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ABSTRACT 

Hardware implementations of cryptographic algorithms may leak 

some information that can be used to recover cryptographic keys. 

This work combines reconfigurable techniques with the recently 

proposed Leak Resistant Arithmetic (LRA) to thwart some Side 

Channel Attacks (SCA). The introduced architecture outcomes the 

performance of classical implementation of modular 

multiplication, for key size exceeding 2048 bits, with a reasonable 

extra area overhead. Nevertheless, this is not a drawback, but a 

cost, since the main issue of the proposed architecture is the 

improved robustness in terms of security. 

1. INTRODUCTION 

Information leaked by cryptographic processors, as 

computing time, power consumption and electromagnetic 

emissions during an encryption or decryption process are 

known as side channel. Side channel attacks (SCA) are 

based on side channel information.  

In the past, cryptographic attacks were performed by 

analyzing known cyphertext (cyphertext-only attacks) or by 

choosing the plaintext and then seeing the result of 

encryption (chosen plaintext attacks). SCA appeared more 

recently and do not rely on purely cryptanalytic 

considerations, but rather focus the VLSI implementation of 

the cryptographic algorithm.  

For instance, the power consumed by a cryptographic 

engine has a strict relation with the data computed. This 

characteristic is due to the fact that power consumed by 

every single logic gat differs depending on the output states 

before and after switching (i.e. switching from logic 0 to 

logic 1 or from logic 1 to logic 0) [1].  An encryption 

process generates a power signature depending on the 

encrypted text and the cryptographic key used for 

encryption. If the cryptographic hardware does not have 

any protection measures, a Simple Power Analysis (SPA) 

attack can be performed. But even with some 

countermeasures present, the Differential Power Analysis 

(DPA) may be still efficient.  

This paper gives a brief introduction concerning DPA 

attacks and countermeasures. Then, as the base of the 

proposed architecture, the Leak Resistant Arithmetic is 

explained. This technique can be considered as an efficient 

algorithmic countermeasure, because this algorithm is 

based on run-time changes of the number base, which leads 

to changes in the intermediate results (without modifying 

the final result). Afterwards, a reconfigurable architecture 

resistant against some SCA attacks is introduced. Finally 

some results, conclusions and further works are discussed. 

2. DPA ATTACK AND COUNTERMEASURES 

Differential power analysis consists not only visual (as the 

SPA), but also statistical analysis and error-correction 

methods to recover keys of hardware implementation of 

cryptographic algorithms [1]. 

The most significant part of power consumption of an 

integrated circuit is due to the logical gates and the parasitic 

capacitance of the internal wires. But the variant part of 

power consumption is given by the data processed. So, the 

DPA has the ability to find the correlated data in hardware’s 

power consumption, without requiring any information 

about the implementation details.  

For a typical attack, an adversary repeatedly samples the 

target device’s power consumption through each of several 

thousand cryptographic computations. These power traces 

can be obtained using high-speed analog-to-digital 

converters. Figure 1 illustrates this method used to attack a 

secure device, but experiments were performed also against 

FPGA implementations. 

As an illustration, a DPA attack conducted against a 

device implementing the DES algorithm is given. The Data 

Encryption Standard (DES) [2] is used because of its 

widespread use and simplicity. The DES is composed by 16 

rounds of substitutions, with initial and final permutations. 

In each of the 16 rounds, the DES encryption algorithm 

performs eight S-box operations. The 8 S-boxes take as 

input the XOR between the six key bits and the six bits of 

an internal register (R register) and produce four output 

bits. 



 

Figure 1 - A DPA attack platform 

The attack consists in to guess the sub-keys at the input 

of the S-box, and predict the output. If the assumption is 

incorrect, the criteria used to create the subsets will be 

approximately random. Any randomly-chosen subset of a 

sufficiently-large data set will have the same average as the 

main set. As a result, the difference trace will be near to 

zero, and the adversary repeats the process with a new 

guess. If the hypothesis is correct, however, choice of the 

subsets will be correlated to the actual computation. In 

particular, the second-round bit would have been ‘0’ in all 

traces in one subset and ‘1’ in the other. When this bit is 

actually being manipulated, its value will have a small 

effect on the power consumption, which will appear as a 

statistically-significant deviation from zero in the difference 

trace. 

The main idea behind this method is that prediction of a 

single output bit leads the attacker to the 6 bits of the input 

sub-key, and then, to the rest of the key bits. 

3. DPA COUNTERMEASURES 

But this paper focuses into algorithmic 

countermeasures. For the hardware ones, refer to [3]. 

In practice, to discover a 64bits key of a DES algorithm 

(without any countermeasure), around 100 plaintext are 

needed, with 1000 power acquisitions per text. Considering 

a fully automated process, in the worst case it takes less 

than 8 minutes to discover the secret key. 

3.1. Algorithmic Countermeasures 

There are several algorithmic (or software) 

countermeasures to thwart DPA attacks. Some of the first 

ones were proposed in [4], and the three proposed 

countermeasures are efficient against SPA and classical 

DPA attacks. For RSA cryptosystems [5] the first method 

described by Coron is applicable, and the second one is just 

an adaptation of the Chaum’s blind signature [6]. The third 

method is only suitable for ECC (Elliptic Curve 

Cryptosystems). But the recently proposed Refined Power 

Analysis (RPA) [7] overrules these countermeasures.   

The BRIP method counteracts the RPA but is also 

targeted to ECC, not tailored to work with the widely used 

RSA algorithm [8].  The message blinding proposed by P. 

Kocher [9] seems to be an efficient countermeasure against 

the MRED [10], an attack targeting CRT (Chinese 

Remainder Theorem) implementation  of RSA. 

In general, the countermeasures protecting the RSA 

algorithm of DPA attacks relies on message or exponent 

blinding. These methods contribute or not to the security of 

the system, depending on the way they are implemented 

and the kind of attack. It is not rare that the defense against 

one attack may benefit another kind of attack. 

So, the best way to counteract DPA attacks is to target 

the DPA principle: the correlation between the data 

computed and the power consumption. Differently of the 

works that generally proposes CRT to accelerate RSA, like 

[13], another proposes a full RNS (Residue Number 

System) representation to compute RSA [14],  [15]. Besides 

the acceleration, a full RNS implementation of RSA can 

intelligently be used to counteract DPA and DFA attacks, 

as shown below. 

4.     LEAK RESISTANT ARITHMETIC (LRA) 

The Leak Resistant Arithmetic (henceforth called LRA) is 

based on the RNS representation and the RNS 

Montgomery’s modular multiplication proposed in [12].  

 It uses the Residue Number System, which relies on the 

Chinese Remainder Theorem. The CRT indicates that is 

possible to represent a large integer using a set of smaller 

integers, so that computation may be performed more 

efficiently.  

 The version of the Montgomery’s modular 

multiplication presented below was proposed in [14]. In the 

RNS representation the value M is taken from (1): 

∏
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                                   (1) 

So, M is chosen as the Montgomery constant instead β
k
 

in the classical representation. Then, with A, B, R and N 

represented in RNS within the base β1={m1, m2, m3, ... mk}. 

The result of the algorithm must be: 

R = A.B.M1
-1
mod N 

However, the value M1
-1
cannot be computed in β1. So 

another base β2 is defined as an extension of β1, with k 

extra moduli all co-primes among them and with β1. So, 

before calculate (Algorithm 1, [14] points 3 and 5) M1
-1 
a 

base extension from β1 to β2 is performed.  

So, the Figure 2 describes the algorithm for 

Montgomery’s modular multiplication in RNS. As inputs 

we have two RNS bases β1 and β2, such that M and M’ can 

be computed as the product of the moduli that composes 

respectively β1 and β2. The inputs A,  B and N  are also 

represented in both β1 and β2 bases. Besides a redundant 

modulus mr such that gcd(mr,mi)=1 is needed. Also, N and 

M must be co-primes. The result is given by R in β1. 

The points 1, 2 and 4 of the algorithm consist of full 

RNS operations that can be realized in parallel. Therefore, 

the most complex operations rely on the base extensions 



(points 3 and 5). There are some methods to compute a 

base extension, but here the Mixed Radix System, 

described in [11] that has the advan that it requires only a 

of k values for each base modification [12]. Due to space 

constraints, the algorithm for modular exponentiation was 

omitted in this paper, but details can be obtained in the 

same reference [12]. 

4.1. THE SECURITY PROVIDED BY THE LRA 

Besides performance due to the intrinsic parallelism, RNS 

algorithms provide also the possibility of randomize the 

basis: the algorithm’s robustness relies on this concept.  The 

LRA proposes two approaches of data randomization: one 

at the circuit level (spatial randomization) and the data level 

(arithmetic masking). They represent a good trade-off 

between security and implementation cost. The considered 

approaches are: 

• Random choice of initial bases: Randomization of the 

input data is provided by randomly choosing the elements 

of β1 and β2 before each modular exponentiation. 

• Random change of bases before and during the 

exponentiation: A generic algorithm is proposed in [12], 

offering many degrees of freedom in the implementation 

and at the security level. 

The main goal of these approaches is to lead to a 

randomization of all intermediate data computed at the 

cryptographic circuit for the same input data and output.  

Based on the same principle of the DPA, if the data change 

during an operation, consequently the power consumption 

became random, thwarting DPA attacks. The security of 

this method was demonstrated in [12]. 

5. RECONFIGURABLE ARCHITECTURE 

As the RNS implementation of RSA leads to parallel 

operations, we conceived a parallel reconfigurable 

architecture to run the Leak Resistant Arithmetic called 

“Leak Resistant Reconfigurable Architecture” (LR²A).   

Besides, the LR²A intends to be a flexible solution for 

cryptographic algorithms, so it can be viewed as a coarse 

grain reconfigurable architecture, because it is possible to 

reconfigure this architecture to perform other cryptosystems 

based on modular arithmetic, like ECC or RC6.  

Furthermore, the LR²A can be easily modified to run 

supplementary applications, like data compression or image 

processing, but the discussion about the flexibility exceeds 

the scope of the paper. 

The LR²A is built around three main structures: a 

configuration and data injection controller, some 

homogeneous processing elements (PE), and memory 

resources. A controller is responsible of data injection and 

configuration control to/of the PEs. There are k PE, where k 

is given by the number of bases used for the LRA. The 

LR²A memory schema is non-uniform memory access 

architecture, i.e. the memory organization can be viewed as 

a local memory for each PE, but accessible for all PEs and 

the controller.  

The following subsections describe the controller, the 

PE, the memory structure and the configuration model. 

5.1. The controller 

The main difference from the LR²A and some common 

reconfigurable architectures is that the LR²A is not only a 

loop-core (asic, hardware, rever) for a specific algorithm 

class. The proposed reconfigurable architecture includes a 

controller to bring the configuration specific to each node, 

to inject the data into the distributed memory, and after 

that, to recover the computed data. The Figure 2 shows an 

overview of the LR²A. 

 
Figure 2 - The LR²A overview 

To perform these operations the Plasma processor was 

chosen, due to its availability and the fact it has a C 

compiler, which makes easier the configuration model 

programming. The Plasma CPU is an open source 

processor, based on the MIPS R3000 instruction set, ant it 

has as an advantage the software compatibility with others 

processors used for embedded systems.  

When the system starts, the controller reads the 

configuration for each PE from the configuration memory, 

sending it to the target PE. Also, the controller stores 

internally the status of each node into a data structure. 

After, the initial data supposed to be computed is loaded 

into the local memories. Since configuration and data are in 

place, the controller starts the computation. Finally, is the 

controller the element charged to recuperate the computed 

data and to store it into the main memory. 

For the next changes (i.e., data arriving, or other 

configuration needed), the controller verifies the current 

status of the PEs and their respective memories before send 

the new information. In fact, controlling the LR²A consists 

in running the configuration framework explained in the 

reference [16].  

5.2. The processing element 

The LR²A’s processing element is a load-store architecture 

similar to Plasma: the logic and arithmetic instructions are 

executed using internal registers only, while the memory 

access instructions execute either the reading from (load) or 

the writing to (store) one memory position. In fact, the 

processor’s organization is similar to the Plasma, but the 

PEs are optimized for cryptographic operations, and 

consequently, simplest and smaller. 



Due to the load/store architecture option, the processor 

must have a relatively large set of data manipulation 

general-purpose registers, to reduce the number of memory 

accesses (this always represents a time penalty with regard 

to the processor internal operation). Regarding the 

instruction format, all instructions have exactly the same 

size, occupying 1 memory word each. The instruction 

contains the operation code and the operands specification, 

in case they exist. The processor datapath includes specific 

cryptographic operators. Because the LRA’s basic 

operations are the modular ones, the following operations 

are hardwired and incorporated to the ALU. 

6. RESULTS 

The architecture was synthesized in AMS 0.35 technology, 

for different scenarios of key and datapath sizes.  Taking 

the 32bits datapath configuration, and considering the size 

of the controller being around 40k gates, a LR²A composed 

by 32 PEs (capable of performing 1024bits exponentiation), 

occupies 352k gates on silicon. Comparing with state-of-art 

hardware accelerators for the same purpose, the LR²A takes 

five to eight times the commonly use area.  

But in terms of performance, as shown in the Figure 3, for 

cryptographic keys larger than 1024 bits, the LR²A 

outcomes classical implementations. The comparison was 

made taking into account the square and multiply method to 

perform modular exponentiation. The reference 

implementation concerns a modular exponentiation 

calculated with a dedicated circuit implementing the 

Montgomery algorithm for modular multiplication, with a 

word size of 32 bits, and running at 40MHz. On the other 

hand, the LR²A implementation features are a 32 bit 

datapath version, with 32 processors running at 40MHz.  

For both versions the area corresponds the exponentiation 

control was not considered. 

As shown in Figure 3, in terms of performance, the 

LR²A is equivalent to classic implementations of modular 

exponentiation for key sizes until 2048 bits. Beyond 4096 

bits, the LR²A is clearly more interesting in performance, 

but with an area penalty.   
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Figure 3 - LR²A versus a classic implementation of the modular 

exponentiation 

The area report is 5 times for 2048 bits and 10 times for 

4096. This is the cost of the security. The classic 

implementation does not contain any countermeasure 

against DPA, while the LR²A incorporate the robustness 

needed to counteract this attack. 

7. CONCLUSIONS 

The Leak Resistant Arithmetic improves the robustness of 

cryptographic applications counteracting the principle of 

some hardware attacks, like DPA. Due to its nature, the 

LRA leads to a parallel architecture, requiring important 

hardware resources. Even with area penalties, the LR²A is 

competitive in terms of performance, equivalent to state-of-

art   cryptographic accelerators. 
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