
Towards a traceability framework for model
transformations in Kermeta

Jean-Rémy Falleri, Marianne Huchard, and Clémentine Nebut

LIRMM, CNRS and Université de Montpellier 2,
161, rue Ada, 34392 Montpellier cedex 5, France

{falleri, huchard, nebut}@lirmm.fr

Abstract. Implementing a model transformation is a very complex task
and in an MDA process, chains of model transformations are usually
built. When writing such a transformation chain, developers often need
to have information on the previously applied transformations. Thus,
disposing of a traceability framework enabling to gather information on
the transformation behavior is an important feature for a transformation
language. In this paper, we propose to implement a traceability frame-
work in the Kermeta language based on a language independent trace
metamodel.

1 Introduction

In the model-oriented paradigm proned by the MDA [1], model transformations
[2] are of crucial importance. Since model transformations can be very complex,
and since source and target models can be composed of a great number of ele-
ments, it is very difficult for the developer and the user to figure out exactly how
a transformation behaves. An MDA process generally involves several successive
transformations, and if we consider such a chain of transformations, it is almost
impossible, even for the developer, to recognize the elements in the first model
that have led to the generation of a given element in the last model of the chain.

Moreover, as explained in [3], some model transformations can be performed
only when they dispose of the trace of anterior transformations. Another good
example of the utility of traceability information is a refactoring chain, where
you transform a model conform to a metamodel into an improved model conform
to the same metamodel, through a chain of transformations (for example, UML
class hierarchy restructuring using Formal Concept Analysis [4]). In this kind of
transformation chain, a lot of information of the source model is lost during the
chain but is expected to be reinjected in the target model. Thus, developers need
a system to gather information on the transformation behaviour when executing
it. Such a system is usually called a traceability framework.

In this paper, we propose a simple traceability framework that is sufficient to
solve the previous issues. This framework is based on a model definition (model
as a set) inspired by [5], which allows a basic trace metamodel to be defined. This
framework is implemented in the model oriented language Kermeta [6]. Model

transformations can be defined using Kermeta [7], but they are difficult to trace
due to the imperative syntax of the language.

The paper is structured as follows. Section 2 presents our approach. The
Kermeta implementation and its usage are presented in Sections 3 and 4. Section
5 discusses the benefits and limitations of this approach, and related work as
well.

2 An intuitive model definition

To trace a model transformation, two concepts have to be precisely defined:
what is a model and what is a model transformation. To remain in the model
paradigm described by the MDA, these two concepts should be described by a
model. Several metamodels are available to represent what is a model (MOF [8]
for instance), but there is still a lack of consensus to exactly describe what is a
model transformation. The main rationale for this lack is the difficulty to write a
transformation metamodel independent from the transformation language. Any-
way, if we want to trace model transformations, disposing of such a model is
fully necessary. We need to know what are the basic entities of a model trans-
formation, if we want to be capable of storing and analysing them. To obtain a
trace metamodel independent from the transformation language, a simple and
efficient method to model a model is to see it as a set, which is composed of
elements (as shown in Figure 1).

Fig. 1. Model transformation

Definition 1. A model M is a set of elements.

Definition 1 leads to the following definition of model transformations:

Definition 2. Let M1 and M2 be two models. A model transformation is a re-
lation t, t ⊆ M1×M2.

2

Note in Figure 1 that an element of a source model can be linked to n elements
of the target model, or n elements of the source model can be linked to one
element of the target model. Moreover, every target element has a parent. Based
on the previous definition of a model transformation, we propose the following
definition for a model transformation trace.

Definition 3. A transformation trace is a bipartite graph. The nodes are parti-
tioned into two categories: source nodes and target nodes.

Fig. 2. Transformation trace metamodel and model

Therefore, if we want to be able to keep a trace of a model transformation,
we have to set up the metamodel of a bipartite graph structure. As shown in
Figure 2, a trace Step is composed of several Link. A Link references two Object :
the source one and the target one. Object is the most general kind of element
that can be found in the Kermeta language. Thus, it ensures that every type of
element will be storable in the trace. This metamodel was designed to store the
trace of a single transformation, and that is the reason why the related element
has been named Step. But since transformations are usually small units which
can be chained, we propose to modify this first metamodel to integrate as best
as we can this usage of model transformations.

Let’s consider now a transformation chain trace. This kind of trace is slightly
different from the one above. It is an ordered set of bipartite graphs with a
common intersection (some target nodes of a graph are source nodes of the
following graph). To handle that type of trace, we have extended our previous
metamodel by adding a Trace object, which contains an ordered set of Step. The
result of this extension is shown in the Figure 3.

Now that we have determined what is a trace, we can define some operations
on it. Let’s consider the trace shown in the Figure 4.

Definition 4. The direct parents of an element are the elements which are di-
rectly linked to it. For instance, parents(C3) = {B3, B4}.

3

Fig. 3. Transformation chain trace metamodel and model

Definition 5. The parents of an element are the direct parents of the element
and the direct parents of the direct parents (recursively). For instance, allparents(C3) =
{B3, B4, A4, A3}.

Fig. 4. A sample transformation chain trace

3 Kermeta implementation

The mechanisms to easily handle a trace conform to the previously defined
trace metamodel have been implemented in Kermeta [6]. Kermeta is a model
oriented language which allows to define metamodels and to give them semantics.
Moreover, it is fully compatible with the Eclipse implementation of EMOF: EMF
[9]. We have implemented the following features in the traceability framework:

1. Generic traceability items;
2. Trace serialization (in XMI 2.0, thanks to EMF);
3. Simple transformation from a trace to graphviz’s [10] dot language, in order

to allow trace vizualisation.

We have also respected the following constraints:

4

1. Trace generating code should be as short as possible, and only a small part
of it should be placed in the transformation code;

2. Developers must be able to access to the elements of their choice through
the trace;

3. Developers must be able to select the elements they want to trace.

We can notice that Feature 2 and Constraint 2 are in contradiction. Indeed, if
we want to serialize the trace, all the Object should be contained in it (otherwise
we will only serialize reference, which is not really interesting). But if we want to
modify a real model element, Object should only be references to real elements.
That is why we have setted up two kinds of traces: Trace and StaticTrace. Trace
contains only references and is used in the transformations, whereas StaticTrace
contains the Object and can be serialized. To make the link between these two
kinds of trace, a transformation from a Trace to a StaticTrace has been written.
Listing 1.1 shows an extract of the trace metamodel source code implemented in
the framework. Listing 1.2 shows the metamodel used to serialize the trace. Be-
fore being stored in the StaticTrace, the elements are transformed into a reduced
form, named Element which contains only the information needed to allow a
readable visualization.

Listing 1.1. Transformation trace metamodel
class Trace
{

attribute s t ep s : oset Step [0 . . ∗] // ose t : Ordered Set

/∗∗
∗ Adds a l i n k in the g iven s t ep between the two g iven

o b j e c t s
∗/

operation add l ink (s tep : Str ing , name : Str ing , source :
Object , t a r g e t : Object) : Void i s do end

/∗∗
∗ I n i t s a new s t ep wi th the g iven name
∗/

operation i n i t s t e p (name : S t r ing) : Void i s do end

/∗∗
∗ Returns the d i r e c t parent s o f the g iven o b j e c t
∗/

operation parents (t a r g e t : Object) : Set<Object> i s do end

/∗∗
∗ Returns a l l parent s o f the g iven o b j e c t
∗/

operation a l l p a r e n t s (t a r g e t : Object) : Set<Object> i s do
end

5

/∗∗
∗ Returns a l l parent s in the g iven s t ep o f the g iven

o b j e c t
∗/

operation pa r en t s a t s t ep (t a r g e t : Object , s tep : S t r ing) :
Set<Object> i s do end

}

class Step
{

attribute name : S t r ing [1 . . 1]
attribute l i n k s : Link [0 . . ∗]

/∗∗
∗ Adds a l i n k wi th the g iven name between the two g iven

o b j e c t s
∗/

operation add l ink (name : Str ing , source : Object , t a r g e t :
Object) i s do end

}

class Link
{

attribute name : S t r ing [1 . . 1]
reference source : Object [1 . . 1]
reference t a r g e t : Object [1 . . 1]

}

Listing 1.2. Static transformation trace metamodel
class Stat i cTrace
{

attribute e lements : Element [0 . . ∗]
attribute s t ep s : oset Sta t i cS t ep [0 . . ∗] // ose t : Ordered

Set
}

class Sta t i cS t ep
{

attribute name : S t r ing [1 . . 1]
attribute l i n k s : S ta t i cL ink [0 . . ∗]

}

class Sta t i cL ink
{

attribute name : S t r ing [1 . . 1]
reference source : Element [1 . . 1]
reference t a r g e t : Element [1 . . 1]

}

6

class Element
{

attribute id : S t r ing
attribute l a b e l : S t r ing

}

In order to manipulate the traces produced, an utility class has been written.
The code of this class can be found in Listing 1.3. The only thing remaining to
be done before being able to generate some dot code or to serialize a trace is to
specialize the TraceUtils class, in order to implement the abstract label(object:
Object): String operation. It ensures that the label of each Element generated
will be understandable.

Listing 1.3. Utility class designed to manipulate trace
class TraceUt i l s
{

/∗∗
∗ Prin t s the dot code reprensen t ing the g iven Trace
∗/

operation t r a c e 2 do t (t r a c e : Trace) i s do end
/∗∗
∗ Converts a Trace in t o a Sta t i cTrace
∗/

operation t r a c e 2 s t a t i c t r a c e (t r a c e : Trace) : S tat i cTrace
i s do end

/∗∗
∗ Prin t s the dot code reprensen t ing the g iven

Sta t i cTrace
∗/

operation s t a t i c t r a c e 2 d o t (t r a c e : S tat i cTrace) : Void i s
do end

/∗∗
∗ Saves the g iven Sta t i cTrace to the g iven f i l ename
∗/

operation s a v e s t a t i c t r a c e (t r a c e : Stat icTrace , f i l ename :
S t r ing) : Void i s do end

/∗∗
∗ Loads the S ta t i cTrace from the g iven f i l ename
∗/

operation l o a d s t a t i c t r a c e (f i l ename : S t r ing) : S tat i cTrace
i s do end

/∗∗

7

∗ Abs t rac t l a b e l l i n g opera t ion used in the t r a c e 2 do t
and the t r a c e 2 s t a t i c t r a c e opera t i ons

∗/
operation l a b e l (ob j e c t : Object) : S t r ing i s abstract

}

4 The traceability framework in action

To illustrate how this package works, we use a very simple transformation exam-
ple: a class hierarchy (as defined by the minuml metamodel) will be turned into
a database (as defined by the mindb metamodel). The two metamodels involved
in the transformation are given in Figure 5.

Fig. 5. minuml and mindb metamodels

As it can be noticed in the minuml metamodel, a ClassHierarchy is composed
of some Class. These Class have some Property. A Property has a name. The
mindb metamodel has a similar structure as the minuml one.

With these two metamodels, it is now possible to write a standard transfor-
mation between a ClassHierarchy and a DataBase (the code is given in Listing
1.4). This transformation is very simple: a Table is created for each Class of the
source model, and a Column is added in the Table for each Property of the Class.

Listing 1.4. Minuml2Mindb transformation code
/∗∗
∗ Transform a minuml model to a mindb model
∗/

operation trans form (source : ClassHierarchy) : DataBase i s do
r e s u l t := DataBase . new // I n i t i a l i z e the t a r g e t model

t r a c e . i n i t S t e p (”minuml2mindb”) // Trace Generating Code

source . h i e ra r chy . each{ c l s | // I t e r a t e on every c l a s s o f
the source model
var t ab l e : Table in i t Table . new // Create a Table
t ab l e . name := St r ing . c l one (c l s . name) // Copy the name

o f the Class to the t a b l e

8

r e s u l t . t ab l e . add (tab l e) // Add the t a b l e in the t a r g e t
model

t r a c e . add l ink (”minuml2mindb” , ” c l a s s 2 t a b l e ” , c l s , t ab l e)
// Trace Generating Code

c l s . ownedAttribute . each{ prop | // I t e r a t e on every
Property o f the Class
var c o l : Column in i t Column . new // Create a new

Column
c o l . name := St r ing . c l one (prop . name)
tab l e . column . add (c o l) // Add the Column to the

r e l a t i v e Table

t r a c e . add l ink (”minuml2mindb” , ”property2column ” ,
prop , c o l) // Trace Generating Code

} // End I t e r a t e on every Property o f the Class
} // End I t e r a t e on every c l a s s o f the source model

end

Figure 6 shows the generated dot graph from the following transformation
chain: minuml → mindb → minuml applied to a sample minuml model.

Fig. 6. The generated transformation trace

5 Perspectives and conclusion

With the framework we proposed in this paper, it is possible to trace transfor-
mations within Kermeta. But it is still possible to improve the Trace metamodel

9

and thus the framework. The first thing that is currently studied is the possibil-
ity to add composite links in a Step, which will be defined as a set of Link. A
composite link would be associated to a significative part of a transformation (it
could gather for instance all links relative to column creation of a given table).
It would allow to add more semantics in the trace.

When implementing this framework, it was very clear that the way used to
handle the trace is very dependent from the choosen implementation language.
As shown in the previous section, using our traceability framework requires to
add trace generation code in the transformation code. With an imperative lan-
guage, such code is unavoidable even if not wished (traceability should be as
transparent as possible). To have trace generation code easily written and iden-
tified in a transformation, several solutions can be found, among them adding
tags dedicated to the traceability management in the Kermeta language.

Last, seeing models as sets leads to a simple and efficient definition of a
trace, that is sufficient in many situations. Since models are not simply sets
but rather directed and labeled graphs, it would be useful to construct a trace
metamodel based on this definition. With such a trace, it would be possible to
store more information than with the previous one. It would show for instance
the composition relation between a table and some columns.

References

1. OMG: MDA guide version 1.0.1. http://www.omg.org/docs/omg/03-06-01.pdf
(2003)

2. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture, Proceedings. (2003)

3. Vanhooff, B., Berbers, Y.: Supporting modular transformation units with precise
transformation traceability metadata. In: ECMDA-TW 2005 Proceedings, Nurem-
berg, November 8th 2005. (2005)

4. Dao, M., Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Improving Gen-
eralization Level in UML Models Iterative Cross Generalization in Practice. In:
International Conference on Conceptual Structures ICCS’04. (2004)

5. Jouault, F.: Loosely coupled traceability for atl. In: ECMDA-TW 2005 Proceed-
ings, Nuremberg, November 8th 2005. (2005)

6. Triskell project (IRISA): The metamodeling language kermeta.
http://www.kermeta.org (2006)

7. Muller, P.A., Fleurey, F., Vojtisek, D., Drey, Z., Pollet, D., Fondement, F., Studer,
P., , Jézéquel, J.M.: On executable meta-languages applied to model transforma-
tions. In: Model Transformations In Practice Workshop. Proceeding, Montego Bay,
Jamaica. (2005)

8. OMG: MOF 2.0 core specification. http://www.omg.org/cgi-bin/doc?ptc/2004-
10-15 (2004)

9. Eclipse: The eclipse modeling framework (EMF) overview.
http://www.eclipse.org/emf/docs.php?doc=references/overview/EMF.html
(2005)

10. Graphviz: Graph visualization software. http://www.graphviz.org (2001)

10

