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Abstract

The GRID and MAS (Multi-Agent Systems) communities believe in the potential of GRID and MAS to
enhance each other because these models have developed significant complementarities. Thus, both communities
agree on the ’what’ to do: promote an integration of GRID and MAS models. However, while the ’why’ to do it
has been stated and assessed, the ’how’ to do it remains a research problem. This paper addresses this problem by
means of a service-oriented approach. Services are exchanged (i.e., provided and used) byagentsthroughGRID
mechanisms and infrastructure. The paper first consists of a set of states of the art about integration approaches in
GRID, MAS and Service Oriented Computing (SOC). It secondly proposes to formalize integrated GRID-MAS
systems. Concepts, relations between them and rules are semantically described by a set-theory formalization
and a common graphical description language, called Agent-Grid Integration Language (AGIL). This language
may be used to describe future integrated GRID-MAS systems. AGIL’s concepts are directly influenced by
OGSA (Open Grid Service Architecture) and the STROBE agent communication and representation model.

Keywords:Distributed systems, Agent-Grid Integration, Multi-Agent Systems, Agent, STROBE model, Grid,
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1 Introduction

Even though GRID and MAS (Multi-Agent Systems) are both kinds of distributed systems, their underlying
motivations are different. GRID focuses on a reliable and secure resource-sharing infrastructure, whereas MAS
focuses on flexible and autonomous behaviour in uncertain and dynamic open environments. In 2004, [FJK04]
explained why MAS and GRID need each other as ’brain and brawn.’ Even if using agents for GRID was very
early suggested [MT99, RM00], Foster et al. [FJK04] propose the real first step in GRID-MAS integration as it
examines work in these two domains, first to communicate to each community what has been done by the other,
and second to identify opportunities for cross fertilization as they explained how GRID and MAS developed
significant complementarities. This paper suggests a second step by proposing a set-theory based formalization
and a common graphical description language, inspired by both GRID and MAS key concepts.

Service as a unifying concept. The concepts of service and Service Oriented Architectures (SOA) seem good
candidates for supporting this integration. GRID is said to be the first distributed architecture (and infrastructure)
really developed in a service oriented perspective: Grid services are compliant Web services, based on the dynamic
allocation of virtualized resources to an instantiated service [FKNT02]. Quite recently, GRID acquired major
importance in SOA by augmenting the basic notion of Web Service with two significant features: service state
and service lifetime management. This is the concept of Grid service [CTT05]. On the other hand, agents are said
to be autonomous, intelligent and interactive entities who may use and offers services (in the sense of particular
problem-solving capabilities) [Fer99, Jen01]. MAS have also followed naturally the path towards SOA as interest
turns to providing dynamic services, business process management, composed services, semantic services, etc.
The Service Oriented Computing (SOC) community is also turning to MAS considering the important capacities
agents have for providing and using services one another. The concept of service is clearly at the intersection of
the GRID and MAS concerns.

Dynamic Service Generation. Web services are currently the main framework chosen by the SOC community
to implement SOA. However, Web services are often criticized because they are no more than Remote Procedure
Calls (RPC) which have no user adaptation, no memory, no lifetime management, no conversation handling ca-
pabilities (simple request/answer interaction). They are passive, they lack semantics and they do not take into
account the autonomy of components or do not use a high level, history aware, communication language. Actu-
ally, to provide a service means to identify and offer a solution (among many possible ones) to the problem of
another. The next generation of services will consist of dynamically generated services, i.e., services constructed
on the fly by the service provider according to the conversation it has with the service user. InDynamic Service
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Generation(DSG), the user is an agent (human or artificial) that is not assumed to know exactly what the provider
(also human or artificial) can offer him (her/it). He finds out and constructs step by step what he wants based on
the service provider’s reactions. The central idea of DSG is that a service may be based on a conversation. It is
not a simple product delivery. Actually, DSG highlights the idea of process and the creation of something new
instead of merely delivering something that already exists. In everyday life, when somebody needs new clothes,
buying ready-to-wear clothesis analogous to asking for a product, whereashaving clothes made by a tailoris
analogous to requiring a service to be generated. Singh and Huhns [SH05] talk aboutservice engagement, instead
of simple method invocation. In [JC06] the authors extensively describe the DSG concept by enumerating a set
of characteristics that are related to DSG. The two main inspiring sources of requirements for DSG are MAS
and GRID. Therefore, new needs in service exchange scenarios are clearly highlighted (dynamicity, composition,
conversation based, user-centred behaviour, business processes, semantics, etc.) and may be met by integrating
GRID and MAS complementarities.

GRID-MAS integration. In [JDC06] we present our vision of an integration of GRID and MAS models. We
extracted for GRID and MAS related work some key concepts of these domains. These concepts are directly
influenced by OGSA (Open Grid Service Architecture) and the STROBE agent communication and representation
model[JC05b]. We proposed an integrated model by mapping these key concepts. The integrated model is step-
by-step defined in section 3 and 4, however, we sum-up the two main ideas underlying the proposed integrated
model:

• The representation of agent capabilities as Grid services in a service container, i.e., viewing Grid service
as an ’allocated interface’ of an agent capability by substituting the object-oriented kernel of Web/Grid
services with and agent oriented one;1

• The assimilation of the service instantiation mechanism – fundamental in GRID as it allows Grid services to
be stateful and dynamic – with the dedicated Cognitive Environment instantiation mechanism – fundamental
in STROBE as it allows one agent to dedicate to another one a conversation context.

Complementarily, in this paper, we first make a relatively detailed state of the art on related work about in-
tegration approaches in GRID, MAS and SOC. Afterwards, we proposes a set-theory based formalization and a
common graphical language, called Agent-Grid Integration Language (AGIL), for describing GRID-MAS inte-
grated systems.

Agent-Grid integration language. Describing simply and clearly key GRID and MAS concepts is a real need
for both communities. GRID and MAS would appreciate a common description language which:

• defines the respective domain ontologies;2

• uses the same terms and representations for an identical concept. For example, Virtual Organization (VO)
and group; choreography of service and agent conversation, role and service, etc. The analogies in GRID
and MAS concepts are precisely described in section 2.3.2;

• rigorously fixes the integration rule;

• may help researchers of GRID, MAS or SOC communities to specify and model their GRID-MAS inte-
grated applications and systems. A kind of UML, applicable to both GRID and MAS;

• would promulgate the development of GRID-MAS integrated systems.

AGIL is such a language. It takes a specific graphical representation for each concepts and their relations.
Moreover, the rules of the integration are all expressed by a set-theory based formalization which rigourously
expresses constraints on these concepts and relations.

1Nowadays Web services (cf. section 2.1) are most of the time object oriented program (developed with J2EE or .NET) processed to produce
a WSDL description and to become able to communicate with SOAP messages. Thus, services benefit of the powerful abstraction characteristic
available with the object oriented paradigm, such as encapsulation, inheritance, message passing, etc. We do not want Grid/Web services to
be executed by simple object program but by intelligent, autonomous and interactive (the three fundamental properties distinguishing agents
from objects) agents able to have conversations in order to realise DSG

2GRID needs a description language that summarizes and rigorously explains GRID concepts. Without considering the agent side, AGIL
may play also this role.
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Paper overview. The rest of the paper is organized as follows: Section 2 makes a state of the art on related work
about GRID-SOC, MAS-SOC, and GRID-MAS integrations. Section 3 presents AGIL main concepts, relations
and rules. Section 4 details the dynamics of such a model: agent interaction, service-capability instantiation, agent
reproduction, etc. Section 5 sums up the integrated model using AGIL. Benefits for MAS, GRID and SOC is also
discussed. Finally, Section 6 concludes the paper.

2 State of the art of integration approaches

Considering the reader is aware with basic concepts of SOC, GRID and MAS, we focus in this section just on
these domains intersections.

2.1 GRID-SOC

The GRID aims to enableflexible, secure, coordinated resource sharing and coordinated problem solving in dy-
namic, multi-institutional virtual organization[FKT01]. Actually, it was originally designed to be an environment
with a large number of networked computer systems where computing (Grid computing) and storage (data Grid)
resources could be shared as needed and on demand. GRID later extended to any kind of services that was based
on the dynamic allocation of virtualized resources to a service instance.

Heritage of Web services. Nowadays, the main way of implementing a SOA (framework) is by means of Web
services (www.w3.org/2002/ws ). Web services allow distributed functionalities on a network to be accessed
in a standardized way to enable interoperability. They are describable, discoverable and message-based soft-
ware components that perform specific functions. The two main objectives of Web services are standardization
and interoperation. It is clear that the main advantage of Web services is that we can compose them to create
new services. So, from service invocations, which are single-shot two-party interactions, Web services started
evolving into business processes that are typically long-lived multiparty interactions. This is called Business
Process Management (BPM). For an example, see BPEL4WS (Business Process Execution Language for Web
Services) on the workflow/orchestration side, and WSCL (Web Services Conversation Language) on the conver-
sation/choreography side [Pel03]. BPM is also detailed in section 2.3.2.

Web services have some important drawbacks as mentioned in introduction. This section explains how in-
tegrating GRID and Web services may be a solution for some these drawbacks (e.g., memory, life-time); the
next section explains how integrating MAS and Web services may be a solution for other ones (e.g., semantics,
conversation).

Grid services. Recently GRID introduces two major characteristics in the so-called SOAs by distinguishing
service factory from service instance. In other words, services are instantiated with their own dedicated resources
and for a certain amount of time. These characteristics enable (i) service state management: Grid services can be
either stateful or stateless; (ii) service lifetime management:3 Grid services can be either transient or persistent.
In order to be widely accepted, the GRID standardization activity faced the question of convergence of GRID and
SOC standards. The decision taken between the GGF and the W3C was to introduce the resource management
capabilities of GRID into the Web services framework. This resulted to a GRID standardization split into two sets
of layered specifications:

• the Open Grid Service Architecture (OGSA) [FKNT02], on the top layer (architecture);

• the Web Services Resource Framework (WSRF) [FFG+04], on the bottom layer (infrastructure).

OSGA. OGSA (www.globus.org/ogsa ) specifies how Grid services are created, and how service state and
lifetime is managed. The capability to manage service state and service lifetime in OGSA enables to ensure an
efficient load-balancing of the distributed ressources. The GRID specifications main elements are:

• the Grid Resource Allocation and Management(GRAM) function is responsible to manage the available
resources;

3Also called service dynamicity.
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• theinheritance of the the Web Services standardsto provide open service interface description (WSDL) and
an open service communication protocol (SOAP);

• the Grid Security Infrastructure(GSI) which allow authentification, delegation, privacy and integrity (cf.
section 3.3.2).

WSRF. More recently, WSRF (www.globus.org/wsrf ) defines uniform mechanisms for defining, inspect-
ing, and managing stateful resources in Web/Grid services. The motivation of WSRF comes from the fact that
even if today’s Web services successfully implement applications with state, they need to be standardized to en-
hance interoperability. Therefore, WSRF describes how to implement OGSA functionalities using Web services.4

WSRF considersstateless services that acts upon stateful resources. These services are modelled by an associ-
ation between two entities: a stateless Web service, that do not have state, and stateful resources that do have
state.5 WSRF calls the resulting association a WS-Resource. Both stateful resources and stateless services can be
members of several WS-Resources. However, a WS-Resource is unique and produced by a WS-Resource factory.
Introducing state in services is very important. Without state, modelling two service performances will always be
the same. Since there is no state transitions, a stateless service does not enable interaction, adaptation, negotia-
tion, engagement etc. A fortiori, a stateless service cannot implement DSG. We will see in section 5.2 how the
GRID-MAS integrated model goes further toward DSG than WSRF, enabling a couple service-resource (akin to a
WS-Resource) to adapt user specific needs both at the resource and service levels. For a recent precise overview
of Grid service concepts and standardization, see for example [CTT05].

GRID evolution. Recently, the same semantic level add-on objective that took place in the Semantic Web com-
munity occurred also in Grid service. For an introduction to the concept of ’Semantic Grid,’ see [RJS01, Gel04]
or [CT03] for GRID-based distributed knowledge discovery. The GRID is also used as a ’Learning Grid’ where
GRID architecture and principles are used to change e-learning paradigms [ACR+05]. BPM and Grid service
composition have become research topics in the GRID community; for example [KWvL02] which addresses the
challenge of modelling workflow of Grid services.

2.2 MAS-SOC

Agents and MAS have been extensively studied in literature, for example [HS98, Fer99, Woo02]. Historically,
the agent paradigm originates from the object paradigm, but differs in three major aspects:autonomy, i.e., for
example, the fact of being able to refuse to answer a message;intelligence, i.e., the ability to change its own state
alone, without message passing;interaction, i.e., the faculty to communicate directly and asynchronously with
its environment and other agents by means of direct or indirect message passing with a communication language
that is independent of the content of the communication and of the internals of agents. Agents are said to use and
provide services (in the sense of particular problem solving capabilities). Actually they have many characteristics
interesting for service exchanges:

• Reactive and proactive;

• Efficient and adaptive;

• Know about themselves (self-consciousness);

• Memory and state persistence;

• Able to have conversation (but not yet dialog (cf. section 2.2.2)) and work collaboratively;

• Able to learn and reason to evolve;

• Deal with semantics associated to concepts by processing ontologies.

4WSRF is a re-factoring of the initial specification OGSI (Open Grid Services Infrastructure).
5Stateful resources are elements with state, including physical entities (e.g., databases, file systems, servers) and logical constructs (e.g.,

business agreements, contracts) that are persistent and evolve because of service interactions.
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2.2.1 Agents and Web service

The research activity in MAS and SOC convergence is increasingly active.6 As [SH05] states: ”Researchers in
MAS confronted the challenges of open systems early on when they attempted to develop autonomous agents that
would solve problems cooperatively, or compete intelligently. Thus, ideas similar to SOAs were developed in the
MAS literature.” [GMM98] prefigured the use of agents in e-commerce scenario (i.e., for service delivery scenar-
ios). The authors made an overview of e-commerce application in 1998 and identify issues in which agent abilities
may enhance these scenarios: recommender systems (product/merchant brokering), user interface approaches, and
negotiation mechanisms.

Today, most of the time, Web services are an interface for object-oriented programs, and one of the crucial
evolutions toward DSG concerns the substitution by an agent-oriented kernel of the current object-oriented kernel
for Web services. For Huhns et al. [HSB+05] the key MAS concepts are reflected directly in those of SOC:
ontologies, process models, choreography, directories and service-level agreements. Some work has already been
proposed for using agents to enhance Web services or integrating the two approaches. For a detailed comparison
between these two concepts see, for example, [Mor02]. [Huh02] points out some drawbacks of Web services
which significantly distinguishes them from agents: they know only about themselves, and they do not possess
any meta-level awareness; they are not designed to utilize or understand ontologies; and they are not capable of
autonomous action, intentional communication, or deliberatively cooperative behaviour. According to us, different
kind of approaches may be distinguished in agent-Web service integration:

• Distinct view of agents and Web services.Agents are able both to describe their services as Web services
and to search/use Web services by using mappings between MAS standards and SOA standards [LRCSN03,
GC04]. This approach is based on a gateway or wrapper which transforms one standard into another. As the
main approach in agent standardization is FIPA’s, this work often only considers FIPA agents and resolves
relations between SOA and FIPA standards.

• Uniform view of agents and Web services.Agents and Web services are the same entities. All services are
Web services and they are all provided by agents (that means that the underpinning program application is
an agent-based system) [Mor02, IYT04, Pet05].

• MAS-based service oriented architectures.MAS to support SOA. This approach is not directly interested in
agent service-Web service interaction but rather in the use of MAS to enhance SOAs. For example, [MS03]
discusses the use of agents for Web services selection according to the quality of matching criteria and
ratings. Not detailed in this paper.

• MAS-based Business Process Management.Detailed in section 2.3.2.

Distinct view of agents and Web services. In this approach, [Mor02] discuss the difference between agents
and Web services from an implementation perspective. It refers to the architecture of SOFAR (Southampton
Framework for Agent Research), in which agents communicate via SOAP enabledstartpoint/endpointpairs that
allow access and remote method invocation on distant objects. [LRCSN03] identifies two key ideas: i) agents
should be able to publish their services as Web services for the potential use of non-agent clients; ii) agents should
advertise other entities using both a SOA standard registry (e.g., UDDI registry with WSDL entries) and an agent
standard registry (e.g., FIPA DF with FIPA SD entries). This is also the case of [GC04], which proposes a Jade
agent based on a Web Service Integration Gateway Service architecture that contains several components that
operate on internal registries to maintain records of all registered services (both agent services and Web services).
[GC04] takes some of the ideas generated by the Agentcities Web Services Working Group [DHKV03] with Web
Service Agent Gateway (WSAG). A drawback of this approach lies in the fact it is limited to FIPA compliant
agents.7

A particularly difficult factor in this approach is communication. The challenge consists of bridging the gap be-
tween asynchronous behaviour of agent communications and synchronous behaviour of Web services interactions.
For example, in [BV04] a Web service or an agent plays the role of a gateway that transforms a SOAP call into

6See for example the International Workshops on Web Services and Agent Based Engineering (WSABE) held in conjunction of the
Autonomous Agents and Multi-Agent Systems International Conference in 2003 and 2004).

7One of the force of the agent paradigm is the diversity and heterogeneity of agents. Standardization is a strong aspect for Web service
interoperation but non-standardization is one of the reason for which MAS are today so different and able to address a large scope of problems.
Agents and Web services need each other exactly because they come from different universes (i.e., industry for Web services and academy for
MAS).
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an ACL message. With WSAG, when a Web service invokes a SOAP call on the WSAG, the gateway transforms
this synchronous call into an asynchronous FIPA-ACL message it sends to the agent that provides the service. In
the same sense, the WSAG transforms a FIPA-ACL message into a SOAP call but ignores the semantics, which
cannot map in SOAP. Actually, this aspect is very important as the biggest risk in ACL - SOAP integration is to
reduce high level and semantically rich agent communication to simple request/response semantically poor Web
service interaction. We further think that one condition to avoid this risk, is that the SOAP - ACL transformation
should be done by the agent itself and not by another entity (Web service or agent): the agent and the Web service
should be the same as it is the case in the next approach.

Uniform view of agents and Web services. In this approach, [Pet05] claims that in order to integrate agent
and Web service technology, components have to be designed, which map between the different mechanisms for
service description, service invocation, and service discovery, in both worlds. [Pet05, IYT04] are specifically
interested in mobile agents (agents which have the ability to move from one host to another with their state);
They propose respectively a ’Web service engine’ architecture which aims to provide bidirectional integration of
both technologies and ’mobile Web services’ as an integration of Web services and mobile agents in order for
Web services to benefit of mobility and mobile agents to benefit from the ability to compose standardised loosely
coupled distributed applications.

2.2.2 Agent communication

Simply grouping together several agents is not enough to form a MAS. It is communication between these agents
that makes it. Communication allows cooperation and coordination between agents [Fer99, Woo02]. Communica-
tion between cognitive agents is most of the time direct mode asynchronous communication by message passing.8

Communication in MAS is done by means of Agent Communication Languages (ACL) such as KQML (Knowl-
edge Query and Manipulation Language) [LF97] and FIPA-ACL (Foundation for Intelligent Physical Agents -
ACL) [Fip02]. ACLs are interesting because they replace ad hoc communication languages that previously were
used in MAS. ACLs allow managing semantics, ontology, rules, protocols etc. of a conversation. Indeed, in agent
communication the biggest challenge is conversation modelling. Traditionally, agent conversations are modelled
by interaction protocols or conversation policies [Hug03, DG00]. These protocols represent the interaction struc-
ture and specify rules that must be respected during the conversation. A famous example of interaction protocol is
the Contract Net protocol proposed by Smith [DS83]. However, this approach has weaknesses, especially interop-
erability, composition and verification of protocols. Agents are forced to follow a policy restricting their autonomy
and the dynamic interpretation of messages. The only way for an agent to consider the entire conversation is to
look at the protocol, which was previously determined (before the conversation) and which cannot change dy-
namically. By contrast to interaction protocols, other approaches, for example [RPD99, MCd02, JC05a], try to
model dynamic conversations by explaining that the next answer message of a conversation can not be foreseen,
and should be determined only after the interpretation of the previous incoming message. Instead of modelling
mental states and their dynamics in conversation, these approaches deal directly with speech acts rather than on
hidden intentions.

Modelling dynamic agent conversation, sometime called dialogue, is still a research challenge in the MAS
community. As section 2.3.2 explains, the SOC community has an equivalent challenge included in DSG: mod-
elling dynamic business process and service composition.

2.3 GRID-MAS

2.3.1 Status of current integration activities

There is an increasing amount of research activity in GRID and MAS convergence taking place.9 Using MAS
principles to improve core GRID performances/functionalities (e.g., directory services, scheduling, brokering
services, task allocation, dynamic resource allocation and load balancing) is a very active topic in the MAS
community.

8Direct means that messages are transmitted directly from an agent to the other. Asynchronous means that a message can be buffered and
that an agent is not blocked when it sends/answers to a message

9See, for example, ’Agent-Based Cluster and Grid Computing’ workshops, ’Smart Grid Technologies’ workshops, the Multi-Agent and
Grid System journal.
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The CoABS (Control of Agent-Based Systems) project [MT99], proposed in 1999 by the DARPA, is the first
research initiative in GRID-MAS integration. In this project, priority was given to GRID development, but the
participants already envisage a combination of GRID and MAS domains. In [MT99] the authors raise a lot of
questions to characterize the ’Agent Grid’ as a construct to support the rapid and dynamic configuration and
creation of new functionality from existing software components and systems. The use of agents for GRID was
very early suggested also by Rana et Moreau in [RM00]: ”By their ability to adapt to the prevailing circumstances,
agents will provide services that are very dynamic and robust, and therefore suitable for a Grid environment.”
They specifically detail how agents can provide a useful abstraction at the Computational Grid layer and enhance
resource and service discovery, negotiation, registries, etc. We may distinguish two major domains in which
GRID-MAS integration occurs:

MAS-based GRID for resource management. For example, resource management is one of the central compo-
nents of wide-area distributed computing systems like GRID. It is a core functionality of the GRID infrastructure.
It is not a trivial task, since the nature of the GRID environment is hardly predictable. Agents may be used for an
effective management of the vast amount of resources that are made available within a GRID environment as they
have, for example, excellent trading and negotiation abilities (negotiation between resource agents and allocator
agent). Another example could be the use of machine learning algorithms to allow agent allocating task, and to
learn each time a previous allocation turns out to be a good/bad one. We may cite some important projects that
have investigated this aspect:

• The CoABS project mention before. The Major value added of CoABS Agent Grid is coordination and
seamless integration of the available distributed resources (including heterogeneous MAS, object based
systems, legacy systems etc.);

• The AgentScape project [WOvSB02] provides a multi-agent infrastructure that can be employed to inte-
grate and coordinate distributed resources in a computational GRID environment. AgentScape is specially
concerned by scalability i.e., wide-scale or internet scale (based on the fact that peer-to-peer interaction
strategies, as embraced by MAS, seems to be the promising approach for scalability);

• The ARMS (Agent Based Resource Management System) project [CSJN05] had started an implementation
of an agent-based resource management for GRID in which an agent system bridges the gap between Grid
users and resources in order to efficiently schedule applications that require Grid resources. The idea of
ARMS was to consider that each agent acts as a representative for a local Grid resource.

In using agent techniques for GRID resource management we may also refer: [SLGW02] proposes to use an
agent oriented negotiation method (an interaction protocol, an auction model or a game theory based model) to
enhanced load balancing. This improves resource management by dynamically mapping user agents and resource
agents. Other examples are [WBPB03, Tia05]. [GCL04] considers a system consisting of large number of het-
erogeneous reinforcement learning agents that share common resources for their computational needs. [LL04]
provides a price-directed proportional resource allocation algorithm. [MBP05] presents an agent-based resource
allocation model for GRID using three types of agents (job, resource brokering and resource monitoring agents).

MAS-based GRID for Virtual Organization management. Another domain where agent abilities are used
is VO management, i.e., formation, operation and dissolution of VOs. The main work is this domain is the
CONOISE-G project (Grid-enabled Constraint-Oriented Negotiation in an Open Information Services Environ-
ment). It seeks to support robust and resilient VO formation and operation, and aims to provide mechanisms to
assure effective operation of agent-based VOs in the face of disruptive and potentially malicious entities in dy-
namic, open and competitive environments [NPC+04, PTJ+05]. This project allows a VO Manager to find service
providers thanks to Yellow pages, check service quality thanks to a QoS Consultant, add/remove service provider
in the VO, etc. Each of these roles are played by agents interacting one-another.

Other works. We may also cite some other related work about agent and GRID: [GHCN99] describes an ap-
proach, called the Mobile Agents Team System (MATS), to dynamic distributed parallel processing using a mobile
agent-based infrastructure. In MATS, large computations are initiated under control of a coordinating agent that
distributes the computation over the available resources by sending mobile agents to these resources. [TV01]
presents an architecture for monitoring services in GRID based on mobile agents. [Mor02] apply and situate its
reflection on the the comparison of agents and Web services to the context of bioinformatics Grid.
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Our vision of integration However, none of this work proposes a real integration of MAS and GRID. Rather,
they focus on how MAS and AI techniques may enhance core GRID functionalities. Our vision of a GRID-
MAS integration goes beyond a simple use of one technology to enhance the other. We aim to adopt a common
approach for the integration to be able to benefit from the most relevant aspects of both GRID and MAS. This
common approach is centred on the concept of service. One of the crucial explorations concerns the substitution
by an agent-oriented kernel of the current object-oriented kernel of services available in GRID.

2.3.2 GRID-MAS analogies

Through these states of the art, we have identified three GRID-MAS analogies that have strongly influenced our
integrated model:

a. Agent communication vs. BPM and service interaction.

Message passing based communication.GRID and MAS use the same communication principles: direct mes-
sage passing-based communication, as it was originally suggested by Hewitt [Hew77].10 MAS communi-
cation is also based on, direct or indirect, message passing.11 In message passing based communication, an
interface (more or less standardised) hides the specific implementation detail, and private representations of
the Web/Grid service or agent.

Orchestration and choreography of services vs. interaction protocol and agent conversation.Workflow or ser-
vice orchestration [Pel03] is analogous to interaction protocol in agent communication [Hug03]. Both terms
describe a common interaction structure that specifies a set of intermediate states in the communication pro-
cess as well as the transitions between these states. The applicability of MAS to workflow enactment has
been noted by [SH99]. [BVV03] and [BV04] explore the relation between Web services, MAS, and work-
flows. The authors note that, traditionally in workflow approaches, strict adherence to prescribed workflows
implies that systems are largely unable to adapt effectively to unforeseen circumstances. They explain
why workflow have some weaknesses and how decentralized, multi-agent workflow-enactment techniques
can bridge the gap to dynamic service composition. Their vision is to create adaptive workflow capability
through decentralized workflow enactment mechanisms that combine Web service and agent technologies.
In particular, [BVV03] makes a strict comparison between workflow (in BPEL4WS) and interaction proto-
col (as FIPA has defined them).

Workflows prescribe exactly what can be done by each of the participants at any moment in time. The
participants, therefore, do not need to understand the whole workflow. They can be implemented as simple
reactive agents. Therefore, orchestrating services is very important, but the real value added by agents is
more in choreography as agents dispose of good abilities to be engaged within conversation.

Conversation or service choreography is analogous to agent conversation. Conversations are long-lived
high-level interactions which need a peer-to-peer, proactive, dynamic and loosely coupled mode of interac-
tion. Using agent conversations to enhance service scenarios was proposed in [MML05, AGP03, HNL02].
These papers explain that the engagement of Web services in long lived conversations is necessary to provide
better adapted and smart services. Obviously, Web services have to turn to agent, and agent communication
models to, as the best sophisticated approach for managing conversations:

• [AGP03] suggests using a dialogic agent communication approach. The authors do not explain how
to represent Web services by agents, but propose a conversational model (speech act inspired) that is
not based on a diagram of messages to be sent (i.e., interaction protocol) but rather on local operation
calls: the interaction is modelled as a sequence of turns where one of the peers requires that the other
peer performs an operation. The service provider has to maintain a set of context-explicit interaction
contexts, corresponding to each of its users. [AGP03]’s ideas are very close to the ones adopted by the
STROBE model [Cer99, JC05b] developed after.

• In [MML05, HNL02] the formalisms used to concretely express conversations are some kind of Finite
State Machines and/or Petri Nets. Exactly the same formalisms that agent communication uses in the
interaction protocols based conversation approach.

10 In SOA, methods of the services are not directly invoked by users, but when messages are received, a service provider decides how to
proceed by interpreting the user’s message and invoking itself the appropriate method(s). This is an important difference from distributed
software component approaches.

11Always asynchronous for MAS and both synchronous and asynchronous for Grid services.
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• With the same idea, [MML05] proposes to use conversation schema (akin of interaction protocol)
represented by state charts (akin of Finite State Machine) to model conversation in order to compose
Web services. They suggest a ’context aware’ approach representing all the possible states of a Web
service, a conversation, a composite Web service.

• BPEL4WS, WSCL, WSCI etc. only support orchestration or choreography at a syntactic level. They
are too low level (implementation focused) to support reasoning at a conceptual and semantic level.
Therefore, the Semantic Web Service community recently started to address Business Process Man-
agement at a semantic level [DCG05, BMMS03] but unfortunately without considering yet the great
ability of agents to deal with this semantics during conversation. In particular, [DCG05] proposes a
formal definition of choreography based on Finite State Machine in the Internet Reasoning Service
(IRS)12 however the relation with MAS is not established.

It is important to understand, from this little overview, that the question of modelling interaction in MAS
is the same in SOC. Moreover, the challenge of having dynamic agent conversation (i.e., dialogues not
described by prefixed interaction protocols), as presented in section 2.2.2 occurs also in SOC. To reach this
challenge is one of the objective of DSG.

b. Agent autonomy and intelligence vs. stateful and dynamic Grid service. ’Intelligent agents’ means that
they are able to keep their own internal states and make them evolve in a way not necessarily dependent on the
messages they receive, for example, with machine-learning algorithms. In an analogous manner, Grid services are
stateful, i.e., they own their running context, where the contextual state memory is stored. An analogy can also
be made between an agent having a conversation dedicating a context (i.e., a part of its state) to the conversation
and a Grid service factory which instantiates a new service instance with its own state. This idea, more detailed in
section 4.2, is fundamental in our integrated model.

’Autonomous agents’ means that they are able to manage their own resources. This is analogous to Grid service
lifetime management which allows them to be dynamic and to manage by themselves the resources allocated to
them.

c. Organizational structure. As the number of entities in the system increases, as the number of problems to
be tackled grows, and as the system becomes more and more distributed, different perspectives appear on how
to define the system’s behaviour. Instead of being centred on how each of these entities should behave, one may
alternatively adopt the perspective of organizations. An organization is a rule-based partitioned structure in which
actions can be taken (problem solving, interaction, etc.) by people playing roles and sharing one or more goals.
Both GRID and MAS choose an organizational perspective in their descriptions.

In OCMAS (Organization Centred MAS) [WJK00, FGM03], the concepts of organizations, groups, roles, or
communities play an important role. They describe the social relation of agents without imposing some mental
state representation or convention, but simply by expressing external rules that structures the society. In particular,
[FGM03] presents the main drawbacks of agent-centred MAS and proposes a very concise and minimal OCMAS
model called AGR (for Agent-Group-Role). We will base our integration on this simple but very expressive model,
summarized in Table 1.

3 AGIL: an integrated GRID-MAS systems description language

This section defines progressively each AGIL concept, relation between these concepts and rules. Each time a
concept is presented, its representation in the graphical description language is presented, and related rules are
described using a set theory based formalization. Notice that key GRID concepts presented in this section have
been established by the OGSA or WSRF specifications. Similarly, key MAS concepts have been established by
different MAS approaches, especially [JC05b, FGM03]. As we are focussing on concepts, we adopt the most
convenient terminology from these sets of specifications.

12The IRS is a framework and platform for developing Semantic Web Services which utilizes the WSMO ontology (www.wsmo.org )
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Table 1: Organizational-structure analogies between GRID and MAS
MAS GRID
Agent Grid user
An agent is an active, communicating entity playing
roles and delegating tasks within groups. An agent
may be a member of several groups, and may hold
multiple roles (in different groups).

A Grid user is an active, communicating entity pro-
viding and using services within a VO. A Grid user
may be a member of multiple VOs, and may provide
or use several services (in different VOs).

Group VO
A group is a set of (one or several) agents sharing
some common characteristics and/or goals. A group
is used as a context for a pattern of activities and for
partitioning organizations. Two agents may commu-
nicate only if they are members of the same group.
An agent transforms some of its capabilities into roles
(abstract representation of functional positions) when
it integrates into a group.

A VO is a set of (one or several) Grid users shar-
ing some common objectives. A VO and the asso-
ciated service container is used as a context for ex-
ecuting services and for partitioning the entire com-
munity of Grid users. Two Grid users may exchange
(provide/use) services only if they are members of the
same VO. A Grid user publishes some of its capabili-
ties into services when it integrates into a VO.

Role Service
The role is the abstract representation of a functional
position of an agent in a group. A role is defined
within a group structure. An agent may play several
roles in several groups. Roles are local to groups, and
a role must be requested by an agent. A role may be
played by several agents.

The service is the abstract representation of a func-
tional position of a Grid user in a VO. A service is
accessible via the CAS service. A Grid user may pro-
vide or use several services in several VOs. Services
are local to VOs (situated in the associate container),
and a Grid user must be allowed to provide or use ser-
vices in a VO. A service may be provided by several
Grid users.

3.1 Grid resource representations

Grid resources are of two kinds.Computing resourcesandstorage resources. LetΩ, the set of computing resources
(ω) andΘ, the set of storage resources (θ). Grid resources are represented in AGIL by circles and squares as Figure
1 shows.

Figure 1: Computing resource and storage resource representations

GRID is a resource-sharing system. Grid resources are contributed byhosts. A host is either a physical
association between a computing resource and a storage resource, called asingle hostor an association of several
host coupled together, called ahost-coupling. LetH, the set of hosts (h); A single host is a pair(θ, ω), θ ∈ Θ, ω ∈
Ω. Hosts are represented in AGIL by triangles as Figure 2 shows.

Figure 2: Host representation

Thecouplingrelation formalizes the relation between pairs of resources and hosts as well as relation between
hosts. Thecouplingrelation is represented in AGIL as Figure 3 shows. A pair(θ, ω) of resource forms one unique
single host. A resourceθ or ω is part of one unique single host. A host is part of a unique host-coupling. A
host-coupling may be part of another host-coupling.
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coupling : Θ× Ω → H (relation)

coupling : H → H (relation)

Figure 3:Couplingrelation representation (representation of single host and host-coupling)

3.1.1 Virtualization of resources

The sharing of these resources consist of a process in two steps: virtualization and reification. The virtualization
consists to accumulate the available resources provided by hosts. The result of the virtualization process is a
set,R, of virtualized resources (r). Virtualized resources are not directly represented in AGIL, but a sub-set of
R are represented by a trapeze. Thevirtualizing relation formalizes the relation between hosts and virtualized
resources. As there is no representation of virtualized resources, we graphically represent in AGIL thevirtualizing
relation between host and sub-set of virtualized resources (factorization), as Figure 4 shows. Hosts virtualize their
resources in several virtualized resources. A virtualized resource is the result of virtualization of several hosts.13

virtualising : H → R (relation)

Figure 4:Virtualizing relation representation

Let Vh the value (in GBytes and/or GFlops) of the amount of resource of the hosth. Let Vr the value of the
amount of resource of a virtualized resourcer.

Rule 1 The amount of resource of a virtualized resource is a pondered sum of amount of resources of hosts that
virtualize their resources.

∀i = 1..n, virtualizing(hi) = r ⇔ ∃αi ∈ [0, 1] Vr =
n∑

i=1

αi.Vhi

The set of coefficientsα = (α1, α2, . . . , αn) is called thevirtualization vector. For a given sub-set of virtual-
ized resources, the set of virtualisation vectors form thevirtualization matrix. This matrix models at a given time
all the sharing of resources (who share and how much).

3.1.2 Reification of resources

The second step in the sharing of resource is the reification. Resources are reified inservice containers(described
in section 3.2.4). LetU , the set of service containers (u). The reifying relation formalizes the relation between
virtualized resources and service containers. Thereifying relation is represented in AGIL as Figure 5 shows. A
part of virtualized resources may be reified in one or several service container. A service container is (partially)
composed of a sub-set of virtualized resources.

reifying : R → U (relation)

13A good metaphor to understand virtualization is currency conversion: each host uses a different currency to measure its amount of
resources. To virtualize means to transform (following a rate of conversion) a part of its amount in a common currency.
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Figure 5:Reifyingrelation representation

Let Vu the value of the amount of virtualized resource of the service containeru.

Rule 2 The amount of virtualized resource of a service container is a pondered sum of amount of resources of
reified virtualized resources.

∀i = 1..n, reifying(ri) = u ⇔ ∃βi ∈ [0, 1] Vu =
n∑

i=1

βi.Vri

The set of coefficientsbeta = (β1, β2, . . . , βn) is called thereification vector. For a given sub-set of virtualized
resources, the set of reification vectors form thereification matrix. This matrix models at a given time the all the
affectation of resources (who consume and how much).

Rule 3 At a given time the amount of virtualized resource reified for of a service container can be expressed in
function of the amounts of resource of hosts (not demonstrated here).

∀i, j = 1..n, virtualizing(hj) = ri ∧ reifying(ri) = u ⇔ ∃αji
βi ∈ [0, 1] Vu =

n∑
j=1

(
n∑

i=1

βiαji

)
.Vhj

Notice that resource virtualization and reification is done at the core GRID level (middleware). The rest of
core GRID level functionalities (e.g., container, CAS, etc.) are themselves described by a single unit: the Grid
service.

3.2 Service instance representations

A serviceis a compliant with SOA standards interface of a functionality. LetΣ, be the set of services (σ). As we
will see later, Community Authorization Service (CAS) and service container are themselves service instances. In
order to distinguish them, we callnormal services, services that are not CAS or service container. LetS, the set
of normal services (s), C, the set of CAS (c), andU , the set of service containers (u). Then,Σ = U ∪ C ∪ S.

3.2.1 Normal service representations

We may distinguish three kinds of normal services:

• stateless services;

• transient stateful services;

• persistent stateful services.

Services are said to be stateless if they delegate responsibility for the management of the state to another
component. Statelessness is desirable because it can enhance reliability and scalability. A stateless Web service
can be restarted following failure without concern for its history of prior interactions, and new copies (instances)
of a stateless Web service can be created (and subsequently destroyed). Stateless services are quite restrictive:
they are synchronous (i.e., messages can not be buffered and do block the sender or receiver), point-to-point (i.e.,
used by only one user) and interact via simple one-shot interaction (i.e., request/answer). A stateless service does
not establish a conversation. Instead, it returns a result from an invocation, much like a function.

Stateful services require additional consideration: They have their own running context where is kept the con-
textual state memory. This state evolve not simply with external messages (as simple objects) but also according
to autonomous rules.their own state. A stateful service has an internal state that persists over multiple interactions.
They can be persistent or transient. Transient services are instantiated by a service factory whereas persistent
services are created by out-of-band mechanisms such as the initialization of a new service container. Stateful ser-
vices may be multipoint, i.e., used by several users and may interact by simple one-shot interaction or long-lived
conversation. Stateful services may be synchronous or asynchronous.
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In AGIL normal services are represented with a rectangle with round angles as Figure 6 shows. If the service
is stateful, a lozenge represents its context; if it is transient, a short line represent its lifetime.

Figure 6: Normal service representations

3.2.2 Community Authorization Service representation

The relation between a VO (letO, the set of virtual organizations (o), sub-set of agents, described in section
3.3.1) and a service container is realized by aCommunity Authorization Service(CAS) which formalizes the VO-
dedicated policies of service by members [PWF+02]. The CAS is the first important element of the GRID security
infrastructure represented in AGIL. A CAS is itself a service. The CAS may be viewed as a MxS matrix, where
M corresponds to the number of members of the VO, S to the number of currently active services, and the matrix
nodes are deontic rules. These rules permit the accurate specification of the right levels for a member on a service
(e.g., permissions, interdictions, restrictions etc.). This matrix contains at least one column (a VO exists only with
at least one user) and one row (the CAS has itself an entry in the CAS). CASs are represented in AGIL as Figure
7 shows.

Figure 7: CAS representation

3.2.3 Handling relation

Each service is identified by ahandle. A running service can be retrieved with its handle. A Grid Service Handle
(GSH) (as specified in OGSA) or endPoint reference (as specified in WSRF) provides a unique pointer that is a
URI, to a given service. Thehandlingrelation formalizes both the relation between VOs and CASs and between
services and CASs. Thehandlingrelation is represented in AGIL by a thin arrow as Figure 8 shows. A VO handles
a unique CAS (each agent of the VO have an entry as a column in a CAS matrix) and vice and versa. Moreover,
each CAS or normal service is handled by a unique CAS (each service as a row entry in a CAS matrix).

handling : O → C (bijection)

handling : S ∪ C → C (application)

Figure 8:Handlingrelation representation

Rule 4 A CAS is handled by itself.
∀c ∈ C, handling(c) = c
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3.2.4 Service container representation

Services need a hosting environment to exist and to evolve with their own private contexts (i.e., set of resources).
This is the role of theservice containerwhich implements the reification of a portion of the virtualized resource
available in a secure and reliable manner. LetU , the set of service containers (u). A service container is defined as
a triplet composed of a non empty set of virtualized resources, a CAS and a set (maybe empty) of normal services:
U = {(r, c, s), r ∈ P(R)− {∅}, c ∈ C, s ∈ P(S)}. Since a container is a particular kind of service, it is created
either through the use of a service factory or by a direct core GRID mechanism. Service containers are represented
in AGIL as Figure 9 shows.

Figure 9: Service container representation

A service container includes several types of services. Theincludingrelation formalizes the relation between
services and service containers. Theincluding relation is represented in AGIL as Figure 10 shows. All normal
services and CAS are included in a unique service container. A service container includes several services.

including : S ∪ C → U (surjection)

Figure 10:Includingrelation representation

Rule 5 The set of virtualized resources that partially compose a service container are reified for it.
∀u = (r, c, s) ∈ U ⇒ ∀ri ∈ r, reifying(ri) = u

Rule 6 All the services (CAS and normal services) that partially compose a service container are included in this
service container.
∀u = (r, c, s) ∈ U ⇒ ∀si ∈ s, including(c) = u ∧ including(si) = u

Rule 7 A service is handled by a CAS if and only if they are both included in the same service container.
∀σ ∈ S ∪ C, c ∈ C, handling(σ) = c ⇔ including(σ) = including(c)

3.3 Agent representation

The termagentis used to uniformly denote Artificial Agent, Human Agent and Grid user. In particular, by viewing
Grid users as agents, we may consider them as potential artificial entities. Anagentpossesses both intelligent and
functional abilities. These are represented respectively by the agentheadandbody. The head contains abrain,
composed of a set of rules and algorithms (e.g., machine learning) that give to the agent learning and reasoning
skills. It also contains the agent knowledge, objectives, and mental states (e.g., BDI). The body contains the
agent’s capabilities; these capabilities are said to be executed in specific conversation context called Cognitive
Environment (see section 3.3.3 and 3.4.1). LetA, be the set of agents (a), B, the set of brains (b), andE, the
set of Cognitive Environments (e). Then, an agent is composed of a brain and a non empty set of Cognitive
Environments:A = {(b, e), b ∈ B, e ∈ P(E) − {∅}}. Agents are represented in AGIL by a skittle (Figure 11).
The cylinder represents the body of the agent while the sphere represents the head. As brains of agents are never
the same, we graphically represent them by a shapeless form.
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Figure 11: Agent representation

Remark — Agents are currently the best metaphors for humans in computing. HA are, of course, autonomous,
intelligent and interactive; we can consider that they have a set of capabilities as well as a dedicated context for
conversations. Of course, this is a simple (and restrictive) HA representation.

3.3.1 Virtual organization

Agents are members ofVirtual Organizations(VO). A virtual organization is a dynamic collection of individuals,
institutions and resources sharing common goals, bundled together in order to share resources and services. A
service container is allocated to (and created for) one and only one VO. The term VO unifies the concept of
organization or community in GRID and the concept of group in MAS. Thus we can now talk about ’VO of
agents.’ An agent may bememberof several VOs, and a VO contains at least one agent. LetO, the set of virtual
organizations (o). A VO is a sub-set (non empty) of agents:O ∈ P(A) − {∅}. VOs are represented in AGIL by
large ellipses as Figure 12 shows.

Figure 12: VO representation

The relationmembershipingformalizes the relation between agents and VOs. Each agent may be a member
of several VOs. Themembershipingrelation is represented in AGIL by a full dot, and a simple line binding skittle
and full dot(s) as Figure 13 shows.14

Figure 13:Membershipingrelation representation

3.3.2 X509 certificate

The X509 certificateis the second important element of the GRID security infrastructure represented in AGIL.
It allows mutual authentication and delegation. A X509 certificate is valid if it has been signed by a trusted
Certification Authority (CA). LetX, the set of X509 certificate (x). There are four kinds of X509 certificates:
Grid user certificate, Grid host certificate, Grid proxy certificate, CA certificate. X509 certificates are represented
in AGIL as Figure 14 shows.

Figure 14: X509 certificate representation

Theholdingrelation formalizes the relation between agents, Grid resources and X509 certificates. Theholding
relation is represented in AGIL as Figure 15 shows. All X509 certificates are held by agents or hosts.15 Not all

14Notice that as a VO is a sub-set of agents, themembershipingrelation is intrinsically represented in set-theory by the inclusion (∈) relation.
15We do not consider CA certificates in the holding relation because CAs are not represented in AGIL.
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agents or hosts hold X509. A host holds a unique Grid resource certificate whereas an agent may hold several
Grid user certificates or proxy certificates.

holding : X → A ∪H − {CA certificates} (application)

Figure 15:Holding relation representation

Rule 8 All agents members of a VO hold a X509 certificate.
∀a ∈ A, o ∈ O, a ∈ o ⇒ ∃x ∈ X, holding(x) = a

Rule 9 All hosts that virtualize their resources in GRID hold a X509 certificate.
∀h ∈ H, r ∈ R, virtualising(h) = r ⇒ ∃x ∈ X, holding(x) = h

Entities with a X509 certificate are sometimes called a Gridnode. These set of nodes and authorities form
Grid trusts. Grid node and Grid trust are not represented in AGIL.

3.3.3 Capability representation

The body of an agent is composed of a set ofcapabilitieswhich correspond to the agent’s capacity or ability to
do something, i.e., to perform some task. It is a first-class black-box abstraction that can be stored, named, called
with arguments and that return a result. LetΛ, the set of capacities (λ). Capabilities are represented in AGIL by
rectangles with a fold back upper right corner as Figure 16 shows.

Figure 16: Capability representation

A strong element of the GRID-MAS integration consist in viewing services as allocated interfaces of agents’
capabilities. A service is viewed as the interface of a capability published in a service container and with allocated
resources. An agent has a set of capabilities it may transform into services available in the different VOs it is a
member of. The process of ’transforming’ a capability into a service is called theservicization process.16 When a
capability is servicized, it means:

• the interfacing of this capability with SOA standards i.e., mainly WSDL;

• the addition (possibly by using an add-service service) of this service to the VO service container by assign-
ing it a handle and by allocating it private resources;

• the requesting of the VO CAS service to add an entry for this service (the agent has to decide the users’
right levels);

• the publishing of the service description in the VO registry, if it exists;

• the notification to the VO members of the VO that a new service is available;

• etc., according to VO local rules.

16We can say that as GRID virtualizes resources and reifies them in a service container, an agent virtualizes capabilities and reifies them in
a service container.
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This servicization process is not discrete but continuous. For example, if the capability of the agent changes
then the service changes at the same time. Consider also that the service’s right levels in the VO CAS or service
allocated resources may evolve through time. With this viewpoint, an agent can provide different services in
different VOs. Notice also that a service is agent-specific, that means that only one agent can execute the service in
a container. However, this does not prevent another agent of the VO from providing the same type of service. What
is important in this servicization process is that it remains the same irrespective of the kind of agent involved. Both
AA and HA transform their capabilities in the VO service container modulo a graphical interface. For example,
an AA may publish its capability to compute square roots (i.e., a function that receives a number as a parameter
and returns a float as result), and a HA may publish its pattern-recognition capability (i.e., a function that receives
an image as a parameter and returns a concept as result (described in an ontology). Notice that the service and CE
lifetime is not necessarily the same. Even if a service is transient the corresponding capability maybe persistent
according the the owner’s agent initiative.

Remark: In order to avoid the problem of mapping between SOAP and ACLs (cf. section 2.2.1) we do not
consider that there is a transformation of a message (or of any interaction) between the service and the agent
capability; they are the same thing represented differently. Agents are supposed to be able to interpret directly
SOAP messages corresponding to the capabilities they servicized in WSDL.

The interfacingrelation formalizes the relation between capabilities and services. Theinterfacingrelation is
represented in AGIL by a dotted-line as Figure 17 shows. Each service is an (allocated) interface of a unique agent
capability. All agent capabilities are not systematically interfaced as services.

interfacing : Σ → Λ (injection)

Figure 17:Interfacingrelation representation

3.4 Conversation context representation

3.4.1 Cognitive Environment

Agents’ capabilities may be executed in a particular context called aCognitive Environment(CE). An agent may
have several Cognitive Environments17 which correspond to the different languages it develops by interaction with
other agents. CEs are represented in AGIL by folders as Figure 18 shows.

Figure 18: CE representation

Theexecutingrelation formalizes the relation between capabilities and CEs. Theexecutingrelation is repre-
sented in AGIL as Figure 19 shows. Each agent capability is executed in an unique CE. A CE is a context of
execution of several capacities.

executing : Λ → E (surjection)

Figure 19:Executingrelation representation

17The term environment is here used with its programming language meaning, that is to say, a structure that binds variables and values.
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3.4.2 The STROBE model

We can explore further the concept ofCognitive Environment(CE), which is a relatively new, but very important,
concept related to the STROBE agent and communication model [Cer99, JC05b]. Conversations and their states
are represented in the STROBE model by CEs. STROBE agents are able to interpret communication messages
in a given CE that includes an interpreter, dedicated to the current conversation. We showed in [JC05b] how
communication enables dynamic changes in values in a CE and especially how these interpreters can dynamically
adapt their way of interpreting messages (meta-level learning by communication). By representing a CE as a
context composed of a pair [environment, interpreter], we can say that they correspond to different languages18

that an agent develops by interaction with other agents. The same concept of putting the communication contexts
at the centre of the agent architecture in which it interprets messages appears also in [AGP03], which assumes that
each agent in service exchanges may separately maintain its own internal context of the conversation state.

Actually, a STROBE agent has two types of CEs: i) Aglobal one, unique and private, which belongs to
the agent and represents its own beliefs and generic capabilities; ii) Somelocal ones, dedicated to a specific
interlocutor or group of interlocutors. Each time an agent receives a message, it selects the unique corresponding
CE dedicated to the message sender in order to interpret the message.

The owing anddedicatingrelations formalize the relation between agents and CEs. Theowning relation is
represented in AGIL as Figure 20 shows. Thededicatingrelation cannot be graphically easily represented. A CE
is owned by an unique agent. An agent is owner of several CEs (at least one, the global one). A CE is dedicated
to a subset (maybe singleton but non empty) of agents. Not all the subset of agents have a dedicated CE.

owning : E → A (surjection)

dedicating : E → P(A)− {∅} (application)

Figure 20:Owningrelation representation

A CE is said to be ’totally’ dedicated if the set of agents it is dedicated to is a singleton. If not a CE is said to
be ’partially’ dedicated. A convention is adopted for CE denotation:

EA
A ⇔ owning(E) = A ∧ dedicating(E) = {A} ⇔ A global E

EA
B ⇔ owning(E) = A ∧ dedicating(E) = {B} ⇔ A local E totally dedicated to B

EA
B,C,D ⇔ owning(E) = A ∧ dedicating(E) = {B,C,D} ⇔ A local E partially dedicated to B, C and D

Figure 21 shows three different STROBE agents A, B and C, with different kinds of CEs. Each agent has a
global CE, notedEX

X∀X ∈ {A,B,C}. A and C have a local CE dedicated to each interlocutor, noted respectively
EA

B , EA
C andEC

A ,EC
B . Whereas B has one only local CE dedicated to both A and C, notedEB

A,C .

Rule 10 An agent is owner of all CEs that form it.
∀a = (b, e) ∈ A, ei ∈ e, owning(ei) = a

Rule 11 The global CE is unique.
∀a ∈ A,∃!e ∈ E, owning(e) = a ∧ dedicating(e) = {a}

Rule 12 The global CE is totally dedicated to the agent itself.

18Strongly influenced by the functional and applicative programming languages community (e.g., Scheme, LISP), we here assume that a
language is basically a pair consisting of a language expression evaluation mechanism and a memory to store this mechanism and abstractions
constructed with the language.
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Figure 21: Three STROBE agents communicating one another

∀a1, a2 ∈ A, e ∈ E, owning(e) = a1 ∧ a2 ∈ dedicating(e) ⇒ a1 /∈ dedicating(e)

The STROBE model presupposes an agent to have one unique local CE for a given interlocutor, i.e., interlocu-
tor messages are always interpreted in the same CE (partially or totally dedicated). It is preferable for DSG to
have one and only one conversation context for an interlocutor. This is expressed by rule 13.

Rule 13 The intersection of the set of agents for which two CE, owning to the same agent, are dedicated to, is
empty.
∀e1, e2 ∈ E, owning(e1) = owning(e2) ⇒ dedicating(e1) ∩ dedicating(e2) = {∅}

Advantage of the STROBE model. In one hand, using OGSA specifications in a GRID-MAS integration is
natural: OGSA is the unique specification of GRID and Grid services. On the other hand, the MAS community
proposes many different approaches and models. This section justifies why STROBE is convenient. It consists of
three main reasons:

• CEs represent dedicated conversation contexts;

• Capabilities (and thus services) are dedicated;

• Meta-level learning by communicating.

In the STROBE model, generic communication may be described by means ofSTReamsof messages to be
exchanged by agents represented asOBjectsexerting control by means of procedures (and continuations) and
interpreting messages in multipleEnvironments. STROBE agent capabilities are located in CE i.e., an agent has
specific capabilities for each agent it communicates with. Capabilities are said to by dedicated. The fact of having
dedicated capabilities is the basic feature of the STROBE model to implement DSG. The aim of the model is
to put at the centre of the agent architecture the conversation contexts in which it interprets messages from its
interlocutors. The main idea is to develop a communication language for each agent interlocutor or group of
interlocutors.

In other agent architectures, CE may simply be viewed as a conversation context. Without doing any supposi-
tion on agent architecture, we should simply say that an agent capability is executed in the agent body. We choose
here to use the notion of CE because we previously proposed STROBE as a model designed and constructed for
DSG (meta-level learning, dynamic specification, stream-based conversation, etc.) [JC05b]. Moreover, section
4.2 explains why the idea of instantiation of CE is very adapted for service instantiation.

4 AGIL dynamics

Section 3 presented AGIL static concepts. This section deals more with AGIL dynamics i.e., the specification of
the dynamic behaviour of the systems AGIL aims to describe. In particular, dynamics of service exchanges.
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4.1 Agent interaction

A very important aspect of MAS is interaction: agents may interact together. In AGIL, agent-agent interactions
include all other kinds of interactions (Grid user-Grid service, Grid service-Grid service, agent-agent, etc.). The
interactingrelation formalizes this relation between agents.

interacting : A → A (relation)

The interactingrelation is represented in AGIL by a double thin arrow as Figure 22 shows. There is two kind
of interactions:

Direct agent-agent interaction. Messages are exchanged directly from agent to agent. These are interactions in
a general sense, i.e., any interactions, standardized or ad hoc, protocol guided or not, semantically described
or not, long-lived or one-shot, etc. These interactions may occur within a VO, but also outside it.

Through service agent-agent interaction.Messages are exchanged from agent to agent through a service. These
are interactions that an agent may have with another agent without directly communicating with the other
agent but via the service interface this second agent offers in the VO service container. These ’service
through interactions’ occur only within a VO.

Figure 22:Interactingrelation representation

4.1.1 Direct agent-agent interaction representation

It is not the aim of AGIL to model or detail the first type of interaction (that can be totally detached from GRID).
This work is a current research domain, called agent communication, addressed by MAS community (cf. section
2.2.2). However, we just mention a rule related to the STROBE model concerning Cognitive Environments.

Rule 14 Two agents interacting have each one a unique CE dedicated (partially or totally) to the other.
∀a1 = (b1, e1), a2 = (b2, e2) ∈ A, interacting(a1) = a2 ⇔ ∃!e1i

∈ e1, e2i
∈ e2, a2 ∈ dedicating(e1i

) ∧ a1 ∈
dedicating(e2i

)

4.1.2 Through service agent-agent interaction representation

The second type of interaction is on the other hand the main element of the GRID-MAS integration. Actually,
from a pure MAS point of view, we should say that AGIL describes service exchange interactions in MAS;
it does it using advantages and power of GRID mechanisms and principles. We say that agents may all together
’exchange’ several services. Theexchangingrelation formalizes the through-service agent-agent interaction. It can
be decompose in two sub-relations,usingandproviding, that formalize the relation between agents and services.
The usingandproviding relations may be simplified in AGIL as Figure 23 shows. An agent may use several
(or none) services. A service may be used by several (or none) agents. An agent may provide several (or none)
services. A service is provided by one and only one agent.

exchanging : A → A (relation)

using : Σ → A (relation)
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providing : Σ → A (application)

Figure 23:Usingandprovidingrelation simplified representation

Rule 15 Exchanging a service is a sub kind of interaction.
∀a1, a2 ∈ A, exchanging(a1) = a2 ⇒ interacting(a1) = a2

Rule 16 An agent may use a service if it is member of a VO for which the service is available.
∀a ∈ A, σ ∈ Σ, using(σ) = a ⇒ ∃o ∈ O, a ∈ o ∧ handling(o) = handling(σ)

Rule 17 An agent may provide a service within a VO if it is a member of the VO and if it has a capability that
interfaces the service in the corresponding service container.
∀a = (b, e) ∈ A, σ ∈ Σ, providing(σ) = a ⇒ ∃λ ∈ Λ, o ∈ O, ei ∈ e, a ∈ o ∧ interfacing(λ) = σ ∧
executing(λ) = ei

Rule 18 Two agents may exchange a service only if they are member of the same VO and if one of them provide
the service the other one use.
∀a1, a2 ∈ A, exchanging(a1) = a2 ⇒ ∃o ∈ O, σ ∈ Σ, a1, a2 ∈ o ∧ using(σ) = a1 ∧ providing(σ) = a2

4.2 Service-capability instantiation

4.2.1 Mapping of Grid service instantiation and CE instantiation

GRID introduces the notions of service factory and service instance. Basically, the service factory is a generator,
like a class in object-oriented programming. The service instance is one of the many instances that can be gener-
ated by the service factory. Each service instance is running in its own dedicated context with its own resource.
For this reason this factory-instance model is well appropriated for managing service state. The distinction be-
tween a service factory and a service instance is not necessary in AGIL because even a service factory is a service
instance of another factory. What is important to address is then the bootstrap of this system: not all services are
created by instantiation mechanism, some of them may have been created by core GRID mechanism (out-of-band
and bootstrap mechanisms).19

In MAS, when an agent has a conversation, it can dedicate a part of its state to this conversation. It is called
the conversation context. In the STROBE model, when an agent receives a message from another agent for the
first time, it instantiates a new local Cognitive Environment for this agent following three policies: i) copying the
global CE; ii) copying a local CE; iii) sharing a local CE.

In the GRID-MAS integration the key GRID idea of service instantiation is mapped to the STROBE CE in-
stantiation mechanism. It means that instantiating a new service in GRID is equivalent to instantiating a new CE
in MAS; the processes are the same thing viewed differently. The new CE contains the new capability20 and the
service provider applies the servicization process on it in order to make available the new service instance for the
service user(s). Integrating theses two instantiation mechanisms make capabilities to benefit from standardization,
interoperation and allocated resources from GRID, and services to benefit from a dedicated context of execu-
tion and local conversation representation from MAS. Theinstantiatingrelation formalizes the relation between
service-capability couples. Theinstantiatingrelation is represented in AGIL by a large arrow as Figure 24 shows.
It is a special kind of relation as it correspond to the creation of new service-capability couple.

instantiating : S × Λ → Σ× Λ (relation)

19Notice that even if a service is created by an out-of-band mechanism, it can nevertheless be associated to an agent capability.
20In order to map exactly the STROBE mechanisms to OGSA and WSRF specifications, we should say that a new CE may be viewed as a

new WS-Resource, i.e., a CE is a dedicated association between capabilities and stateful resources.
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Figure 24:Instantiatingrelation representation

∀(sf , λ1) ∈ S×Λ, (σi, λ2) ∈ Σ×Λ if instantiating(sf , λ1) = (σi, λ2) thensf is called theservice factory
andσi theservice instance.

Rule 19 An instantiated service is different from its service factory and interfaces a different capability than the
one the service factory interfaces.
∀(sf , λ1) ∈ S × Λ, (σi, λ2) ∈ Σ× Λ, instantiating(sf , λ1) = (σi, λ2) ⇒ sf 6= σi ∧ λ1 6= λ2

Rule 20 If the service factory and instance may be in included in the same service container, the two correspond-
ing capabilities are not executed in the same Cognitive Environment (even not included in the same agent).
∀(sf , λ1) ∈ S × Λ, (σi, λ2) ∈ Σ× Λ, instantiating(sf , λ1) = (σi, λ2) ⇒ executing(λ1) 6= executing(λ2)

4.2.2 Different cases of instantiation

Figure 25 shows three kinds of instantiation that GRID enables. These three cases of service instantiation may be
commented at the light of the integration:

1. A service factory instantiates a new service instance in the same service container. The classical case. The
service provider creates a new CE including the new capability and servicizes this capability in the same
service container. The new service becomes available for the service user.

2. A service factory instantiates a new service container. This is a core GRID situation. It supposes the agent
which provides the service container factory is able to access or request GRID middleware to create a new
service container, as well as the associated VO (B on Figure 25), and affect it GRID virtualized resources.
Similarly, another core GRID situation (not represented in Figure 25) is the instantiation of a CAS service
instance. Allowing these core GRID functionalities to be realized by agent is a powerful means of the
integrated model propose. It realizes a part of the MAS based GRID approaches presented in section 2.3.1.

3. A service factory instantiates a new service instance in another service container, via some authorization
provided by the CAS. In this case the service factory provider is necessary member of A and B.

In AGIL, whatever is the situation, the service factory is always a normal service. And the service instance is
always an allocated interface of an agent capability.

Figure 25: Examples of different kind of instantiations in Grid service container
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4.3 Agent reproduction

One of the hypothesis of the STROBE model, in order to enable customized and adapted services, is to consider
that an agent has one maximum local CE totally or partially dedicated to another agent it is interacting with.21 This
is expressed by rule 13. To respect this hypothesis agents must reproduce themselves if they want to dedicate more
than one local CE to an interlocutor. For example, if a service user agent wants two instances of the same service,
the service provider agent must reproduce itself. Thereproducingrelation formalizes this relation between agents.
The reproducingrelation is represented in AGIL by a dotted large arrow as Figure 26 shows. An agent can have
several children. An agent has zero or one parent (i.e., not all agents are result of reproduction).

reproducing : A → A (relation)

Figure 26:Reproducingrelation representation

Rule 21 A service provider agent reproduces itself only in a service exchange situation. It does it because it
already has a local CE dedicated to a specific service user agent.
∀a1 = (b1, e1), a2 = (b2, e2) ∈ A, reproducing(a1) = a2 ⇔ exchanging(a1) = (a2) ∧ ∃e1i ∈ e1, e2i ∈
e2, instantiating(e1) = e2

When an agent reproduces, it produces a new agent exactly the same than itself except considering the set of
local CEs. The child agent only has a local CE dedicated to the service user which provokes the reproduction;
none of the father local CEs are inherited. Since the child agent is created, it starts evolving alone autonomously:
changes its brain, changes its global CE, publishes some services, etc. The father agent cannot instantiate CE in
the child body anymore. When created, the new agent is only a member of the VO of the service user that provokes
its creation. This situation is illustrated in Figure 27.

Figure 27: Examples of agent reproduction

4.4 Service adaptation

What is important in this integrated model is to consider how a service may be adapted to serve user agent(s) in
order to implement DSG. We identify four ways:

21Notice this hypothesis concern only local CE. The situation for the global CE is a little bit specific (for a bootstrapping reason). We will
not detail this aspect here, but simply notice services corresponding to capabilities of a global CE are not dedicated.
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1. The agent service provider adapts the service according to interactions of the agent service user with it.
The first experimentation of [JC05b] illustrates this way by a teacher-student scenario, with a meta-level
learning where an agent dynamically learns a new performative (communicative act) by simply executing a
capability;

2. The agent service provider may offer another service to change or adapt the original service. The sec-
ond experimentation of [JC05b] illustrates this way by an e-commerce scenario, with a constraint based
mechanism, where an agent dynamically adds constraints to a train ticket research capability.

3. The agent service provider may use dynamic intelligent reflection rules or algorithms to change the service
it is currently providing;

4. Direct agent-agent interactions may occur between the agent service user and the agent service provider and
within these interactions (1) and (2) may occur in a pure ad hoc form (not via service).

5 Towards an OGSA-STROBE model

5.1 Sum-up of the integration

In our integrated model, we consider agents exchanging services through VOs they are members of: both service
users and service providers are considered to be agents. They may decide to make available one of their capabilities
in a certain VO but not in another. The VO service container is then used as a service publication/retrieval platform
(the semantics may also be situated there). A service is executed or engaged, by the agent who proposes it but
it (the service) uses resources allocated by the service container. Figure 28 shows the complete integrated model
described in AGIL.

5.2 Simple example

Figure 28 shows the generic elements of the GRID-MAS integrated model. Figure 29 shows the same elements
but illustrated on a concrete simple example. Let us consider a VO of four users A,B,C and D. D published in
the VO service container the<incr count factory> (S1) and<decr count factory > (S2) services,
corresponding to its capabilities of incrementing and decrementing a given counter. C wants to use alone D’s
incrementing service; A and B want to use together D’s incrementing service and decrementing service. Figure
29 shows both the VO service container and the D agent body. Some services and CEs have been instantiated. S1
and S2 correspond to D capabilities (located inED

D ), these service factories are accessible by all agents of the VO
(1 1 1 1 line in the CAS22). S3 is a service instance accessible only by agent C and thus corresponding to a
capability stored in a local CE dedicated totally to C, notedED

C . Notice that the localcc variable has for value 3,
which means the<incr count inst2> service was used three times by agent C. S4 and S5 are both service
instances accessible by A and B and thus corresponding to two capabilities stored in a local CE dedicated to A
and B, notedED

A,B . The localcc variable has for value 8. Some important remarks may be done on this simple
example:

• A and B share the same counter services. It means that if A changes the state (i.e., the counter value) by
using the incrementing or decrementing service, it will have an influence on the next use of the services by
B;

• A CE instantiation copies all the included capabilities. Therefore, the decrementing capacity was created in
ED

C even if D did not publish it as a service in the VO service container. It may be made later if C asks for
a decrementing service.

• S3 and S4, which are instances of the same service factory, do not exactly do the same thing. S4 was
adapted by D for A and B in order to print the new counter value after incrementing it. S3 stay the same as
the service factory. This adaptation may have been done by the four methods cited in section 4.4.

22In a sake of simplicity, on this simple example, only two right levels (levels of permission) are considered: accessible (1) or not (0).
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Figure 28: The GRID-MAS integrated model described in AGIL

Figure 29: Example of the GRID-MAS integration
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Comparison with WSRF. Figure 30 shows the same example but according to WSRF specification. The S1
WS-Factory instantiated two different WS-Resources (S3 and S4) which share the same stateless service but
associated with different stateful resources. The S2 WS-Factory instantiated only one WS-Resource (S5) which
shares the same stateful resource as S4 but with another stateless service. Notice that the incrementing service
is unavoidably the same for the two WS-Resource S3 and S4. A stateless service may be part of several WS-
Resource, but doing that it cannot be really dedicated to the WS-Resource user(s). Integrating WSRF with agents
allows to have the stateless service executed by an intelligent agent, but furthermore, using STROBE agents allow
to have this service dedicated. It is the fundamental difference coming from using STROBE in our GRID-MAS
integrated model: a STROBE agent can make its dedicated capabilities evolve differently (following experience,
learning algorithm, etc.). Then in our approach S3 and S4 evolve differently to fit better service user needs or
wants. This is not possible with WSRF.

Figure 30: WSRF elements corresponding to the example

5.3 Discussions and benefits for GRID, MAS and SOC

• There is no real standard in the MAS community to describe agent capabilities. The integration will help
MAS developers in presenting and interfacing agent capabilities, and therefore augment MAS interopera-
tion. It is what we called previously the servicization of the capability.

• This integrated model does not restrict MAS or GRID in any way. In particular, it does not prevent direct
agent-agent interactions and thus, for example, it does not prevent agents to perform tasks with one another
in a purely ad hoc manner. This is important if we want the integration to be followed by other MAS
approaches and models; those models can keep their internal formalisms for their internal operations.

• In this integration, VO management benefits from both GRID and MAS organizational structure formalism,
e.g., AGR, CAS service, X509 certificate, etc.

• Service exchanges in this integrated model benefit from the important agent communications abilities, e.g.,
dealing with semantics, ability to hold a conversation, etc. The challenge of modelling conversation not by a
fixed structure (interaction protocol) but by a dynamic dialogue in MAS becomes the same that dynamically
composing and choreographing services in business processes in SOC.

• Moreover, our integrated model subsumes a significant number of the MAS-based GRID approaches cited
in section 2.3.1. Indeed, thanks to the reflexivity of GRID, which defines some core GRID functionalities as
(meta-)Grid services (e.g., service container, CAS), we may consider these core GRID services as executed
also by agents.

6 Conclusion and perspectives

Identifying key factors to demonstrate the convergence of MAS and GRID models is not an easy task. We pointed
out that the current state of GRID and MAS research activities are now sufficiently mature to enable justifying
exploring the path towards an integration of the two domains. At the core of this integration is the concept of
service. The bottom-up vision of service in GRID combined with the top-down vision of service in MAS bring
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forth a richer concept of service, integrating both GRID and MAS properties. We put this enhanced concept of
service into the perspective of Dynamic Service Generation (DSG).

Besides describing why GRID and MAS need each other, we explained how they can become synergic.
Through an analysis of concrete models (mainly OGSA and STROBE), we extracted a few key concepts and
presented a set of GRID and MAS analogies. Then, inspired by the analogies and related work, we proposed an
integrated model that respects all the constraints and foundations of both GRID and MAS. We proposed a new
set-theory based formalization and a common graphical description language, called AGIL, to describe part of the
DSG mechanisms: i.e., through-service agent-agent interaction.

Indeed, the concepts of the integrated GRID-MAS model can be summarized by analyzing the interactions in
this model (Figure 22).The integration may be viewed as a formalization of service exchange interactions in MAS
using GRID mechanisms.The most significant contribution in this paper, which links together all the elements of
Figure 22, is the relation introduced between i) a Grid service instance and its state and ii) an agent capability and
its context. OGSA fits well for the first part of the interaction and the STROBE model fits well for the second part.

The integration proposed in this paper is feasible considering today’s state of GRID and MAS technologies.
However, future developments in GRID and MAS may rely on this integration in order to progress. For example,
here are aspects of the STROBE model and some aspects of the OGSA model that need to evolve:

Better support for more than one interlocutor dedicated for a CE. Most of the scenarios using the STROBE
model take as a rule that STROBE agents must have a local CE dedicated to a group of only one interlocutor.
However, this viewpoint is not adequate for a GRID-MAS integration because it would imply that each
service instance in a service container can be used by one and only one agent. Therefore, the STROBE
model needs to evolve to fit better the cases where a local CE is used for a group of interlocutors.

Support for non-synchronous protocols and semantics.GRID and SOA standards must evolve to fit better
agent communications properties. In particular, the question of synchronicity (HTTP and thus SOAP are
still synchronous communication protocols) and the question of semantics (which starts with the work of
the Semantic Web community) need to be addressed.

Finally, GRID and MAS communities, mainly industrial for the former and mainly academic for the latter,
have addressed the question of services in distributed systems from completely different angles and have thus
developed different complementary aspects. Integrating these aspects according to the guidelines given in this
paper seems to us a good way to capitalize past, present and future work in order to simplify the scenarios and use
fruitfully the power of distributed services, exchanged among communities of humans and machines.

Appendix

The AGIL language is currently under specification under the form of an ontology developed with the Protéǵe
Ontology editor (protege.stanford.edu ). This integrated model is also under current development and
testing at LIRMM (www.lirmm.fr ) within an implementation of STROBE agents within the MadKit multi-
agent platform (www.madkit.org ) developed by LIRMM. The MadKit platform is itself being deployed on a
Grid node within a research project lead at LIUPPA (liuppa.univ-pau.fr ).
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