
HAL Id: lirmm-00102804
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102804

Submitted on 2 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PRM, The Language. Version O.2
Jean Privat

To cite this version:
Jean Privat. PRM, The Language. Version O.2. [Technical Report] RR-06029, Lirmm. 2006, 55 p.
�lirmm-00102804�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102804
https://hal.archives-ouvertes.fr

PRM — The Language Version 0.1.99
This document is a draft. The PRM language specification may evolve. The current prmc
interpretation may differ from the present specification.

Jean Privat∗

LIRMM†, Montpellier II, France
Techical Report RR-06029

May 5, 2006 at 21h19

Contents

1 A PRM Introduction 3

1.1 Three Simple Examples . 3

1.2 The PRM Syntax: A First Impression 4

1.3 Outline . 5

2 Object-Oriented Programming 5

2.1 Class Definition . 5

2.2 A Word about Class Specialisation 5

2.3 Properties: Attributes and Methods 6

2.4 Object Creation . 14

2.5 Visibility . 16

2.6 Class Specialisation . 22

2.7 Genericity . 30

3 Modules 32

3.1 Module Structure . 32

3.2 Module Dependence . 32

3.3 Class Refinement . 33

3.4 Procedural style . 34

3.5 Base Modules . 36
∗ privat@lirmm.fr
† http://www.lirmm.fr

1

privat@lirmm.fr
http://www.lirmm.fr

3.6 Base Classes . 37

4 The Base Language 43

4.1 Source Structure . 43

4.2 Name . 44

4.3 Type . 44

4.4 Expression . 45

4.5 Statement . 46

5 A PRM Conclusion 52

2 Contents

1 A PRM Introduction

PRM stands for “Programming with Refinement and Modules”. It is an
open-source programming language that has a simple straightforward style
and can usually be picked up quickly, particularly by anyone who has
programmed before. It is object-oriented but allows a procedural style. prmc
is a PRM compiler that produces efficient machine language executables.

The PRM website: http://www.lirmm.fr/∼privat/prm

PRM is a language with a high degree of structure: it is statically typed
and it allows programmers to easily produce readable source code. However
it has two qualities that are mainly found in dynamically typed languages:

Concise but Clear Syntax. The syntax of the PRM language is clear and simple, without
verbosity. A PRM program looks like a program written with a
modern scripting language like Ruby or Python—in fact, the syntax
mainly comes from Ruby. The PRM syntax makes difficult to have
one day an Obfuscated PRM Code Contest.

Small but Powerful Core. Even if the language proposes many features, the number of different
core mechanisms of the language is small. It means that the language
mechanisms are clean and easy to learn. It also means that in order
to provide a clear syntax with a small core, the PRM language makes
a great use of syntactic sugar. Many concise pieces of syntax are
strictly equivalent to a more verbose one that directly uses the core
mechanism. Therefore, the semantic of these small pieces of syntax
can be deduced from the semantic of the more verbose one.

1.1 Three Simple Examples

Before starting with the full description of the PRM syntax and semantic,
here can be found three simple PRM programs. One can have an idea of
the light syntax of the language.

The objective here is not to show the most valuable PRM characteristics·̂ →
but to give an idea of the syntax that will help to understand the full PRM
specification.

1.1.1 Hello World

One of the simplest programs:

print("Hello ", "World.\n")

This program simply outputs the text “Hello World.”

1.1.2 Variables and Strings

A program with two local variables:

l e t s: String # ‘s’ is a local variable

s := "Hello" # Assignment with a literal strings

s.append(" World") # Concatenate two string

l e t a := s + "." # ‘a’ is another local variable

println(a) # Output ‘a’

3

http://www.lirmm.fr/~privat/prm

This program also outputs the text “Hello World.”

1.1.3 Subprograms

A program with the definition of a function and a procedure:

def square(i: Int): Int

Return i2

do
return i * i

end

def main

do
println(square (5))

println(square (-1))

end

main

This program outputs the numbers 25 and 1.

1.2 The PRM Syntax: A First Impression

A number of points can be seen about PRM clean style and modern syntax:

• Comments are introduced by the # symbol and run to the end of line.→ ??: comments

• Semicolons are superfluous—but these may optionally be placed→ ??: line structure

between constructs.

• Blocks of statements start with the keyword do and are terminated by→ ??: statement block

the keyword end.

• Calls use the usual notation foo(args), and without arguments there→ ??: procedure and function
call is no need of parenthesis. Method invocation1 on objects uses the

doted notation x.foo(args).

• Procedures and functions are defined with the def keyword.→ ??: def

• Local variables are declared with the let keyword, and the static type→ ??: let

may be inferred.

• Types in signatures (def) and in local variables definitions (let) use→ ??: types

the Pascal column notation “x: Foo”.

• Type names start with an uppercase (Int, String) while the other→ ??: names

names—variables, functions, procedures, etc.—start with a lowercase
(print, sqr, s).

• Assignments use the := notation.→ ??: assignment

• Literals strings are enclosed within double quote.→ ??: literals

1 In the current documentation, we use the terms “method invocation”. In other OO
languages, one can find the same idea under the terms “method call” or “send of
message”.

4 1 A PRM Introduction

1.3 Outline

The present manual is divided into three parts:

• Section ?? is about object oriented programming: classes, properties,
inheritance, etc.

• Section ?? is about modules management, class refinement, and the
base library (base modules and base classes).

• Section ?? is about the base language: names, types, expressions, and
statements.

2 Object-Oriented Programming

PRM is a pure object-oriented language. It means that:

• Each manipulated value is an object.

• Each object is an instance of a class.

• Each subprogram is a method defined in a class.

• Each method invocation corresponds to a message sending—or to a
late binding i.e. depends on the dynamic type of the receiver.

However, it is possible to program software in PRM without explicitly→ ??: procedural style

defining classes and even subprograms: we call procedural style this
way of programming. Procedural style is useful for simple programs or
for teaching 2. The current section focuses on “pure” object-oriented
programming. The truth about procedural style is explained in a latter
section.

2.1 Class Definition

A class represents entities, the attributes of those entities and the operations
that those entities can perform. Classes can represent real world entities in
a model, or more artificial artefacts which occur only in computer programs.

Classes are defined with the usual class keyword. Here is an example of aclass

simple PRM class definition:

c lass Car

end

A class represents all objects of that type. For instance in the real world we→ ??: object creation

have one concept of Car, but there are many instances of Car.

2.2 A Word about Class Specialisation

Classes are elements of a specialisation hierarchy. A class can have
superclasses (i.e. class more general) and subclasses (i.e. class more
specific).

The root of the hierarchy is a class named Any3. It means that Any is the→ ??: Any

most general class, and that each other class specialises the Any class.
2 PRM is used to teach algorithmic to students in first year of computer science.
3 The Any class corresponds to the Object class of the some languages like Java.

1.3 Outline 5

We talk more about specialisation, and especially inheritance, in a latter→ ??: class specialisation

section.

2.3 Properties: Attributes and Methods

Each class has a set of properties which represents the attributes and the
operations of its instances. Operations on an object typically alter its state
changing the values of one or more of its attributes. In PRM, such operations
are known as procedures. Computations that return a value to a query about
the state of an object are known as functions. Functions and procedures are
together known as methods.

2.3.1 Definition of Properties

In a class, the definition of a property starts with the def keyword followeddef

by the name of the property.→ ??: names

Attributes are identified with the first letter of their name, a @ character4.Attribute Definition
It can be pronounced at and stands for attribute. Attributes must have a→ ??: type

static type.

c lass Car

def @speed : Int

The current speed of the car

def @color : String

The color of the car

end

Methods need a signature and a body. A signature is composed of someMethod Definition
parameters (possibly none) and a return type for functions—procedures do
not have return types. Bodies are blocks of statements. A function must→ ??: statement block

return its result with a return statement.→ ??: return

c lass Foo

def bar

a procedure without parameters

do
print("bar")

end

def baz: Int

a function without parameters

do
return 5

end

def foobar(i: Int): Int

a function with a parameter

do
return i + 1

end

def foobar(i: Int , j: Int): Int

4 The @ for attributes comes from Ruby.

6 2 Object-Oriented Programming

a function with two parameters

do
return i + j + 1

end
end

Some Remarks

• Since attributes start with an @ character, methods and attributes can
therefore share the “same name”:

c lass Foo

def @foo: Int

def foo: Int

do
...

end
end

This characteristic it often used for attribute accessors.→ ??: accessors

• Methods can share the same name if they have a different number of
parameters. Like Erlang or to a lesser extent, Smalltalk or Self.

This characteristic is used for implicit parameter values.→ ??: implicit parameter value

• There is no static overriding: two methods with the same name and
the same number of parameters cannot coexist in a same class, even
if they have distinct signatures.

This is because PRM follows a covariant typing policy.→ ??: covariant typing policy

• Methods can be defined outside class with the same syntax. Obviously,→ ??: procedural style

it is not possible with attributes.

2.3.2 Access to attributes

Objects directly access their attributes by their names:

c lass Foo

def @bar: Int

an attribute

def baz

do
@bar := 5 # write access

print(@bar) # read access

output ‘‘5’’

end
end

Attribute write accesses follow the assignment rules.→ ??: assignment

Except in some special cases, attributes can only be accessed by the objects→ ??: exported attribute

that own them.

2.3 Properties: Attributes and Methods 7

2.3.3 Invocation of Methods

Methods are usually invoked with the common doted notation x.foo(args)

where x is the receiver, foo the name of a method and args some arguments.
If there is no arguments, parentheses are optional—providing superfluous
ones may provoke a warning during compilation.

c lass Foo

def bar

do
print("bar")

end

def baz: Int

do
return 5

end

def foobar(a: Int)

do
print("foobar", a)

end

def foobaz(a: Int): Int

do
return a + 1

end
end
...

l e t x: Foo

...

x.bar # Output ‘‘bar ’’

print(x.baz) # Output ‘‘5’’

x.foobar (6) # Output ‘‘foobar6 ’’

print(x.foobar (7)) # Output ‘‘8’’

If the receiver is the current receiver, called self in PRM5, it can be implicit.self, the Current Receiver
Therefore, self.foo(args) is equivalent with foo(args).

c lass Foo

def bar

do
print("bar")

end

def baz

do
bar

s e l f .bar
end

end
...

l e t x: Foo

...

x.bar # Output ‘‘bar ’’

5 In C++ and Java, the current receiver is called this ; in Eiffel it called Current.

8 2 Object-Oriented Programming

x.baz # Output ‘‘barbar ’’

It is important to distinct invocation on self with other invocations since→ ??: visibility

visibility does not apply on invocation on self.

Some methods that have a special name are not invoked with the usual
dotted syntax. These methods are operators and assignment procedures.

2.3.4 Operators

Operators are methods often used for mathematical operations. There
are three kinds of operators: infix operators, prefix operators and bracket
operators.

Infix operators are: +, -, *, /, %, =, !=, <, >, <=, >=, <=>, <<, and >>. They areInfix Operator
methods with one parameter and should be defined and invoked as follow:

Definition signature

c lass C

def -(o: T): U

...

end

Invocation : x is the receiver and y the argument

l e t x: C

l e t y: T

l e t r: U

r := x - y

Prefix operators are: + and -. They are methods without parameters andPrefix Operator
should be defined and invoked as follow:

Definition signature

c lass C

def -: U

...

end

Invocation : x is the receiver

l e t x: C

l e t r: U

r := -x

Bracket operators are methods mainly used for indexed access (arrays forBracket Operator
instance). They are defined and invoked as follow:

Definition signature

c lass C

def [](o: T, p: U): V

Example with two parameters

...

end

Invocation:

* x is the receiver , y and z are the arguments

l e t c: C

2.3 Properties: Attributes and Methods 9

l e t y: T

l e t z: U

l e t r: V

r := x[y, z]

Two remarks about operators:·̂ →
• Invocation of operators requires an explicit receiver.

• Some statements looks like operations but are not. For instance the→ ??: Booleans

Boolean’s pseudo-operators: and, or, not.

2.3.5 Assignment procedures

Their names are ended with :=. They must have at least one parameter→ ??: assignment

and no return value. They are invoked with a syntax that looks like the
assignment statement and follow its rules.

Definition signature

c lass C

def foo :=(o: T)

Example of the simple form , i.e. with one parameter

...

def foo :=(o: T, p: U, q: V)

Example with three parameters

...

end

Invocation

l e t x: C

l e t y: T

l e t z: U

l e t k: V

* x is the receiver , y is the argument

x.foo := y

* x is the receiver , y is the first argument ,

z the second one , and k the third one

x.foo(y, z) := k

There are also bracket assignment procedures:Bracket Assignment
Procedure

Definition signature

* Example with three parameters

c lass C

def []:=(o: T, p: U, q: V)

...

end

Invocation

* x is the receiver , y is the first argument ,

z the second one , and k the third one

l e t x: C

l e t y: T

l e t z: U

10 2 Object-Oriented Programming

l e t k: V

x[y, z] := k

Some remarks about assignment procedures:·̂ →
• They also exist in Ruby in the simplest form (i.e. with exactly one

parameter).

• With one parameter, they are mainly used to write attributes→ ??: accessors

accessors.

• With more than one parameter, they are mainly used with indexed
access when different kinds of indexes exist.

• Assignment procedure is different with the user-defined C++
assignment operator. In C++, “x.a = 5” may correspond to the
invocation of the operator= method on the attribute a of the x object.
In PRM “x.a := 5” corresponds to the invocation of the a:= method
on the x object.

2.3.6 Implicit Parameter Value

The current prmc compiler does not yet implement this part of the·̂ →
specification.

PRM can yield a kind of implicit argument value:

c lass C

def foo(a: Int , b: Int := 5 , c: Int)

do
...

end
...

end

However, implicit argument is only syntactic sugar since the last code
example is strictly equivalent to:

c lass C

def foo(a: Int , b: Int , c: Int)

do
...

end

def foo(a: Int , c: Int)

do
foo(a, 5, c)

end
end

A method can have multiple implicit parameter values:Multiple Implicit Parameter
Values

c lass C

def foo(a: Int := 5 , b: Int := 6)

do
...

end

2.3 Properties: Attributes and Methods 11

end

In order to avoid ambiguities, the first parameters are less implicit that the
last parameters. Therefore the two following listings are equivalent:

c lass C

def foo(a: Int , b: Int)

do
...

end

def foo(a: Int)

do
foo(a, 6)

end

def foo

do
foo (5, 6)

end
end

Implicit parameter values exist in many other languages like C++, Java 5.0Comparison with Other
Languages or Ruby. However, their semantic differ in the way that there is one method

defined, ant the implicit parameter values are integrated to the arguments
when the method is invoked.

For instance, let “void foo(int a, int b = 5)” be a C++ method The
two expressions foo(1, 5) and foo(1) invoke this method with the same
arguments, since 5 is implicitly added in the last expression.

With PRM and the equivalent foo method “def foo(a: Int, b: Int := 5)”,
the two expressions foo(1, 5) and foo(1) invoke two distinct methods—
respectively, foo with two parameters and foo with one parameter.

The PRM way offers two advantages:

• Implicit parameter values are only sugar syntax: it does not extent
the PRM core mechanism.

• Each method is independent and can be independently redefined.→ ??: redefinition

Thus more flexibility is offered to the programmer.

2.3.7 Variable Argument Number

This part of the specification is not considered as stable and may change in·̂ →
future version.

In PRM, some methods can be invoked with an unbounded number of
arguments.

In those method definitions, one special parameter is declared as t: T* whereDefinition
t is the name of the parameter and T the type of arguments. In such
definitions, the static type of t is Array[T]. Example:→ ??: Array

c lass C

def foo(a: Int , b: Int*, c: Int)

12 2 Object-Oriented Programming

The static type of ‘b’ is ‘Array[Int]’

do
print(a, "-", b.length , "-", c)

end
end

In method invocation, the special parameter is associated with one or moreInvocation
arguments:

l e t c: C

c.foo (1 , 2 , 3) # ‘‘Output 1-1-3’’

c.foo (1 , 2 , 3 , 4 , 5 , 6) # ‘‘Output 1-4-6’’

c.foo (1 , 2) # compilation error , unknown foo method

with two parameters

Without surprise, the standard print method, used in all those examples,→ ??: print

accepts multiple arguments. Its signature is print(a: Any*).

One can pass an array object instead of a list of elements with the *aPassing Array
notation– here, * is not an operator, it is just a notation:

l e t a: Array[Int]

l e t c: C

...

c.foo(1, *a, 3)

Passing array is often used to chain calls:

c lass C

def printprint(a: Any*)

Remember , the static type of ‘a’ is ‘Array[Any]’

do
print(*a)

print(*a)

end
end
let c: C

c.printprint("Hello") # Output ‘‘HelloHello ’’

In a class, cannot coexist:·̂ →
• Two methods with the same name that both accept a variable number

of arguments:

c lass Foo # ERROR !

def bar(a: Int , b: Int*, c: Int)

do ... end

def bar(d: Int*)

do ... end
end
let f: Foo

f.bar (1 , 2 , 3) # Ambiguous

• Two methods with the same name, one accepts a variable number
of arguments, and the other has more parameters than the minimal
number of the first:

2.3 Properties: Attributes and Methods 13

c lass Foo

def bar(a: Int , b: Int*)

do ... end

def bar(c: Int , d: Int)

do ... end
end
let f: Foo

f.bar (1 , 2) # Ambiguous

However, the following listing is OK:

c lass Foo # ERROR !

def bar(a: Int , b: Int*)

bar1

do ... end

def bar(c: Int)

bar2

do ... end
end
let f: Foo

f.bar # Not ambiguous , it is an error

f.bar (1) # Not ambiguous , it is bar2

f.bar (1 , 2) # Not ambiguous , it is bar1

f.bar (1 , 2 , 3) # Not ambiguous , it is bar1

2.4 Object Creation

Objects are created with the special new statement:new

new Car

new Car("red")

new Car.with_color("blue")

The point to note is constructors need to be declared in classes in order to
allow them to be instantiated. In PRM, constructors are a little different
from those of languages like C++ and Java; Eiffel constructors are the
closest.

Constructors are procedures defined in a class after the constructorConstructor
keyword. More than one procedure can be defined as constructors.

In the following listing, the two init procedures and the with_color one are
constructors, but paint is a “normal” procedure—note that if a lot of code
is duplicated it is only for the need of the illustration:

c lass Car

def @color : String

The color of the car

def paint(c: String)

Repaint the car

do
@color := col

14 2 Object-Oriented Programming

end

constructor
def init

do
@color := "black" # Mr. Ford?

end

def init(col: String)

do
@color := col

end

def with_color(col: String)

do
@color := col

end
end

The PRM naming convention is to reserve the methods named init or·̂ →
with_something to be constructor procedures.

It important to notice that constructors look like “normal” procedures. The→ ??: Visibility

visibility section will show the true about the constructor keyword and
status of constructors.

Implicitly, the constructor named init is called on object instantiation.Implicit Constructor
Thus new Car is equivalent to new Car.init, and new Car("Blue") is
equivalent to new Car.init("Blue")

Since both object creation and method invocation use a dot in their notation,·̂ →
some cases should be disambiguated:

• new Foo.bar is always considered as the instantiation of a Foo object
with a constructor named bar.

• (new Foo).bar and new Foo.init.bar are the instantiation of a Foo
object with a constructor named init; and followed by the invocation
of a property named bar on this newly created object.

• new Foo(5).bar and new Foo.init(5).bar are the instantiation of a
Foo object with a constructor named init with 5 as argument; and
followed by the invocation of a property named bar on this newly
created object.

2.4.1 Abstract Classes

Abstract classes are classes that can not be instantiated. Classes that are
not abstract are called concrete classes.

In PRM, Abstract classes are simply classes without constructors. In·̂ →
corollary, classes without constructor are abstract, therefore can not be
instantiated.

In comparison with other languages, there are no default constructorsEmpty Constructor
since their use is marginal, even if they are the cause of many errors.

2.4 Object Creation 15

However, sometimes, programmers need to define concrete classes with
empty constructors. In PRM they just have to explicitly do it:

c lass Foo

constructor
def init

do
end

end

2.4.2 Garbage Collector

PRM has no delete operator. This is because, as many other modern
languages, PRM is garbage collected. Garbage collection is known to
completely cure the programming ills of dangling pointers and memory
leaks. This greatly simplifies the programming effort by removing one of
the largest bookkeeping headaches for programmers. Garbage collection
has also proved to be very efficient in modern implementations.

2.5 Visibility

C++ and Java programmers might be wondering how to make methods
public, protected and private. With PRM you have far more control: as in
Eiffel, any set of methods can be exported to all, to none or to some specific
classes. Thus you have the possibility of many shades of grey between public
and private. You might want a method to be public to some specific classes,
but private to others. Moreover, method visibility and constructors are
related together in a nice original way.

Visibility is not related to method invocation on self. Therefore, properties·̂ →
are always accessible to the current receiver.

2.5.1 Method Visibility Blocks

Visibility is controlled by three keywords that delimit visibility blocks:
public, private, and the already known constructor. Method defined a
after such a keyword belong the corresponding visibility block.

A class definition can contain any number of blocks, in any order:

c lass Foo

...

public
...

public
...

private
...

public
...

constructor
...

private
...

end

16 2 Object-Oriented Programming

It is recommended to regroup related methods with the same visibility in·̂ →
the same block. And it is also recommended to put two unrelated sets
of methods in two different visibility blocks, even if they share the same
visibility.

2.5.2 Public Method Visibility

Methods defined in a public block are exported and can be used by other
classes. If the name of a class is added after the public keyword, methods
are only exported to this class and to its subclasses. If there is not such a
class name, method are exported to any classes—in fact, they are exported
to the Any class and to its subclasses.→ ??: Any

Example:

c lass Car

...

public
def speed: Int

Get the speed of the car

do
return @speed

end

public Driver

def stop

Stop the car

do
@speed := 0

End

...

end

Let c be a variable statically typed by a Car. Here the function speed is
exported to any class, therefore c.speed is valid in any class. The procedure
stop is exported to the class Driver (and all its subclasses), therefore c.stop

is only valid in the class Driver and in any subclasses of Driver.

The implicit visibility block (i.e., the visibility block above the first visibilityImplicit Visibility Block
keyword) is a public one. For example, the three following listings are
equivalent:

c lass Foo

public Any

def bar

do
print("baz")

end
end

class Foo

public
def bar

do
print("baz")

end

2.5 Visibility 17

end

class Foo

def bar

do
print("baz")

end
end

2.5.3 Private Method Visibility

Method defined in a private block are not exported. Therefore, private
methods are only accessible to the current receiver.

c lass Driver

def @car: Car

The driven car

private
def stop_car

Stop the driven car

do
@car.stop

end
end

Let c be a variable statically typed by a Car. The procedure stop_car is
exported to nobody, therefore c.stop_car is valid nowhere. The only way
to invoke such a method is to use the current receiver.

In PRM, private methods are usable only by self—it is an instance visibility.PRM private vs. C++
private In C++, private methods are usable only by instances of the current

classes—it is a class visibility.

The following listing will try to illustrate de difference:

c lass Foo

public Foo

def bar

...

private
def baz

...

...

public
def test

do
bar # OK , the receiver is self

baz # OK , the receiver is self

l e t f: Foo

f.bar # OK , bar is public Foo

and I am Foo

f.baz # Error , baz is private

18 2 Object-Oriented Programming

and the receiver is not self

end
end

2.5.4 Constructor Method Visibility

Methods defined in a constructor block are usable as a constructor method.→ ??: object creation

As with the public keyword, constructor can be used to control the visibility
of constructors: if the name of a class is added after the constructor

keyword, methods are only exported as constructor to this class and to
its subclasses. If there is not such a name, the Any class is considered.

c lass Car

...

constructor CarFactory

def init

do
@color := "black"

@speed := 0

end
...

end

The statement new Car is only valid in the class CarFactory and in its
subclasses.

Even if some procedures have a status of constructor they can be invoked·̂ →
on the current receiver—constructor status is only a matter of visibility,
and is not related with invocation on self. Such invocations allow a better
factorisation:

c lass Car

def @color : String

constructor
def init

do
with_color("black")

end

def with_color(col: String)

do
@color := col

end
end

Methods can not be both public and constructor since from a user point of·̂ →
view, object creation and send of message correspond to two different needs.
Allowing exporting a procedure public and constructor will be a reusability
limitation because of class refinement. However, code duplication should be→ ??: class refinement

avoided:

c lass Car

def @color : String

2.5 Visibility 19

def paint(col: String)

do
@color := col

end

constructor
def with_color(col: String)

do
paint(@col)

end
end

2.5.5 Attribute Accessor

As in Smalltalk, attributes are “private”: they can only be accessed by
the objects that own them. Therefore, some methods should be defined in
order to access attributes. Methods that play this role are called accessors.

Usually, there is the need of two accessors, one for the read access and one
for the write access. In PRM, you can use the same name for the attribute
and for the two accessors: the attribute is distinguished with the @ and the
write accessor is usually an assignment procedure, therefore distinguished→ ??: assignment procedure

with the :=.

Example:

c lass Car

def @speed : Int

Attribute

def speed: Int

Read accessor

do
return @speed

end

def speed :=(s: Int)

Write accessor

do
@speed := s

end
...

end

In this example, let c be a Car. c.speed returns the value of the attribute
@speed and c.speed := 5 assigns 5 to the attribute @speed:

l e t c := new Car

c.speed := 5

print(c.speed) # Output ‘‘5’’

c.speed := 10

print(c.speed) # Output ‘‘10’’

The keywords def_read and def_write can be used to simplify theAutomatic Accessor
declaration of such accessors. On attribute definition, def_read

20 2 Object-Oriented Programming

automatically generates a read accessor and def_write automatically
generate a write accessor.

The following example is equivalent to the previous one.

c lass Car

def @speed : Int def read def write
...

end

Since def_read and def_write only correspond to syntax sugar, the visibilityAutomatic Accessor Visibility
of automatic accessors is the one of the current visibility block.

c lass Car

public
def public_price : Int

do
return @cost + @margin

end

public CarSeller

def @cost: Int def read
def @margin : Int def read def write

end

In this example, only a car seller can access the real price of a car.

Accessors are just a role playing by some methods. It is possible to definePseudo-accessor
“pseudo-accessors”, i.e. methods that act like accessors from the user point
of view. The following example defines two pairs of accessors on the speed
attribute of a Car class but with different speed units, one in kilometre per
hour and the other in miles per hour:

Class Car

def @speed_kmph : Int def read def write
Speed in kmph

def speed_mph : Int

Speed in mph

do
return @speed_kmph * 63 / 100

end

def speed_mph :=(s: Int)

Speed in mph

do
@speed_kmph := s * 100 / 63

End

...

end

Thus, from a user point of view, it is not possible to distinguish the “true”
accessor from the pseudo-accessor:

l e t c := new Car

c.speed_kmph := 80

print(c.speed_kmph , " ", s.speed_mph)

2.5 Visibility 21

Output ‘‘80 50’’

c.speed_mph := 63

print(c.speed_kmph , " ", s.speed_mph)

Output ‘‘100 63’’

2.5.6 Exported Attribute

The specification is not considered as stable and may change. Moreover,·̂ →
the current prmc compiler do not yet implement it.

Software engineering considers that attribute should be accessible only for→ ??: attribute access

the current receiver (self). However, in some exceptional case, attributes
need to be directly accessed by different objects.

The keyword export permits to change the visibility of an attribute. Theexport

visibility granted is the one of the current visibility block.

In the following example, the attribute @baz is visible in the class Bar and
in all its subclasses:

c lass Foo

public Bar

def @baz: Int

export @baz

end

Exported attributes are accessed with the doted notation x.@baz where x isExported Attribute Access
the receiver (i.e. the instance that owns the attribute) and @baz the name
of the attribute.

Exported attributes can be used as an expression or as the left part of an→ ??: assignment

assignment:

f.@baz := f.@baz + 1

2.6 Class Specialisation

Specialisation has three main uses:

• Build new classes out of existing classes since classes inherit properties→ ??: property inheritance

defined their superclasses.

• Gain property visibility since properties exported to a class (public→ ??: visibility

and constructor) are visible to their subclasses.

• Permit subtyping since objects of a class can be used where objects of→ ??: type

the superclasses are expected.

In many object-oriented languages, inheritance is mainly a way to reuse·̂ →
property already defined. The semantic of inheritance of the PRM language
is a bit different since it strictly corresponds to the natural semantic of
specialisation: If A is a superclass of B then each instance of B is also an
instance of A. The three uses of specialisation are simply corollaries of this
strict semantic. It also means that two uses of specialisation, frequent in
some OO languages, are forbidden in PRM: inheritance of implementation
and repeated inheritance.

22 2 Object-Oriented Programming

The inherit keyword is used to declare the superclass of the class. Thisinherit

keyword must be used before any property declarations.

The following listing is a very simple example of inheritance where a Car

class is a subclass of a Vehicle class:

c lass Vehicle

end

class Car

inherit Vehicle

end

With multiple specialisation, the inherit keyword is repeated:Multiple Class Specialisation

c lass Drake

inherit Duck

inherit Male

end

In PRM, transitive specialisation relation links are ignored. Therefore, theTransitive Specialisation
two following listings are equivalent:

c lass Ambulance

inherit Car

end

class Ambulance

inherit Car

inherit Vehicle

end

Moreover, the last one may produce a warning during compilation because
of the superfluous inherit Vehicle.

2.6.1 Property Inheritance and Redefinition

Subclasses inherit the properties—attributes and methods—of theirProperties Inheritance
superclasses.

c lass Car

def @color : String def read

def sound: String

do
return "vroom"

end
end

class Convertible

inherit Car

def @roof_is_open : Boolean

end

This example shows a superclass Car and a subclass Convertible. The
Convertible class inherits the following properties: the attribute @color,

2.6 Class Specialisation 23

the automatic color accessor, and the sound function. It also defines a new→ ??: accessors

property, the attribute @roof_is_open.

Subclasses can redefine some inherited properties by providing a newProperties Redefinition
definition of a property.

The following example shows the redefinition of the sound function inherited
from the Car class:

c lass Ambulance

inherit Car

def sound: String

do
return "wo -wo"

end
end

With the Eiffel terminology, we says that the sound method of the CarPrecursor
class is a precursor of the sound method of the Ambulance class.

In the previous example, the sound method of the Car class and the soundGlobal Property
of the Ambulance class are two different methods. However, they belong to a
“same property idea”, here the idea is something like “sound of cars”. We
call global property this “same property idea”.

Global properties are introduced when its first property is defined. Example,·̂ →
the global property “sound of cars” is introduced in the Car class by the sound
method.

In PRM, global properties are not strictly related to properties names.
For example, in the following listing, the two properties @height belong
to distinct global properties:

c lass Person

def @height : Int # in cm

def @weight : Int # in kg

end

class Button

A button for a graphical user interface

def @height : Int # in pixels

def @width : Int # in pixels

end

This notion of global property is one of the PRM exclusivity. In great·̂ →
majority of other OO languages, the absence of this notion yields quantities
of problems.

Obviously, redefinition is majority used for methods. It is also possible toAttribute Redefinition
redefine an attribute by specialising its static type:

c lass Car

def @driver : Person

end

class PoliceCar

def @driver : Policeman

end

24 2 Object-Oriented Programming

This is because has a covariant typing policy.→ ??: covariant typing policy

2.6.2 Deferred Method

Deferred methods (called pure virtual method in C++) are methods without
implementation. A deferred method is declared without a body, instead it
has the as deferred keywords.

c lass Car

def has_priority : Bool as deferred
end

class Ambulance

inherit Car

def has_priority : Bool

do
return false

end
end

Remarks:

• Usually, classes that contain deferred methods are mainly abstract→ ??: abstract classes

classes—i.e. do not have constructors.

• Concrete classes with deferred methods cans be useful with refinement.→ ??: refinement

2.6.3 Multiple Inheritance

When a class has only one super-class, inheritance and redefinition are
quite intuitive mechanisms. PRM multiple inheritance mechanism is also
intuitive.

The inherited properties are the most specific ones—i.e. the propertiesWhich Properties to Inherit?
defined in the most specific classes. This base behaviour is quite simple
but slightly differs from the majority of OO languages.

Example:

c lass A

def foo

do
print("fooA")

end
end

class B

inherit A

end

class C

inherit A

def foo

do
print("fooC")

end
end

2.6 Class Specialisation 25

c lass BC

inherit B

inherit C

end

In the BC class, there are two potential inherited methods: foo" defined in
the A class, and fooC defined in the C class; the second is the most specific
because C specialise A; therefore the BC class inherit the "foo" method defined
in C.

A property can redefine more than one property inherited from super-classes:Multiple Precursors

c lass D

inherit A

def foo

do
print("fooD")

end
end

class CD

inherit C

inherit D

def foo

do
print("fooCD2")

end
end

Here, the foo method of the CD class has two precursors since it redefines
the foo methods of the classes C and D.

Property Conflict

A property conflict occurs when the most specific property to inherit is not
unique:

c lass CD2

inherit C

inherit D

end

The solution to avoid them is to redefine the conflicting property.

When all properties but one are deferred, the conflict is automatically→ ??: deferred method

resolved: the one that is not deferred is inherited.

Global Property Conflict

A global property conflict occurs when a class inherits homonym properties
that belong to distinct global properties:

c lass O

def foo

do
print("fooO")

end

26 2 Object-Oriented Programming

end

class AO

inherit A

inherit O

end

The solution to avoid them is to rename at least one of the two conflictingrename

method with the rename keyword:

c lass AO2

inherit A rename foo (0) as fooA

inherit O

constructor
def init do end

end
let x := new AO2

x.foo # Output ‘fooO ‘

x.fooA # Output ‘fooA ‘

When renaming methods, the first name has to precise between parentheses·̂ →
the number of parameters.

One can rename more than one property

c lass Y

inherit X rename foo (0) as fooX ,

@bar as @barX , -(1) as minus

end

The PRM renaming differs from the Eiffel one and is slightly simpler and
more coherent:

• One renaming per global property is enough, even if the global
property comes from many super-classes:

c lass AC2 # WARNING : Superfluous renaming.

inherit A rename foo as foo2

inherit C rename foo as foo2

end

• A global property can not have two names in a same class:

c lass AC2 # ERROR: Multiple renaming.

inherit A rename foo as fooA

inherit C rename foo as fooC

end

• Two distinct global properties cannot be renamed to have the same
name:

c lass P

def bar

do
print("barP")

end

2.6 Class Specialisation 27

end
class AP # ERROR: Global property conflict.

inherit A

inherit P rename bar as foo

end

2.6.4 Visibility

The visibility public and private of method inherited. However,Visibility Inheritance
constructors are inherited as private methods. This is because constructors
of a class are not adapted to its subclasses.

In the following listing, Ambulance, a subclass of a Car class inherit the
with_color as a private method. Therefore, Ambulance defines init, a new
specific constructor.

c lass Car

def @color : String def read

constructor
def with_color(col: String)

do
@color := col

end
end

class Ambulance

inherit Car

constructor
def init

do
with_color("white")

OK , since with_color is inherited

end
end

Here some uses of the two classes:

l e t c := new Car.with_color("black")

print(c.color) # Output ‘‘black ’’

l e t a1 := new Ambulance

print(a1.color) # Output ‘‘white ’’

l e t a2 := new Ambulance.with_color("blue") # Error!

-> ‘with_color ’ is not a constructor ,

it is a private method

One can redefine the visibility of inherited method by redefining the methodVisibility Redefinition
in the wanted visibility block. The visibility of inherited method can also
be redefined without having to redefine the whole method.

The export keyword enables to change the visibility of inherited method toexport

the one of the current block:

c lass Car

constructor
def init

28 2 Object-Oriented Programming

do
@speed := 0

end
end

class Ambulance

inherit Car

constructor
export init (0)

end

let c := new Ambulance # OK

As for renaming, the number of parameters has to be indicated between·̂ →
parentheses.

Multiples methods can be exported at the same time:

c lass Bar

inherit Foo

public Baz

export foo(1), bar(0), baz :=(1) , +(1)

end

2.6.5 Call to Super

In a method redefinition, the programmer can refer to the previous propertysuper

with the super keyword:

c lass Foo

def foo(i: Int): Int

do
return i + 1

end
end

class Bar

inherit Foo

def foo(i: Int): Int

do
return super(i*2) * 2

end
constructor

def init do end
end

let b := new Bar

print(b.foo (2)) # Output ‘‘10’’

Arguments of a super call are implicitly the parameters of the method.Implicit Super Arguments
Therefore, the two following listings are equivalent:

...

def foo(a: Int , b: String)

do
...

2.6 Class Specialisation 29

super(a, b)

...

end
...

...

def foo(a: Int , b: String)

do
...

super

...

end
...

When a method has more than one precursor, any call to super must beMultiple Precursor
prefixed with a class name in order to remove the ambiguity. Such prefixes
use the :: notation:

c lass CD3

inherit C

inherit D

def foo(a: Int)

This method redefines the ones

of the classes C and D

do
C:: super(a+2)

D:: super(a-1)

end
end

2.7 Genericity

Inheritance is one of the fundamental mechanisms for reuse; so is genericity.
Genericity is also important in making programs type safe without resorting
to type casts. Java 5.0 introduces genericity, in previous version, many type
casts where needed to make up for this deficiency. C++ has genericity in
the form of template classes. If you have had problems understanding C++
templates, don’t worry, PRM’s generic syntax is much easier, and more
powerful, as it also allows generic parameters to be bounded; this is known
as bounded genericity.

In PRM, genericity is mainly the one of the Eiffel language, please refers
its specification to know more about genericity.

In order to use genericity, you create a generic class withGeneric Class Definition
formal generic parameters. In the following listing, Pair is a generic
class with one formal parameter bounded by Any and VehiclePark is a
generic class with one formal parameter bounded by Vehicle.

c lass Pair[E: Any]

end
class Vehicle

end
class VehiclePark[E: Vehicle]

end

30 2 Object-Oriented Programming

c lass Car

inherit Vehicle

end

In program, the generic class can be used to construct many kinds of genericGeneric Type Construction
types:

l e t x: Pair[Int] # x is a pair of integers

l e t y: Pair[Pair[String]] # y is a pair of pairs of strings

l e t z: VehiclePark[Car] # z is a car -park

l e t t: VehiclePark[Int] # Error since integers are not vehicles

Inside the class definition, the formal generic parameter can be used as aFormal Generic Parameter
Use type:

c lass Pair[E: Any]

def @first : E def read def write
def @second : E def read def write

def switch

do
let t: E

t := @first

@first := @second

@second := t

end

def display

do
print(@first , " ", @second)

end

constructor
def init(f: E, s: E)

do
@first := f

@second := s

end
end

Here some examples of use:

l e t pi := new Pair[Int].init (5 , 4)

pi.display # Output ‘‘5 4’’

pi.switch

pi.display # Output ‘‘4 5’’

l e t ps := new Pair[String]("Hello" , "Town")

ps.second := "World"

ps.display # Output ‘‘Hello World ’’

Genericity yields a kind of subtyping. For example, VehiclePark[Car] is aGeneric Types and Subtypes
subtype of VehiclePark[Vehicle]:

l e t vehiclepark : VehiclePark[Vehicle]

l e t carpark : VehiclePark[Car]

2.7 Genericity 31

vehicle := carpark # OK

This is because PRM follows a covariant typing policy.→ ??: covariant typing policy

3 Modules

In the PRM language, classes are organised into modules. A modules
corresponds to a source file and contain class definitions. They are also
the compilation units: each module can be separately compiled then linked
to produce an executable.

PRM source files should follow a strict naming scheme. They must be namedFilename
foo.prm where foo is the name of the module.

3.1 Module Structure

A PRM source file (a module) is divided into four parts:

1. Importation of modules.→ ??: module dependence

2. Definition of classes.→ ??: class definition

3. Definition outside classes of procedures and functions.→ ??: outside method

4. Definition of the module main statements.→ ??: main statements

Each part is optional but the order must be respected.

3.2 Module Dependence

Modules can depend on others modules and import their classes. With
analogy with the class terminology, we call supermodules of a module m the
modules it depends on, and submodules6 the modules that depend on m.

The dependence between modules is declared with the import keywordimport

followed by the name of the module:

import crypt

import http

As in class hierarchy, cycles are forbidden in the module dependency! A·̂ →
module m cannot require itself nor require a module that requires m.

Implicitly, modules depend on the module standard that contains standardImplicit Dependence
→ ??: standard classes.

There is a class conflict when a module imports two homonymous distinctClass Conflict
classes.

Such a conflict can be resolved with the rename keyword:

import automobile # import Car

import tramway rename Car as Tramcar

Class renaming follows and property renaming follows the same rules.→ ??: property renaming

6 In some language, “submodules” refers to nested modules (i.e. modules defined into a
modules). Since there is no module nesting in PRM, there are no ambiguities.

32 3 Modules

3.3 Class Refinement

PRM modules can extend imported classes, this is called class refinement :

File m1.prm

c lass Foo

def bar

do
print("before")

end
constructor

def init do end
end

File m2.prm

import m1

c lass Foo

def bar

do
print("after")

end
end

(new Foo).bar # Output ‘‘after ’’

The main usage of refinement is to add new properties (methods andProperties: Definition and
Redefinition attributes) or to redefine them.

It’s important to note that refinement is not specialisation: if you specialise·̂ →
a class, you have two classes, if you refine a class, you still have one class.

Class refinement is one of the greatest PRM features. It improves the
reusability of OO software since it provides an answer to the separation of
concern problem: a module can adapt existing classes to new concerns. Class
refinement is clearly not a new OO feature and exists in many dynamically
typed languages (like Ruby or Lisp) and in some statically typed language
(like Objective-C).

Refinement can be also combined without difficulties:Multiple Refinement

File m3.prm

import m1

c lass Baz

def @foo: Foo

def bar

do
@foo.bar

end
constructor

def init

do
@foo := new Foo

end
end

3.3 Class Refinement 33

File m4.prm

import m2

import m3

(new Baz).bar # Output ‘‘after ’’

Class refinement works for any classes; even with build-in ones:

c lass Int

def fib: Int

Fibonacci numbers

The inefficient recursive algorithm

do
i f s e l f <= 0 then

return 0

e l s i f s e l f <= 2 then
return 1

else
return (s e l f - 1).fib +

(s e l f - 2).fib

end
end

end

print (6.fib) # Output ‘‘8’’

It is also possible to refine a class by giving it new superclasses. This kindAddition of Superclasses
of refinement is quite rare, even in dynamically typed languages:

c lass Foo

def foo

do
print(se l f , "-foo")

end
end

class String

inherit Foo

end

"Hello".foo # OK since String inherit the foo method

Output ‘‘Hello -foo ’’

l e t f: Foo

f := "World" # OK since Strings are now Foos

f.foo # Output ‘‘World -foo ’’

For property inheritance, refinement behaves like specialisation.Refinement, Specialisation
and Multiple Inheritance

3.4 Procedural style

From a programmer point of view, PRM can be used as a procedural
language:

• Some methods, like print seems to not have receiver.

• Procedures and functions can be defined outside classes.

34 3 Modules

• The main statements can be written outside procedures and functions.

However, PRM is a pure object-oriented language: procedures and functions
are always methods, and statements always belong to method bodies.

3.4.1 Method Without Receiver

Since each method invocation has a receiver, it means that each→ ??: self

print("Hello World") use self as receiver.

In fact, print is a private method defined in Any, thus inherited as a private
method in any other classes:

print("Hello ") # Output ‘‘Hello ’’

s e l f .print("World") # Output ‘‘World ’’

5.print(".") # Error

-> ‘print ’ is a private method

3.4.2 Method Definition outside Classes

Procedures and functions defined outside classes are implicitly defined as
private methods of the class Any. Therefore, as print, they can be used
everywhere.

Methods defined outside classes correspond to an implicit refinement of the·̂ →
class Any. Example: the two following listings are equivalent:

def foo

do
print("hello world")

end

class Any

private
def foo

do
print("hello world")

end
end

3.4.3 Module Main Statement

The module main statements belong to the body of an implicit private main

procedure defined in an implicit Sys class.

The main method of the Sys class corresponds to the entry point of programs.→ ??: Sys class

Main statements correspond to an implicit refinement of the class Sys. The·̂ →
two following listings are equivalent:

print("Hello world")

is syntactically equivalent to

3.4 Procedural style 35

c lass Sys

private
def main

do
print("Hello world")

end
end

3.5 Base Modules

The PRM standard library is made of 6 modules:

standard The standard module is the implicitly required by other modules. It→ ??: base classes

contains all the necessary base classes.

net implicitly depends on standard.

It specialises some IO classes in order to provide networking socket
communication.

http depends on net.

It defines classes related to basic HTTP communication.

exec implicitly depends on standard.

It defines classes used to execute arbitrary commands of the shell
system.

sdl implicitly depends on standard.

It defines wrapper classes around the Simple DirectMedia Layer C
library7. It is primarily defined to experiment the feasibility of
wrapping C libraries.

opts implicitly depends on standard.

It defines classes related to the parse and the analysis of command
line options.

This base module is the only one developed by someone else: Floréal·̂ →
Morandat.

3.5.1 Standard Module

In fact, the standard module is not the root of the module hierarchy.
standard is an empty module that only require base classes from some
“super-standard” modules.

This section is mainly an illustration to how module hierarchy and class·̂ →
refinement can be used to develop modular applications—i.e. where modules
are clearly “concern” units.

The PRM standard module depends on 11 super-modules:

7 http://www.libsdl.org/

36 3 Modules

kernel depends on nothing.

It is the root of the module hierarchy and minimally defines the most
basic classes like Any, Sys, Int, Float, Bool or Char.

math depends on kernel.

It refines the Int and Float classes with useful mathematical methods;
for instance trigonometry. In a near future it will also define some class
like complexes or big numbers.

abstract collection depends on kernel.

It defines the PRM collection abstract generic class hierarchy. From
the general Collection[E: Any] and Iterator[E: Any] classes to more
specific like abstract set or abstract maps (i.e. associative arrays).

range depends on abstract_collection.

It defines the Range class and related ones.

array depends on abstract_collection.

It defines the Array class and related ones. It also specialises
many abstract collection classes into concrete ones implemented with
arrays—ArrayMap, ArraySet, etc.

sorter depends on array.

It refines the classes of the array module by the addition of sort
method.

list depends on abstract_collection.

It specialises some collection classes—i.e. like the array module but
with linked lists.

string depends on array.

It defines the String class and related ones. It also refines many classes
by adding a to_s method used to convert any objects to a human
readable representation.

hash depends on string.

It refines classes with a hash function and implements some hashes
collections—HashMap, HashSet, etc.

io depends on string.

It define input/output related classes likes File. It also refines the Any

by adding the print method.

string search depends on string.

This module is about string searching and matching. It also
implements the Boyer-Moore fast string searching algorithm.

3.6 Base Classes

Classes can be classified into 4 categories:Kinds of Classes

3.6 Base Classes 37

Primitive Classes: They correspond to the primitive values of the computer. They are
mainly defined in the kernel module. Primitive classes and their
super-classes can have some restrictions.

Built-in Classes: They are known by the compiler since they have literals representation
or are needed in some particular statements or expressions. Obviously,
they include primitive classes.

Base Classes: They are the classes defined or imported by the standard module.
They include Built-in classes.

User Classes: They are the other classes and are defined by PRM programmers.

Some built-in classes have literate value: programmers can create objectsLiteral Value
without explicitly instantiate them. The table ?? summarises build-in
classes and gives example of literals values.

examples PRM types
integers 51, -85 Int

floats 5.5, -.05, 8.0 Float

characters ’a’, ’n’ Char

strings "hello!", "I" String

Booleans true, false Bool

range [1..5], [’a’..’b’[Range[Int], Range[Char]
arrays [1,5,6], [’a’,’b’,’c’] Array[Int], Array[Char]
void nil None

Table 1: The Basic Types

3.6.1 Any

The Any built-in class is the root of the class hierarchy.

Here some notable properties that will be inherited or redefined in other
classes:

Class Any

public # Equality tests

def ==(a: Any): Bool

The identity equality

Return ‘true ’ if ‘self ’ and ‘a’

are the same object

False otherwise

/!\ This method cannot be redefined

def !==(a: Any): Bool

Return ‘not self == a’

/!\ This method cannot be redefined

def =(a: Any): Bool

The value identity

Return ‘true ’ if ‘self ’ and ‘a’

have the same ‘‘contents ’’

def !=(a: Any): Bool

Return ‘not self = a’

38 3 Modules

public # String

def to_s: String

Convert ‘self ’ to a human readable form

private # Basic IO

def print(a: Any*)

For each argument , output the

human readable form (‘to_s ’)

end

3.6.2 Int

The Int primitive class represents internal machine integers. Literals are
sequence of digits.

Notable Int properties are their operators. Many of them cannot be→ ??: operator

redefined.

3.6.3 Float

The primitive Float class represents internal machine float numbers.

Literals are sequence of digits a dot and another sequence of digit.

3.6.4 Character

The Char primitive class represents characters.

Literals are delimited with single quotes. Characters can include escaped
sequence—Table ??.

Escape sequence Meaning
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\0 ASCII Nul (NUL)
\\ Backslash (\)

in strings only...
\" Double quote (")
\# Hash (#)

Table 2: Char and String Escape Sequences

3.6.5 String of Characters

The String built-in class represents strings of characters—i.e. pieces of text.

Literals are delimited with double quotes. As with character, some escape
sequence can be used to represent some characters—Table ??.

String literal can contain embedded expression using #{}8:Extended String Literal

8 The #{} notation comes from Ruby

3.6 Base Classes 39

print("4 + 8 = #{4+8}")

Output ‘‘4 + 8 = 12’ ’

l e t h := "Hello"

l e t w := "World"

l e t hw := "#{h} #{w}"

print(hw)

Output ‘‘Hello World ’’

Programmers are encouraged to use extended strings because they are better
for internationalisation since only entire sentences should be presented to
the translator. Therefore having one string bj1bj2"Replace #o with #o?" is
obviously better than having the three strings "Replace ", " with ", and
"?".

3.6.6 Boolean

The Bool primitive class represents the two Booleans true and false.

There is also three special operators on Booleans that are not operators ofPseudo-operators and, or and
not the Bool class: and, or, and not. These keyword have a special status since

and, or are lazy and will return the value, as soon as falsity (and) or truth
(or) is established.

Booleans are used in many places, especially:

• Conditional statement.→ ??

• While loop.→ ??

• Check statement.→ ??

3.6.7 Collection

The Collection built-in generic abstract class is the root of the collection
class hierarchy.

Here some notable deferred method:

c lass Collection[E: Any]

def is_empty : Bool

Is there no item in the collection ?

def length : Int

Number of items in the collection.

def has(item: E): Bool

Is ‘item ’ in the collection ?

Comparisons are done with =

def iterator : Iterator[E]

Get a new iterator on the collection.

end

40 3 Modules

3.6.8 Iterator

The Iterator built-in generic abstract class is mainly used with collections.
Instances of the Iterator class generates a series of elements, one at a time.

Here some notable deferred method:

c lass Iterator[E: Any]

def item: E

The current item.

def next

Jump to the next item.

def is_ok: Bool

Is there a current item ?

end

3.6.9 Array

The Array built-in generic class is a subclass of Collection. It is also the→ ??: genericity

preferred representation form of collections of items.

Literals representation use brackets and elements are separated with comma.Array Literal
Example:

l e t ai := [5 , 4 , 6 , 1]

print(ai.length) # Output ‘‘4’’

print(ai.has (5)) # Output ‘‘true ’’

print(ai.has (9)) # Output ‘‘false ’’

print(ai) # Output ‘‘5461’’

l e t ai := ["Hello" , " " , "World"]

print(ai.length) # Output ‘‘3’’

print(ai) # Output ‘‘Hello World ’’

Since Array is generic, the type of literal should be computed. LiteralsStatic Type of Array Literal
expressions are valid if and only if there is a unique more general static
type. The static type of the literal expression is build with this type.

l e t ai := [4 , 5] # more general type: Int

Therefore ai is an Array[Int]

l e t ae := [4 , ’5 ’] # more general types: Int and Char

Therefore , it is an error

l e t x: Any

l e t aa := [4, ’5’, x] # more general type: Any

Therefore ai is an Array[Any]

When literals are invalid, one can use the init array constructor thereforeArray Constructor
explicitly precise the desired static type:

l e t ae := new Array[Any](4, ’5’) # OK

Arrays are used in multiple argument procedures. The Array init→ ??: multiple arguments

constructor uses multiple arguments.

3.6 Base Classes 41

3.6.10 Range

The built-in a generic class Range is for Discrete elements. It represents
intervals between a first element and a last element.

There are two kinds of ranges, inclusive ranges and exclusive ranges.

They include the first element, the last element and each element betweenInclusive Range
them. Their literals use the [a..b] notation (a and b can be any expression):
Literals are valid if first element and the last element have the same static
types.

l e t x := [1..5] # x is Range[Int]

print(x.length) # Output ‘‘5’’

print(x.has (0)) # Output ‘‘false ’’

print(x.has (1)) # Output ‘‘true ’’

print(x.has (4)) # Output ‘‘true ’’

print(x.has (5)) # Output ‘‘true ’’

print(x.has (6)) # Output ‘‘false ’’

Like inclusive range but they exclude the last element. Their literals useExclusive Range
the [a..b[notation:

l e t x := [1..5[# x is Range[Int]

print(x.length) # Output ‘‘4’’

print(x.has (5)) # Output ‘‘false ’’

Ranges are often used in for loops.→ ??: for loop

3.6.11 None

None is the absurd class, it is the class that specialise each other except
primitives classes. It is not a “real” class since it does not have a definition.
It is also the only class that cannot be specialised or refined.

None has only one instance nil, often called the void object. nil correspondnil

to the null constant of Java or the Void object of Eiffel.

Each method invocation on nil will fail. The only exception are equality
operators =, ==, !=, and !==. Therefore, it is frequent to verify if potential
receiver is nil before sending a message:

def safe_array_length(a: Array[Int]): Int

do
i f a = nil then

return 0

else
return a.length

end

end

3.6.12 Sys

The Sys built-in class

When the program starts, it instantiates the Sys class then invoke the initProgram Start

42 3 Modules

procedure.

The Sys class is defined in the kernel module as follow:Sys Definition

c lass Sys

private
def init

The entry point of the program

do
init_begin

main

end

def init_begin

Initialisation of library objects

do
end

def main

The main part of the program

do
end

end

The init_begin procedure is used to initialise library object. For instance,
the module io build the standard IO file objects in init_begin

The main procedure corresponds to the main statements of the module.→ ??: procedural style

4 The Base Language

This section is dedicated to the base language programming.

4.1 Source Structure

PRM is a line-oriented language. PRM statements are terminated at the
end of a line unless the statement is obviously incomplete—for example if
the last token on a line is an operator or comma. A semicolon can be used
to separate multiple expressions on a line.

Comments start with ‘#’ and run to the end of the physical line. They areComment
ignored during compilation. Currently, there are no multi-line comments.

One statement , one line

a := 1

Two statements , one line

b := 2; c := 3

One statement , two lines

d := 4 + 5 +

6 + 7

Two statements , two lines

But the second one clearly do nothing

and may provoke a warning during compilation

e := 8 + 9

43

+ 10

4.2 Name

PRM names are used to refer to variables, properties (methods and
attributes), classes, and modules. The first character of a name helps PRM
to distinguish its intended use.

Certain names, listed in Table ??, are reserved and should not be used asReserved Names
variable, property, class, or module names.

and as check class constructor def def attr
def read deferred do else elsif end extern
false for if import in inherit intern
isa let let new nil not not
once or private public rename return self
then true until while

Table 3: Reserved Names

In these descriptions, a lowercase letter means the characters “a” though “z”,
as well as “ ”, the underscore. An uppercase letter means “A” though “Z”,
and digit means “0” through “9”. Name characters mean any combination
of upper- and lowercase letters and digits.

A local variable name, a method name, or a module name consists of a
lowercase letter followed by name characters. Examples: foo, foo_bar_baz,
_x.

A class name starts with an uppercase letter followed by name. Examples:
Int, Any.

An attribute name starts with an “at” sign (“@”) followed by a lowercase
letter, followed by any name characters. Examples: @name, @x, @_.

4.3 Type

PRM is a statically typed language, it’s mean that “things” should have a
static type.

Type annotation use the Pascal notation style: thing: Type. Such typeType Annotation
annotations are used in the following places:

• Local variable declarations.→ ??

• Method signatures—for parameters, and in functions for the return→ ??

type.

• Generic classes—for formal generic parameters.→ ??

A type is:Type Language

• A non generic class—e.g. Int, Car...→ ??

• A generic type—e.g. Array[Int], Iterator[Car]→ ??

• A formal generic parameter.→ ??

44 4 The Base Language

As Eiffel, PRM uses a covariant typing policy.Covariant Type Policy

The covariant typing policy allows the programmer to redefine properties
with a more specific signature:

c lass Food

end
class Grass

inherit Food

end
class Animal

def eat(f: Food)

...

end
class Cow

inherit Animal

def eat(g: Grass)

end

However, such a typing policy is unsafe. In concrete term it means that
in some case, type error may occur at runtime and stop the program
execution9.

4.4 Expression

There are ten kinds of expressions:

• The current receiver self.→ ??

• Literal values.→ ??

• Function invocation.→ ??

• Variable read.→ ??

• Attribute read.→ ??

• Exported attribute read.→ ??

• Object creation.→ ??

• Boolean pseudo operators.→ ??

• Type checks.→ ??

• Once expressions.→ ??

4.4.1 Type Checks

Type check can be used to tests if an object is an instance of a giver class
(or an instance of a subclass). However, since PRM uses bounded genericity
and a covariant typing policy, there is a very few need of such type checks.

The majority of their use corresponds to assertions and to assignment→ ??: assertions; ??:
assignment attempt attempts.

Type checks can be explicitly performed with the isa keyword:isa

9 In a future version, runtime type error will raise an exception.

4.4 Expression 45

l e t a: Any

a := 5

print(a isa Int) # Output ‘‘true ’’

print(a isa Any) # Output ‘‘true ’’

print(a isa Bool) # Output ‘‘false ’’

4.4.2 Once Expression

This part of the specification is not stable and may change in a future·̂ →
version.

This expression is constituted by the once keyword followed by another
expression called sub-expression:

l e t x := once "Message"

l e t y := once new Car

The semantic of the once expression is to evaluate the sub-expression only
one time during the execution of the program. Successive evaluations of the
once expression will return the first evaluated value.

Once expressions are mainly used to create singletons and to perform some
local optimisation—it is often used with literals string and arrays.

Examples:

def only_one(i: Int): Int

do
return once i

end
print(only_one (1)) # Output ‘‘1’’

print(only_one (2)) # Output ‘‘1’’

print(only_one (3)) # Output ‘‘1’’

c lass Person

...

end

def immortal : Person

There can be only one

do
return once new Person

end

The once expression is a generalisation of the Eiffel once keyword.

4.5 Statement

There are nine different statements in PRM: statement block, local variable
declaration, assignment, procedure invocation, conditionals, while loop, for
loop, return and check.

Statements are always defined in a statement block or belong to the main
module statements.

46 4 The Base Language

4.5.1 Statement Block

Blocks of statements often start with the do keyword and are ended with
the end keyword:

outside

do
inside

do
more inside

end
inside again

end
outside again

The only exceptions are the main statements of the program and the→ ??: main
→ ??: if statements of the if statement.

PRM statement blocks are slightly different from other language ones:

• do/end differs from usual begin/end of others Pascal-style languages.
In fact, it is almost a 50% less characters10.

• Curly brackets from C-influenced languages do not fit with the overall
PRM Pascal style.

In a near future version, statement block will be extended to allow exception
management. A potential syntax can be:

do
...

rescue e: IOException

...

rescue e: EmptyListException

...

rescue

...

finally

...

end

4.5.2 Local Variable Declaration

The let keyword is used to declare local variables:let

l e t i: Int # i is an integer

l e t j, k: String # j and k are strings

An initial value can be directly assigned with the local variable. If theInitial Value and Type
Inference initial value is present and the static type absent, the static type of the

local variable is implicitly the static type of the initial value. Examples:

10 do/end statement blocks are used in some languages (PL/1, Rexx). In Ruby,
begin/end corresponds to statement blocks, although do/end and curly brackets
correspond to closures.

4.5 Statement 47

l e t j: Int := 5 + 3 # an integer with the value 8

l e t k := j + 1 # an integer with the value 9

l e t c := new Car("Blue") # a blue car

Without an explicit initial value, local variables are initialised at 0 for Int,Default Value
’0’ for Char, false for Bool, and nil for the other types.

The visibility of local variable runs from its declaration until the end of theVisibility
current block.

do
‘i’ is not yet known

l e t i: Int

‘i’ is known

do
‘i’ is still known

end
‘i’ is still known

end
‘i’ is no more known

One can declare in a same block two local variables with the same name.·̂ →
The last declared will mask the others. However, the compiler may produce
a warning.

l e t i: String

i := "foo"

do
let i: Int # Warning !

i := 5 # Correct , the Int variable

masks the String variable

end
i := "bar" # Correct , the Int variable

is no more known

PRM encourages the use of local variables to store intermediate results.
Therefore, it allows the programmer to have a liberal use of local variables:

• New local variables can be declared when they are needed. Some
languages like Eiffel or Smalltalk only allow local variable
declaration at begin of subprograms. Some other languages, like Ada,
Modula 3, C, or Lisp, only allow them at begin of statement blocks.

• The static type is optional any can be inferred from the initial value.
This feature is quite rare in statically typed languages even if it was one
of the first that appears in during the PRM specification development.
Modula-3 has it and it is planned for the future C# 3.0.

4.5.3 Assignment Statement

The assignment statement uses the quite common := and is widely used in
PRM programs:

• Local variable assignment.

• Attribute assignment.→ ??

48 4 The Base Language

• Assignment procedure.→ ??

• Implicit parameter declaration.→ ??

• Exported attribute assignment.→ ??

• Initial local variable value.→ ??

An assignment a := b is statically valid if the static type of the left-value aConformance
is a subtype of static type of the right-value b:

l e t x: Int

x := 4 # OK

x := ’a’ # Error

l e t y: Any

y := x # OK

y := ’a’ # OK

The assignment attempt use the Eiffel ?= notation. It works exactly likeAssignment Attempt
the assignment, except that conformance is not checked statically but at
runtime. If an assignment attempt fails, the program execution will stop11.

Example:

l e t x: Any

l e t y: Int

l e t z: Char

x := 5

y ?= x # OK

z ?= x # Error at run -time

In order to avoid run-time error, dynamic types can be checked before any→ ??: type check

assignment attempts:

l e t x: Any

l e t y := 0

...

i f x isa Int then
y := x

end

4.5.4 Conditional Statement

Conditionals use the standard if then elsif else keywords. The elsif and
else parts are optional, and there can be more than one elsif part.

def game(guess : Int , solution : Int): String

A simple game

do
i f guess > solution then

return "It ’s less"

e l s i f guess < solution then
return "It ’s more"

else
return "Correct"

end

11 In a future version, it will raise an exception.

4.5 Statement 49

end

The question about the one-liner if was raised but we did not find a clear
and concise syntax. We find only the Perl-ish post-test if:

instr i f expr

but it does not satisfy us.

4.5.5 While Loop

The while loop is the main PRM loop structure. It is constituted with a
Boolean expression and a statement block:

def gcd(x, y: Int)

The greatest common divisor between x and y

using the Euclid ’s algorithm

do
while y != 0 do

let t := y

y := x % y

x := t

end
return x

end

4.5.6 For Loop

The for loops are used for collection traversal. It is quite different of the C
or C++ for. In fact it is comparable to the Perl foreach or to the new
Java 5.0 for/in loop

This loop can be used with any expression subtype of the built-in class
Collection, even those defined by the programmer. Since Array and Range

are subclasses of Collection, here are two examples:

l e t pricelist := [34.50 , 21.95 , 4.95 , 8.45]

for price in pricelist do
let gstprice := price * 1.1

print("Price is ", gstprice , " including GST.\n")

end

for i in [0..10] do
print("Value of i: ", i, "\n")

end

In fact, the for loops are no more than a while loops adaptation. The last
example with a range is equivalent with:

do
let x := [0..10]. iterator

while x.is_ok do
let i := x.value

print("Value of i: ", i, "\n")

x.next

50 4 The Base Language

end
end

4.5.7 Return Statement

This statement has two usages according to the kind of method it is used:
in a procedure or in a function. In both case, it terminate the method.

In a function, the return statement is mandatory and must provide a result
value that is conform to the declared result type in the signature of the
function:

def sign(i: Int): Int

do
i f i > 0 then

return 1

e l s i f i < 0 then
return -1

else
return 0

end
end

In a procedure, the return statement is optional ant must not provide a
value:

def stars(nb: Int)

do
i f nb <= 0 then

println("I want stars.")

return
end

println("A star : *")

for nb in [2..i] do
println("Another star : *")

end
end

4.5.8 Check Statement

The check statement is about correctness. It corresponds to assertions and
helps to check validity of programs and identify bugs.

A check statement is constituted by the check keyword, optionally an→ ??: Bool

assertion label followed by a colon, then a Boolean expression.

def hello(name: String)

check correct_name : name !== nil and
not name.is_empty

print("Hello ", name)

end

4.5 Statement 51

During its execution, the program will halt on the check if the expression is
evaluated to false12.

5 A PRM Conclusion

The PRM language focuses expressive, clear, simple, and coherent concepts
in a statically typed object-oriented language whereas the other languages
of the same family rarely focus simplicity.

Currently, the PRM specification is almost complete however some
characteristics are currently instable and others are missing like constant
values, enumeration types, introspection, module visibility (import/export),
exceptions, contracts, regular expressions...

The standard module hierarchy needs also to be extended. Actually there
is less than 6000 line of code in the base modules—that is not a lot even if
PRM has a concise syntax.

The last work is about the compiler and other tools. Actually, the PRM
compiler, prmc, is just a prototype and does not yet implement entirely the
current specification. However, it produces efficient executable.

12 In a future version, it will raise an exception.

52 5 A PRM Conclusion

Index
*

variable argument number, 12
.

method invocation, 8
.

Float literal, 39
:=, see Assignment
?=, 49
#

comment, 43
extended string literal, 39

Abstract class, 15
abstract_collection, 37
Accessor, 20

automatic, 20
pseudo-accessor, 21

and, 40
Any, 38
Array, 41
array, 37
Assignent

conformance, 49
Assignment, 48

assignment procedure, 10
attempt, 49
attribute access, 7
bracket assignment procedure, 10
implicit parameter value, 11
local variable initial value, 47

Attribute
access, 7
accessor, see Accessor
definition, 6
exported access, 22
redefinition, 24
visibility, 22

Block
statement, 47
visibility, 16

Bool, 40
pseudo-operator, 40

Boolean, see Bool

Bracket
array literal, 41
assignment procedure, 10
generic class, 30
generic type, 31
operator, 9

range literal, 42

Char, 39
Character, see Char

Character string, see String

check, 51
Class, 5

abstract, 15
concrete, 15
conflict, 32
definition, 5
generic, 30
instantiation, 14
refinement, 33
specialisation, 22

class, 5
Collection, 40
Comment, 43
Concrete class, 15
Conflict

global property, 26
property, 26

constructor, 14, 19
empty, 15
implicit, 15
visiblity, 19

def, 6
deferred, 25
def_read, 20
def_write, 20

else, 49
elsif, 49
Escape sequence, 39
exec, 36
export, 22, 28
Expression, 45

false, 40
Float, 39
for, 50

Garbage Collector, 16
Genericity, 30
Global property, 24

hash, 37
http, 36

if, 49

53

Implicit
constructor, 15
module dependence, 32
parameter value, 11
receiver, see self

super arguments, 29
visibility block, 17

import, 32
Infix operator, see Operator
inherit, 23
Int, 39
Integer, see Int

io, 37
isa, 45
Iterator, 41

kernel, 37
Keyword

reserved names, 44

let, 47
list, 37
Literal value, 38
Local variable

declaration, 47
implicit type, 47
initial value, 47
visibility, 48

Loop
for, 50
while, 50

math, 37
Method

assignment procedure, 10
bracket assignment procedure, 10
deferred, 25
definition, 6
implicit parameter value, 11
invocation, 8
operator, see Operator
super call, 29
variable argument number, 12
visibility, see Visibility

Module, 32
dependence, 32
implicit dependence, 32

Name, 44
reserved, 44

net, 36
new, 14

nil, 42
None, 42
not, 40

Object
creation, 14

once, 46
Operator, 9

bracket, 9
infix, 9
prefix, 9

opts, 36
or, 40

Parameter
implicit value, 11
variable argument number, 12

Prefix operator, see Operator
print, 38
private, 18
Procedural style, 34
Property

conflict, 26
definition, 6
global, 24
global conflict, 26
inheritance, 23
redefinition, 24
rename, 27

public, 17

Range, 42
range, 37
Refinement, see Class refinement
rename

class, 32
property, 27

return, 51

sdl, 36
self, 8
sorter, 37
standard, 36
Statement, 46

assignment, 48
block, 47
check, 51
conditional, 49
for loop, 50
return, 51
while loop, 50

String, 39

54 Index

extended, 39
string, 37
string_search, 37
super,

lstinline super29
Sys, 42

then, 49
true, 40
Type, 44

check, 45
generic, 31

Variable
instance, see Attribute
local, see Local variable

Visibility, 16
attribute, 22
block, 16
constructor, 19
implicit block, 17
inheritance, 28
local variable, 48
private, 18
public, 17
redefinition, 28

while, 50

Index 55

