementation concerns a modular exponentiation

calculated with a dedicated circuit implementing the

Montgomery algorithm for modular multiplication, with a

word size of 32 bits, and running at 40MHz. On the other

hand, the LR²A implementation features are a 32 bit

datapath version, with 32 processors running at 40MHz.

For both versions the area corresponds the exponentiation

control was not considered.

As shown in Figure 3, in terms of performance, the

LR²A is equivalent to classic implementations of modular

exponentiation for key sizes until 2048 bits. Beyond 4096

bits, the LR²A is clearly more interesting in performance,

but with an area penalty.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

1024 2048 4096

Ke y Size (bits)

T
im

e
(s

ec
o

n
d

s)

Classic Implementation

LR²A 32 Bits

Figure 3 - LR²A versus a classic implementation of the modular

exponentiation

The area report is 5 times for 2048 bits and 10 times for

4096. This is the cost of the security. The classic

implementation does not contain any countermeasure

against DPA, while the LR²A incorporate the robustness

needed to counteract this attack.

7. CONCLUSIONS

The Leak Resistant Arithmetic improves the robustness of

cryptographic applications counteracting the principle of

some hardware attacks, like DPA. Due to its nature, the

LRA leads to a parallel architecture, requiring important

hardware resources. Even with area penalties, the LR²A is

competitive in terms of performance, equivalent to state-of-

art cryptographic accelerators.

8. REFERENCES

[1] P. Kocher, J. Jaffe, et al. “Differential Power Analysis : Leaking
Secrets”. Advances in Cryptology: Proceedings of CRYPTO'99, , pp.
388-397. 1999.

[2] – . “ Data Encryption Standard (DES)”. Federal Information
Processing Standards Publications (FIPS PUBS) Nº 46-3.

EUA.October 25, 1999.

[3] D. Mesquita, J-D. Techer, et al. “Current Mask Generation: A New
Hardware Countermeasure for Masking Signatures of Cryptographic

Cores”. International Conference on Very Large Scale Integration:

proceedings of IFIP VLSI SoC ’05. Perth, Australia, 2005.

[4] J-S Coron. “Resistance against Differential Power Analysis for
Elliptic Curve Cryptosystems”. Cryptographic Hardware and

Embedded Systems, Proceedings of CHES 1999,.Pp 292-302, 1999.

[5] R. Rivest, A. Shamir, et al. “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”. ACM Communications,

vol 21. pp 120-126. 1978.

[6] D. Chaum. “Security without identification: transaction systems to
make Big Brother obsolete”. Communication of the ACM. Vol. 8.,

n° 10, pp 1030-144. 1985.

[7] L. Goubin. “A refined power-analysis attack on elliptic curve
cryptosystems”. Publick Key Cryptography: Proceedings of PKC

’03. Pp 199-210. 2003.

[8] M. Hideyo, M. Atsuko. “Efficient Countermeasures against RPA,
DPA, and SPA”. Cryptographic Hardware and Embedded Systems,

Proceedings of CHES 2004. Pp 343-356, 2004.

[9] P. Kocher. “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems”. 16th Workshop in Cryptology:

Proceedings of Crypto ’96. Pp 104-113. Santa Barbara, USA. 1996.

[10] B. Boer. “A DPA Attack against the Modular Reduction within a
CRT Implementation of RSA”. Cryptographic Hardware and

Embedded Systems, Proceedings of CHES 2002. Pp 228-243, 2002.

[11] H. Garner. “The Residue Number System”. IRE Transactions in
electronic Computers. Vol 8, pp. 140-147, 1959.

[12] J-C. Bajard, L. Imbert, et al. “Leak Resistant Arithmetic”.
Cryptographic Hardware and Embedded Systems, Proceedings of

CHES 2004. Pp 62-75, 2004.

[13] C. Kim, J. Ha, et al. “A CRT-Based RSA Countermeasure against
Physical Cryptanalysis”. International Conference on High

Performance Computing and Communications: Proceedings of

HPCC ’05. Pp 549-554, Naples, Italy, 2005.

[14] J-C. Bajard, L. Imbert. “A Full RNS Implementation of RSA”.IEEE
Transactions on Computers. Vol. 53, n° 6, pp. 769-774. 2004.

[15] M. Ciet, M. Neve, et al. “Parallel FPGA implementation of RSA
with residue number systems – can side-channel threats be

avoided?”. 46th IEEE International Midwest Symposium on Circuits

and Systems: Proceedings of MWSCAS ’03. Cairo, Egypt, December
2003.

[16] E-L. Carvalho, N. Calazans, et al. “Reconfiguration Control for
Dynamically Reconfigurable Systems”. 19th Conference on Design
of Circuits and Integrated Systems: Proceedings of DCIS ’04.

Bordeaux, France, 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/220759558

