
HAL Id: lirmm-00102859
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102859

Submitted on 2 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Montgomery Ladder for Elliptic Curves
Defined over _p and RNS Representation
Jean-Claude Bajard, Sylvain Duquesne, Nicolas Méloni

To cite this version:
Jean-Claude Bajard, Sylvain Duquesne, Nicolas Méloni. Combining Montgomery Ladder for Elliptic
Curves Defined over _p and RNS Representation. [Research Report] 06041, LIR. 2006. �lirmm-
00102859�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102859
https://hal.archives-ouvertes.fr

Combining Montgomery ladder for elliptic
curves defined over Fp and RNS representation

Jean-Claude Bajard1 and Sylvain Duquesne2 and Nicolas Meloni1,2

LIRMM1, I3M2, Université Montpellier 2

Abstract. In this paper, we combine the RNS representation and the
Montgomery ladder on elliptic curves in Weierstrass form. These two
techniques are relevant for implementation of elliptic curve cryptogra-
phy on embedded devices since they have leak-resistance properties. We
optimize formulae for addition and doubling of the Montgomery lad-
der in terms of modular reductions to obtain a competitive and secure
implementation. Afterwards, we explain the advantages of the RNS rep-
resentation, especially in hardware and for embedded devices, and show
that, contrary to other approaches, ours takes optimal advantage of a
dedicated parallel architecture.

Keywords: Elliptic curves, Montgomery, Leak-resistance, RNS, Modular
multiplication.

1 Introduction

Elliptic curve cryptosystems, because of their small key length, has become pop-
ular to such a point that they have recently been recommended by the NSA.
Their small key size is especially attractive for small cryptographic devices like
smart cards, however such devices are sensitive to side channel attacks. These
attacks consist in analyzing side channel informations like timings [16], power
consumptions [17] or electromagnetic radiations [23] of a device. They have be-
come such a threat that protecting ECC against them has become itself a whole
research area giving rise to various countermeasures [11].

The most efficient protection is an algorithm for scalar multiplication due to
Montgomery [19] for a family of curves defined over Fp and generalized in [12],
[6] and [13]. This algorithm has many advantages for constrained environments:
it is leak-resistant, very simple to implement, careful in memory and does not
required precomputations. On the other hand the RNS representation of numbers
in Fp has interesting leak-resistance properties for the arithmetic on the base field
and is easily parallelizable in hardware [3] and scalable.

The aim of this paper is to combine these two techniques, especially in the
case of curves in Weierstrass form, to obtain an implementation of ECC which
is leak-resistant, both at the level of the curve and at the level of the field, and
which can be easily and efficiently parallelized in hardware.

In the following, K denotes a field of characteristic 6= 2, 3 (which is a prime
field Fp in practice) and |n|2 denotes the bit length of n.

2 Background properties of the different representations
and algorithms

2.1 Modular multiplication

Elliptic curve arithmetic over Fp mainly involves modular multiplications modulo
p. Such operation can be decomposed into one classic multiplication followed by
a modular reduction. Because of the small size of the numbers used with ECC
(160 bits ie five 32-bits words, the multiplication is performed by the so called
schoolbook method. Let us consider A and B two n-word integers given in radix
representation (ie X =

∑n
i=0 xiβ

i with 0 ≤ ai < β), then A×B can be computed
by a succession of word multiplications and additions (which will be considered
in the following as basic word operations). We can summarize it by the equation

A×B = b0A + β(b1A + β(b2A · · ·+ βbnA) . . .).

We get a complexity of n2 word operations.
The reduction of an integer k modulo another integer p consist in finding the

remainder of the euclidean division of k by p. We recall now the Montgomery
reduction (as it is what we use in RNS modular multiplication) and then we
briefly study reductions using special modulo.

Montgomery general reduction algorithm: In [18] Montgomery proposed
to substitute the reduction modulo p by a division by a power of the radix β
(a simple shift). The result is not exactly k mod p but kβ−n mod p, using
Montgomery representation allows to overcome this problem.

Algorithm 1: Montgomeryp(R)

Data: R = A×B < β2n and βn−1 ≤ p < βn

and a precomputed value (−p−1 mod βn);
Result: (q, r) such that r = Rβ−n (mod p) < 2p;
q ← −R× p−1 mod βn ;
r ← (R + qp)/βn ;

The complexity of this reduction is known to be n2 + n word operations [5].
As all the computations can be done in Montgomery representation, we neglect
the cost of the conversion from Montgomery to classic representation.

Reduction using special modulo: When using ECC, one can choose the
underlying field without restriction. In this case, the cost of a modular reduction
can be reduced to some additions. Compared to the cost of a general reduction,
in can be considered as almost free. As an example, if the field Fp is such that
p is a Mersenne number (ie p = 2k − 1) then the reduction of a 2n-word integer
R modulo p requires only 2n word additions. Just write R = R12k + R0, then
R (mod p) = R1 + R2, if R1 + R2 ≥ p then R (mod p) = R1 + R2 − p. Prime
Mersenne numbers are rare, that is why the generalized Mersenne number class

has been introduced [26, 8] (integer of the form P (2k) where P (X) = Xn−C(X)
and C is a polynomial with coefficients equal to −1, 0 or 1 and deg(C) ≤ n

2) .
Modular reduction is still a question of additions but one can not find generalized
Mersenne numbers for all the number length. However, a dedicated architecture
cannot be used for other values of p.

2.2 The Montgomery scalar multiplication in elliptic curve
cryptography

In all elliptic curves based schemes (such as encryption/decryption or signature
generation/verification) the dominant operation is the scalar multiplication of
points on the curve. Hence, the efficiency of this operation is central in elliptic
curve cryptography. This is usually done by using standards scalar multiplication
methods such as double and add or sliding window methods combined with
recoding of the exponent.

However, these methods are not leak-resistant and their protection is expen-
sive. For example, if one wants to protect a double and add algorithm against
side-channel attacks, one can perform extra useless additions [11]. By this way,
for each bit of the exponent we perform both an addition and a doubling so that
bits of the exponent are indistinguishable.

Montgomery proposed in [19] to work only with the x-coordinate. Of course,
the group law is lost but traces remain. So doubling is still possible and the
addition of two points P and Q is possible if P −Q is known. Montgomery gives
the formulae for those operations when the curve is in Montgomery form, that
is defined by an equation of the type

By2 = x3 + Ax2 + x.

Proposition 1. Let E be an elliptic curve defined over K in Montgomery form.
Let also P = (Xp, Yp, Zp) and Q = (Xq, Yq, Zq) ∈ E(K) given in projective
coordinates. Assume that P − Q = (x, y) is known in affine coordinates. Then
the X and Z-coordinates for P + Q and 2P are given by

Xp+q = ((Xp − Zp)(Xq + Zq) + (Xp + Zp)(Xq − Zq))
2
,

Zp+q = x ((Xp − Zp)(Xq + Zq)− (Xp + Zp)(Xq − Zq))
2
,

4XpZp =
(
(Xp + Zp)2 − (Xp − Zp)2

)
,

X2p = (Xp + Zp)2(Xp − Zp)2,
Z2p = 4XpZp

(
(Xp − Zp)2 + A+2

4 4XpZp

)
.

By this way, both an addition and a doubling takes only 3 multiplications and
2 squares which is much faster than usual operations [10]. The fact that the
difference P −Q must be known to compute P +Q implies that a new algorithm
must be used to compute the scalar multiplication of a point G by an integer k.
The solution is to use pairs of consecutive multiples of P, so that the difference
between the two components of the pair is always known and equal to G. The
algorithm for scalar multiplication is as follows:

Algorithm 2: Montgomery Scalar()
Data: G ∈ E (K) and k ∈ Z.
Result: x and z-coordinate of kG.
Initialize Q = (P,Q) = (O, G) where O is the point at infinity.;1

If the bit of k is 0, Q = (2P, P + Q).;2

If the bit of k is 1, Q = (P + Q, 2Q).;3

After doing that for each bit of k, return P .;4

Both an addition and a doubling are done for each bit of the exponent. So the
cost of this algorithm is about 10|k|2 multiplications for a curve in Montgomery
form which is better than other algorithms.
Moreover, the operations we have to perform do not depend on the bits of the
exponent so that this method has interesting leak-resistance properties.
Finally, the x-coordinate of kG is usually sufficient but some cryptosystems, like
ECDSA, require the y-coordinates. It can easily be recovered [20].

Unfortunately, in odd characteristic, all the elliptic curves cannot be trans-
formed into Montgomery form. This is for example the case for most of the
standards. The reason is that any curve which can be transformed into Mont-
gomery form has a 2-torsion point so that its cardinality is not prime (it is
divisible by 2).

In all generality, namely when the curve is defined by an equation of the form

y2 = x3 + ax + b, (1)

this method can also be applied but is more time consuming ([6],[12] and [13]).

Proposition 2. Let E be an elliptic curve defined over K by (1). Let also
P = (Xp, Yp, Zp) and Q = (Xq, Yq, Zq) ∈ E(K) given in projective coordinates.
Assume that P −Q = (x, y) is known in affine coordinates. Then we obtain the
X and Z-coordinates for P + Q and 2P by the following formulae :

Xp+q = −4bZpZq(XpZq + XqZp) + (XpXq − aZpZq)2,
Zp+q = x(XpZq −XqZp)2,

X2p =
(
X2

p − aZ2
p

)2 − 8bXpZ
3
p ,

Z2p = 4Zp

(
X3

p + aXpZ
2
p + bZ3

p

)
.

Addition can be evaluated in 10 multiplications and doubling in 9. Hence,
the scalar multiplication can be performed in about 19|n|2 multiplications on
K which is not interesting in term of performance but is interesting in term of
leak-resistance. Note that, the y-coordinate can also be recovered in this case [6]

Proposition 3. Suppose that Q = P + G with G = (x, y), P = (xp, yp) and
Q = (xq, yq). Then, if y 6= 0, one has

yp = −2b + (a + xxp)(x + xp)− xq(x− xp)2

2y

With the Montgomery scalar multiplication method, we always have to per-
form both an addition and a doubling for each bit of the exponent, so that this
method is resistant against side-channel attacks and that’s the reason why this
method is always interesting even with 19 multiplications at each step.

In this paper, we will explain that one can almost always assume that one of
the coefficients (a or b) is a small number (this is already the case in the standards
since a = −3) so that only 17 multiplications are required. Afterwards, we will
rewrite the formulae to minimize the number of modular reductions in order to
use the RNS representation of numbers. Let us now give some recall about this
system of representation.

3 Residue Number Systems

3.1 Presentation

The Residue Number Systems (RNS) are based on the very known Chinese
Remainder Theorem (CRT). They were introduced in computer science in [14]
and [27], a good presentation can be found in [15].

These systems are based on the fact that a number x can be represented by
its residues (x1, x2, . . . , xn) modulo a set of coprimes numbers (m1,m2, . . . ,mn),
generally called RNS basis. We generally assume that 0 ≤ x < M =

∏n
i=1 mi.

The elements xi are called RNS-digits, or simply digits if there is no ambiguity.
The biggest interest of a such system, is to distribute integer operations on

the residues values. Large integer operations are made on the residues, in other
words on small numbers independently.

We consider in this part a RNS base (m1, ...,mn) with elements such that,
mi = β − ci where ci is small (with few non null digits). We assume that M =∏n

i=1 mi is such that p < M . In this system two numbers a, and b can be
represented by their remainders modulo the mi, i = 1, . . . , n.

a = (a1, . . . , an) and b = (b1, . . . , bn)

A multiplication is reduced to n digit modular digit-products. A modular digit-
product is equivalent to a classical digit product following by few additions
(which are due to the number of ones in the binary representation of ci)[4]. Thus
this modular digit-operation can be done in one clock cycle in hardware.

r = (a1 × b1 (mod m1), . . . , an × bn (mod mn)) (2)

It is clear that if a product is followed by an addition, the cost is just increased
of one addition on each modulo, and so done in the same cycle.

r = (a1 × b1 + d1 (mod m1), . . . , an × bn + dn (mod mn)) (3)

Now, we focus our attention on the multiplication modulo p, for this we
propose to use the algorithm presented in [1]. This algorithm for two numbers
a and b given in RNS, evaluates in fact r = abM−1 mod p. To obtain the

right result we need to call it again with r and M2 mod p as operands. To
prevent this fact, we convert the values in a Montgomery representation where
a′ = a×M mod p which is stable for Montgomery product and addition. Thus,
this conversion is done one time at the beginning by calling Montgomery product
with a and M2 mod p as operands, and one time at this end of the complete
cryptographic computing with 1 as second operand. Hence, this transformation
will be neglected in the following.

3.2 RNS Montgomery multiplication

This algorithm is a direct transposition of the classical Montgomery method.
The main difference is due to the representation system. When Montgomery is
applied in a classical radix β representation, the value βn occurs for reduction,
division and Montgomery factor. In RNS this value is replaced by M . Thus an
auxiliary RNS Bases is need to handle the inverse of M .

All the operations considered are in RNS. Instructions 1, 2 and 4 deal with

Algorithm 3: MontgM RNS(a, b, p)

Data: Two RNS bases B = (m1, . . . , mn), and B′ = (mn+1, . . . , m2n), such
that M =

Qn
i=1 mi < M ′ =

Qn
i=1 mn+i and gcd(M, M ′) = 1 ; a

redundant modulus mr, gcd(mr, mi) = 1 ∀i = 1...2n ; a positive integer p
represented in RNS in both bases such that 0 < (n + 2)2p < M and
gcd(p, M) = 1 (p is prime); two positive integers a and b represented in
RNS in both bases, with ab < Mp.

Result: A positive integer r ≡ abM−1 (mod p) represented in RNS in both
bases, with r < (n + 2)p.

r ← (a× b) in B and B′ ;1

q ← (r)× (−p−1) in B;2

[q in B] −→ [q̂ in B′ and mr] First base extension;3

r ← (r + q̂ × p)×M−1 in B′ and mr;4

[r in B and mr]←− [r in B′] Second base extension;5

RNS operations as presented in the previous section, are linear, so very efficient.
But, lines 3 and 5 represent RNS bases extensions which are quadratic, so costly.
To reduce this cost, [1] proposes to use two different full RNS extensions.

The extension to base B′ of q, obtained in its RNS form (q1, . . . , qn) in the
base B, is done by evaluating first:

σi = qi

∣∣M−1
i

∣∣
mi

mod mi,

and then,

q̂j =
∣∣∣ n∑

i=1

∣∣Mi

∣∣
mj

σi

∣∣∣
mj

, ∀j = n + 1 . . . 2n and mr (4)

we have q̂ = q + αM with α < n.
Then we compute in the base B′ the value

r = (ab + q̂p)M−1 = (ab + qp)M−1 + αp < M ′. (5)

After instruction 4, we get r such that r ≡ r ≡ abM−1 (mod p). The conditions
α < k, q < M and ab < Mp gives q̂ < (n + 1)M and thus r < (n + 2)p < M ′.

In order to use this algorithm within a cryptographic protocol, we must
be able to compute x2 mod p, where x is the output of a former evaluation
verifying x < (n + 2)p. The condition ab < Mp then implies (n + 2)2p2 < Mp
which rewrites:

(n + 2)2p < M. (6)

The first base extension then requires, taking into account that mr is a small
power of two [2], n2 + n elementary modular digit-operations.

The second base extension is done using a different algorithm due to Shenoy
and Kumaresan [24] where the factor α is evaluated with the redundant modulus
mr. That represents a cost of n2 + 2n elementary modular digit-operations.

Hence, a modular multiplication in RNS uses 2n2 + 8n basic modular digit-
operations that we can decompose in 2n for the product and 2n2 + 6n for the
modular reduction (called Montgomery reduction in the next)[2].

3.3 Discussion about the advantages

Even if the number of operations needed is a little bit higher than in a classical
representation, RNS got some advantages. It is easy to implement, particularly
in hardware, and provides a reduced cost for multiplication and addition and a
competitive modular reduction. Furthermore, RNS allow, due to the indepen-
dence of the modular operations, to perform calculus in a random way and to
parallelize the architecture.

Moreover, it is shown that RNS can be used as a leak resistant arithmetic [9,
3], by selecting randomly B and B′ in a set of 2n coprime numbers. It is shown
that we got (2n

n) ways to do the same calculus. Hence, DPA attacks are very
difficult to operate. Against SPA it can be possible to exchange the bases during
the evaluation.

The parallelization of the architecture, with n basic operators (the extra
modulus mr can be included inside [2]), gives a time complexity of 2 modular
digit-operation for the multiplication (or multiplication-addition) and 2n+5 for
the modular reduction. According to this point we see that if we accumulate some
operations before reduction we obtain an efficient implementation. We develop
this approach in the next section with ECC.

Last advantage of the RNS is the natural scalability of the architecture.
With a given structure of n modular digit operators, it is possible to drive many
p whose verify (6). It is easy, for smaller values, to use a partial part of the
architecture which will run, in this case, only the needed time. In fact, the RNS
bases will be adapted to the value p, thus only the needed cells will be active.

4 Improvement of the Montgomery formulae

Let us show that we can almost always assume that either a or b is small.

4.1 First approach

If a is a square in K, it can be replaced by 1 in the formulae by introducing a
new coordinate Z ′ =

√
aZ which will replace Z.

Proposition 4. Let E be an elliptic curve defined over K by (1) such that a is
a square in K. Let also P = (Xp, Yp, Zp) and Q = (Xq, Yq, Zq) ∈ E(K) given in
projective coordinates. Assume that P−Q = (x, y) is known in affine coordinates.
Put Z ′ =

√
aZ. Then we obtain the X and Z ′-coordinates for P + Q and 2P in

terms of the X and Z ′-coordinates for P and Q by the following formulae :

Xp+q = −4 b
a
√

a
Z ′

pZ
′
q(XpZ

′
q + XqZ

′
p) + (XpXq − Z ′

pZ
′
q)

2,

Z ′
p+q = x√

a
(XpZ

′
q −XqZ

′
p)

2,

X2p =
(
X2

p − Z ′2
p

)2 − 8 b
a
√

a
XpZ

′3
p ,

Z ′
2p = 4Z ′

p

(
X3

p + XpZ
′2
p + b

a
√

a
Z ′3

p

)
.

Of course, b
a
√

a
and x√

a
must be precomputed. In this case, addition can be

evaluated in 9 multiplications and doubling in 8.

Notes and Comments. This approach is nothing else but a trivial change of
variable on the original curve given by x′ = x√

a
and y′ = y

4√a3 . However, as
the y-coordinate is not used in the Montgomery scalar multiplication, a is not
required to be a fourth root. That is why we preferred to introduce Z ′ as a new
coordinate instead of writing the change of variables.

4.2 Generalization

If a is not a square, one can hope that a
k is a square with k small, so multiplica-

tions by a can be replaced by multiplications by k.
Theorem 1. Let E be an elliptic curve defined over K by (1) and k be a small
integer such that a

k is a square in K. Let also P = (Xp, Yp, Zp) and Q =
(Xq, Yq, Zq) ∈ E(K) given in projective coordinates. Assume that P −Q = (x, y)
is known in affine coordinates. Put Z ′ =

√
a
kZ. Then we obtain the X and Z ′-

coordinates for P + Q and 2P in terms of the X and Z ′-coordinates for P and
Q by the following formulae :

Xp+q = −4 b
a
k

√
a
k

Z ′
pZ

′
q(XpZ

′
q + XqZ

′
p) + (XpXq − kZ ′

pZ
′
q)

2,

Z ′
p+q = x√

a
k

(XpZ
′
q −XqZ

′
p),

X2p =
(
X2

p − kZ ′2
p

)2 − 8 b
a
k

√
a
k

XpZ
′3
p ,

Z ′
2p = 4Z ′

p

(
X3

p + kXpZ
′2
p + b

a
k

√
a
k

Z ′3
p

)
.

These formulae also requires 9 multiplications for addition and 8 for doubling,
but is it always possible to find such a k? One can hope that the probability that
such a small k does not exist is very low. For instance, if K= Fp with p prime,
the multiplicativity of the Legendre symbol trivially implies that, if a is not a
square, a

k is a square if and only if k is not a square and there are only about 1
2n

prime field for which the n first prime numbers are squares. For example, only
3 percent of the prime fields are such that -1, 2, 3, 5 and 7 are squares. Hence
it will really be bad luck if we cannot apply this theorem. If so, one can use the
same strategy with the coefficient b.

4.3 Alternative approach

It is also possible to modify the coordinate Z to avoid the multiplications by b.

Theorem 2. Let E be an elliptic curve defined over K by (1) and k a small inte-
ger such that 4b

k is a cube in K. Let also P = (Xp, Yp, Zp) and Q = (Xq, Yq, Zq) ∈
E(K) given in projective coordinates. Assume that P − Q = (x, y) is known in

affine coordinates. Put Z ′ = 3

√
4b
k Z. Then we obtain the X and Z ′-coordinates

for P + Q and 2P in terms of the X and Z ′-coordinates for P and Q by the
following formulae :

Xp+q = −kZ ′
pZ

′
q(XpZ

′
q + XqZ

′
p) + (XpXq − a

3
q

(4b
k)2 Z ′

pZ
′
q)

2,

Z ′
p+q = x

3
√

4b
k

(XpZ
′
q −XqZ

′
p)

2,

X2p =

(
X2

p − a
3
q

(4b
k)2 Z ′2

p

)2

− 2kXpZ
′3
p ,

Z ′
2p = Z ′

p

(
4X3

p + 4a
3
q

(4b
k)2 XpZ

′2
p + kZ ′3

p

)
.

The new coordinates we introduce for Montgomery scalar multiplication al-
low to add and double in 17 multiplications instead of 19. Moreover this im-
provement can be applied to most of the curves since the condition is just that
there exist a small integer k such that either a

k is a square or 4b
k is a cube in K.

5 Montgomery scalar multiplication and the RNS

In this section we assume that the coefficient a is small, either by applying the
result of the previous section or by taking a = −3 as it is the case for most of
the standardised curves.

If the RNS system of representation is used to represent elements of the base
field, the number of multiplications is not significant to estimates the complex-
ity of the algorithm. The most expensive operation is the modular reduction.
Hence the formulae for addition and doubling must be rewritten to minimize
the number of modular reduction.

Theorem 3. Let p be a prime number and E be an elliptic curve defined over
Fp by (1). Let also P = (Xp, Yp, Zp) and Q = (Xq, Yq, Zq) ∈ E(Fp) given in
projective coordinates. Assume that P−Q = (x, y) is known in affine coordinates.
Then we obtain the X and Z-coordinates for P + Q and 2P in terms of the X
and Z-coordinates for P and Q by the following formulae :

Xp+q = −4bZpZq(XpZq + XqZp) + (XpXq − aZpZq)2,
Zp+q = x

(
(XpZq + XqZp)2 − 4XpXqZpZq

)
,

X2p =
(
X2

p − aZ2
p

)2 − 8bXpZ
3
p ,

Z2p = 4XpZp

(
X2

p + aZ2
p

)
+ 4bZ4

p .

To compute Xp+q and Zp+q, the following operations must be done :

1. α = ZpZq 2. β = XpZq + XqZp 3. γ = XpXq 4. δ = −4bα

5. Xp+q = βδ + (γ − aα)2 6. ε = β2 − 4αγ 7. Zp+q = xε

To compute X2p and Z2p, the following operations must be done :

1. α = Z2
p 2. β = 2XpZp 3. γ = X2

p 4. δ = −4bα

5. X2p = βδ + (γ − aα)2 6. Z2p = 2β(γ + aα)− αδ

Hence, only 13 modular reductions (and 18 multiplications) are required for
each bit of the exponent in the Montgomery scalar multiplication algorithm,
which is better than the 17 multiplications (and 14 reductions) required in stan-
dard representation.

Notes and Comments. If a is not small, one more operation is required (aα) in
each case. Moreover, we obtained no gain for curves in Montgomery form.

6 Comparisons of performance

Now, let us compare the complexity of our approach to those using Mont-
gomery modular multiplication or Mersenne numbers. The following table is
a summary of the complexities. So, one step of Montgomery exponentiation al-

Operation RNS Montgomery Mersenne

Multiplication 2n n2 n2

Reduction 2n2 + 6n n2 + n 0

Table 1. Number of word operations in RNS, Montgomery and Mersenne approach
for two n-word integers

gorithm using the formulae given in section 2.2 (for Montgomery and Mersenne

approach) or section 5 (for our approach) requires 17n2 + 14(n2 + n) operations
with Montgomery modular multiplication, 17n2 with Mersenne numbers and
18(2n) + 13(2n2 + 6n) in RNS. We give in table 2 the number of 32 bits word
operations for one iteration of Montgomery scalar multiplication algorithm for
usual ECC sizes.

|p|2 word RNS Montgomery Mersenne

160 5 1220 845 425

192 6 1620 1200 612

256 8 2576 2096 1088

320 10 3740 3240 1700

512 16 8480 8160 4352

Table 2. Cost of one iteration of Montgomery scalar multiplication

We can see that in practice our approach is slower for 5 or 6 words but com-
petitive for larger sizes. Note that, if a 16 bits architecture is used, our method
is always competitive. Moreover RNS representation can be easily parallelized.

Indeed, if we assume that we dispose of an architecture equivalent to n word-
operators on a single word-bus, we get in table 3 the complexities of the different
approaches in number of word operations.

Operation RNS Montgomery Mersenne

Multiplication 2 n . . . 2n n . . . 2n

Reduction 2n + 5 2n . . . 3n 0

One iteration of algorithm 2 26n + 101 44n . . . 75n 17n . . . 34n

Table 3. Number of cycles with parallel implementations on a n word-operators struc-
ture (18M+13R for RNS and Montgomery and 17M+14R for Mersenne).

The estimation of the cost for the multiplication and for Montgomery parallel
product are based on systolic implementations [21] or on parallel implementa-
tions [7, 25] where the given architecture are respectively in O(n2/log(n)2) and
O(n2) for the area and O(log(n)) for the time. As we did not find an explicit
complexity for multiplication using a O(n) area architecture, we give two val-
ues for the complexity. The first one is minimal but certainly not realistic. The
second one, which is not necessarily optimal, takes into account that

– each product of a number by a digit will produce two numbers (the hight
and the low part of digits multiplication),

– a carry save adder will need a number storing the carry and a final adder
for absorbing those carries,

– 32 bits words look-up tables are not reasonable.

Then, to get an idea with ECC key size, we compare three different implemen-
tations in table 4 for the number of operations given in section 5.

|p|2 word RNS Montgomery Mersenne

160 5 231 220 . . . 375 85. . . 170

192 6 257 264 . . . 450 102. . . 204

256 8 309 352. . . 600 136. . . 272

320 10 361 440 . . . 750 170. . . 340

512 16 517 704. . . 1200 272. . . 544

Table 4. Comparison of parallel implementations

In this configuration, the RNS becomes interesting in terms of efficiency for a
leak-resistant implementation of elliptic curve cryptosystems. Implementations
based on generalized Mersenne primes are better in term of efficiency but one
has to keep in mind that an architecture using such prime numbers has some
disadvantages compared to RNS. In particular, it is highly not scalable.

7 Conclusion

We combined two leak-resistance techniques to obtain an efficient and secure
implementation of elliptic curves cryptosystems on embedded devices.

For this, after showing that one of the coefficient of the curve can almost
always be transformed in a small number, we optimized formulae for addition and
doubling in the Montgomery ladder in terms of reductions since this operation
is the most costly in RNS.

Our approach is particularly interesting in the hardware point of view since
the RNS representation of numbers has many advantages (leak-resistance, easy
to implement and to parallelize, scalability). It becomes very attractive in the
case of a dedicated parallel architecture.

References

1. Bajard, J.C., Didier, L.S., Kornerup, P.: Modular multiplication and base extension
in residue number systems. 15th IEEE Symposium on Computer Arithmetic, IEEE
Computer Society Press (2001) 59–65

2. Bajard, J.C., Imbert, L.: A full RNS implementation of RSA. IEEE Transactions
on Computers 53:6 (2004) 769–774

3. Bajard, J.C., Imbert, L., Liardet, P.Y., Teglia, Y.: Leak resistant arithmetic. CHES
2004, LNCS 3156 59–65

4. Bajard, J.C., Meloni, N., Plantard, T.: Efficient RNS bases for Cryptography
IMACS’05, Applied Mathematics and Simulation, (2005) ???–???

5. Bosselaers, A., Govaerts, R., Vandewalle. J.: Comparison of the three modular re-
duction functions LNCS 773 (1994) 175–186

6. Brier, E., Joye, M.: Weierstrass Elliptic Curves and Side-Channel Attacks. Public
Key Cryptography, LNCS 2274 (2002) 335–345

7. Bunimov, V., Schimmler, M.: Efficient Parallel Multiplication Algorithm for Large
Integers Euro-Par 2003, International Conference on Parallel and Distributed Com-
puting (2003) 923–928

8. Chung, J., Hasan, A.: More generalized mersenne numbers. SAC 2003, LNCS 3006
(2003) 335–347

9. Ciet, M., Neve, M., Peeters, E., Quisquater, J.J.: Parallel FPGA implementation
of RSA with residue number systems– can side-channel threats be avoided? 46th
IEEE International Midwest Symposium on Circuits and Systems (2003)

10. Cohen, H., Frey, G.: Handbook of elliptic and hyperelliptic curve cryptography.
Discrete Math. Appl., Chapman & Hall/CRC (2006)

11. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. CHES’99, LNCS 1717 (1999) 292–302

12. Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J. P.: Parallel scalar multiplica-
tion on general elliptic curves over Fp hedged against Non-Differential Side-Channel
Attacks. Preprint

13. Izu, T., Takagi, T.: A Fast Parallel Elliptic Curve Multiplication Resistant against
Side Channel Attacks. Public Key Cryptography, LNCS 2274 (2002) 280–296

14. Garner, H.L.: The residue number system. IRE Transactions on Electronic Com-
puters, EL 8:6 (1959) 140–147

15. Knuth, D.: Seminumerical Algorithms. The Art of Computer Programming, vol.
2. Addison-Wesley (1981)

16. Kocher, P.C.: Timing attacks on implementations of DH, RSA, DSS and other
systems. CRYPTO’96, LNCS 1109 (1996) 104–113

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. CRYPTO’99, LNCS
1666 (1999) 388–397

18. Montgomery, P.L.: Modular multiplication without trial division. Math. Comp.
44:170 (1985) 519–521

19. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comp. 48:177 (1987) 243–164

20. Okeya, O., Sakurai, K.: Efficient Elliptic Curve Cryptosystems from a Scalar Mul-
tiplication Algorithm with Recovery of the y-Coordinate on a Montgomery-Form El-
liptic Curve. Cryptographic Hardware and Embedded Systems, LNCS 2162 (2001)
126–141

21. G. Orlando and C. Paar. A scalable GF(p) elliptic curve processor architecture for
programmable hardware. In Proceedings of Workshop on Cryptograpic Hardware
and Embedded Systems (CHES 2001)

22. Posch, K.C., Posch, R.: Modulo reduction in residue number systems. IEEE Trans-
action on Parallel and Distributed Systems 6:5 (1995) 449–454

23. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Countermeasures for Smart Cards. e-smart 2001, LNCS 2140 (2001) 200–210

24. Shenoy, A.P., Kumaresan, R.: Fast base extension using a redundant modulus in
RNS. IEEE Transactions on Computer 38:2 (1989) 292–296

25. Sanu, M.O., Swartzlander, E.E., Chase, C.M.: Parallel Montgomery Multipliers.
15th IEEE International Conference on Application-Specific Systems, Architectures
and Processors (ASAP’04) (2004) 63–72

26. Solinas, J.: Generalized mersenne numbers. Research Report CORR-99-39, Center
for Applied Cryptographic Research, University of Waterloo (1999)

27. Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Applications to Computer
Technology. McGraw-Hill (1967)

