
HAL Id: lirmm-00102860
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102860

Submitted on 2 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing Drag-and-Drop Like Manipulations in a
Collaborative and Large Screen Surface Context

Maxime Collomb, Mountaz Hascoët

To cite this version:
Maxime Collomb, Mountaz Hascoët. Implementing Drag-and-Drop Like Manipulations in a Col-
laborative and Large Screen Surface Context. [Research Report] RR-06043, Lirmm. 2006, 25 p.
�lirmm-00102860�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102860
https://hal.archives-ouvertes.fr


Implementing drag-and-drop like

manipulations in a collaborative and large

screen surface context

Maxime Collomb, Mountaz Hascoët

LIRMM, UMR 5506 du CNRS
161 rue Ada

34 392 Montpellier Cedex 5
{collomb, mountaz}@lirmm.fr

Abstract

Drag-and-drop is probably one of the mostly successful and generic illustrations of
direct manipulation technique available in today’s WIMP interfaces. Yet it does
not adapt without major evolutions to the emerging new devices and environments.
Over the past years, several evolutions of drag-and-drop have emerged. The diver-
sity of implementations strategies makes them difficult to integrate into an existing
windowing system. At the same time, standard existing drag-and-drop implementa-
tions vary widely across different windowing systems or toolkit and do not facilitate
integration or evolution.

The aim of this paper is to propose a unifying implementation model capable of
handling most drag-and-drop extensions in a consistent framework while supporting
distributed environments. The proposed model aims at facilitating the implemen-
tation and evolution of drag-and-drop in future windowing systems. Its benefits
are shown with a Java-based implementation. This work builds upon a synthesis
of drag-and-drop implementations, an analysis of requirements of recent evolutions
and a dedicated interaction model based on instrumental interaction.

Key words: distributed display environment, augmented surfaces, drag-and-drop,
interaction model, Java API

1 INTRODUCTION

For years, drag-and-drop has enhanced the WIMP (Windows, Menus, Icons,
Pointer) paradigm. Indeed, drag-and-drop has very good degrees of indirection,
integration and compatibility [10] while many other interaction paradigms

LIRMM - Rapport de recherche 06043 July 2006



found in WIMP are rather indirect manipulation techniques heavily based on
menus or dialogs.

Recent evolutions, like pick-and-drop, further extend the capacities of drag-
and-drop. However, such evolutions also introduce a problem related to com-
patibility, implementation and integration.

As the number of drag-and-drop extensions is increasing, it is important to
have a framework for designer to understand better the difference between
each technique. Such a framework is also very meaningful as a basis for a
unified interface, which let users choose the technique they prefer to use or
like best.

Additionally, drag-and-drop is limited to basic contexts (a single user on a
single computer). However, some extensions like pick-and-drop, hyperdragging
and stitching work over a network, drag-and-drop and all other extensions do
not support distributed environments.

2 DRAG-AND-DROP EXTENSIONS

Over the past few years, progress on multiple or augmented display surfaces
has contributed to the emergence of several new techniques for moving objects
around a desktop or within an application. Indeed, drag-and-drop, as we know
it, reaches its limits when using more complex systems than the traditional
“one screen, one keyboard and one mouse”. And, if drag-and-drop can be used
on interactive surfaces in theory, it is in fact tedious especially on large surfaces
(such as iWall [19] or DynaWall [5]).

2.1 Pick-and-drop

Pick-and-drop [7] has been developed to allow users to extend drag-and-drop
to distributed environments. While drag-and-drop enforces the user to remain
on the same computer while dragging objects around, pick-and-drop let him
move objects from one computer to another using direct manipulation. This
is done by giving the user the impression of physically taking an object on a
surface and laying it on another surface.

Pick-and-drop is closer to the copy-paste interaction technique than to drag-
and-drop. Indeed like the copy/paste operation, it requires two different steps:
one to select the object to transfer, and one to put the object somewhere
else. But pick-and-drop and drag-and-drop share a common advantage over
copy-paste techniques: they avoid the user to deal with a hidden clipboard.

2



However, pick-and-drop is limited to interactive surfaces which accept the
same type of touch-pen devices and which are part of the same network. Each
pen has a unique ID and data are associated with this unique ID and stored
on a pick-and-drop server.

2.2 Hyperdragging

Hyperdragging [8] is part of a computer augmented environment. It helps users
smoothly interchange digital information among their laptops, table or wall
displays, or other physical objects.

Using hyperdragging is transparent to the user: when the pointer reaches the
border of a given display surface, it is sent to the closest shared surface. Hence,
the user can continue its movement as if there was only one computer. To avoid
confusion due to multiple simultaneous hyperdragging, the remote pointer is
visually linked to the computer controlling the pointer (simply by drawing a
line on the workspace).

2.3 Stitching

Stitching [9] is an interaction technique designed for pen-operated mobile de-
vices that allow to start a drag-and-drop gesture on a screen and to end the
gesture on another screen. Devices have to support networking.

A user start dragging an object on the source screen, reach its border, then
crosses the bezel and finishes the drag-and-drop on the target screen. The two
parts of the strokes are synchronized at the end of the operation then bound
devices are able to transfer data.

2.4 Shuffle, Throw or Take it

Geißler [6,16] proposed three techniques to work more efficiently on interactive
walls. The goal was to limit the physical displacement of the user on a 4.5 x
1.1 meters triple display (the DynaWall [5]).

The first technique is shuffling. It is a way of re-arranging objects within
a medium-sized area. Objects move by one length of their dimensions in a
direction given by a short stroke of users on the appropriate widget.

Next, the author proposes a throwing technique. To throw an object, the user
has to achieve a short stroke in the opposite direction that the object should

3



be moving, followed by a longer stroke in the correct direction. Length ratio
between the two strokes determines the distance to which the object will be
thrown. According to the author, this technique requires training to be used
in an efficient way.

The third technique, taking, is an application of the previously described pick-
and-drop to the DynaWall.

2.5 Drag-and-pop and vacuum

Drag-and-pop [17] is intended to help drag-and-drop operations when the tar-
get is impossible or hard to reach, e.g., because it is located behind a bezel or
far away from the user.

The principle of drag-and-pop is to detect the beginning of a drag-and-drop
and to move potential targets toward the user’s current pointer location. Thus,
the user can interact with these icons using small movements.

As an example case of putting a file to the recycle bin, the user starts the
drag gesture toward the recycle bin (fig. 1-left). After few pixels, each valid
target on the drag motion direction creates a linked tip icon that approaches
the dragged object. User can then drop the object on a tip icon. When the
operation is complete, tip icons and rubber bands disappear.

If the initial drag gesture has not the right direction and thus the target icon
is not part of the tip icons set, tip icons can be cleared by moving the pointer
away from them but the whole operation has to be restarted to get a new set
of tip icons.

The vacuum [1], a variant of drag-and-pop, is a circular widget with a user
controllable arc of influence that is centred at the widget’s point of invocation
and spans out to the edges of the display. Far away objects standing inside this
influence arc are brought closer to the widget’s centre in the form of proxies
that can be manipulated in lieu of the original.

2.6 Drag-and-Throw & Push-and-Throw

Drag-and-throw and push-and-throw [15,11] are throwing techniques designed
for multiple displays (one or more computers). They address the limitation of
throwing techniques [6,16] providing users with a real-time preview of where
the dragged object will come down if thrown. These techniques are based on
visual feedbacks, metaphors and the explicit definition of trajectories (fig. 1-

4



center). Three types of visual feedback are used: trajectory, target and take-off
area (area that matches to the complete display).

Fig. 1. (Left to right) Examples of drag-and-pop, push-and-throw and push-and-pop.

Drag-and-throw and push-and-throw have different trajectories: drag-and-throw
uses the archery metaphor (user performs a reversed gesture - to throw an ob-
ject on the right, pointer has to be moved to the left) while push-and-pop uses
the pantograph metaphor (user’s movements are amplified).

The main strength of these techniques is to visualize and control the trajectory
of the object before actually sending the object. So users can adjust their
gesture before validating it. Therefore, contrary to other throwing techniques,
drag-and-throw and push-and-throw have very low error rates [11].

2.7 Push-and-Pop

Push-and-pop [12] was created to combine the strengths of drag-and-pop and
push-and-throw techniques. It uses the take-off area feedback from push-and-
throw while optimizing the use of this area (fig. 1-right): it contains full-size
tip icons for each valid target. The notion of valid target and the grid-like
arrangement of tip icons are directly inherited from the drag-and-pop’s layout
algorithm. The advantage over drag-and-pop is that it eliminates the risk of
invoking a wrong set of targets. And the advantage over push-and-throw is
that it offers a better readability (icons are part of the take-off area), target
acquisition is easier [12] and user can focus on the take-off area.

All these extensions have been developed individually as prototypes with ad-
hoc event models. To represent them in a unified way, we propose to use the
instrumental interaction model.

3 Instrumental interaction model for drag-and-drop and its evolu-
tions

Drag-and-drop and its evolutions can very well be described in the instrumen-
tal interaction model proposed by the author of [10]. The first advantage of

5



this model is that it can be used to clarify the concepts of interaction at stake.
Furthermore, while instrumental interaction was initially introduced as an in-
teraction model, according to the author himself, it can also be considered
as the basis for implementation models. This leads us to the second advan-
tage of this model. Indeed, the implementation model we propose in the next
section could easily be derived from the interaction model described in this
section. We believe that this ensures both adequacy and consistency of the
implementation to the interaction needs.

3.1 Instrumental interaction principles

Instrumental interaction model is based on the concept of interaction instru-
ment [10]. An interaction instrument can be considered as a mediator between
the user and domain objects. The user acts on the instrument, which trans-
forms the user’s actions into commands affecting relevant target objects. In-
struments have reactions enabling users to control their actions on the instru-
ment, and provide feedback as the command is carried out on target objects.

An instrument decomposes interaction into layers (fig. 2):

• Interaction between the user and the instrument: the action of the user on
the instrument and the reaction of the instrument,

• Interaction between the instrument and the domain object: the command
sent to the object and his response, which the instrument may transform
into feedback.

Instrument

Domain object

reactionaction

command response

feedback

Fig. 2. Interaction instrument mediates the interaction between user and domain
objects [10].

6



3.2 Interaction model

Our objective is to define the set of commands and responses that happen
between an instrument and an object when performing drag-and-drop like
operations. Thus, by specifying the exchanges that occur between the do-
main object and the instrument, we aim at making the instrument modular:
a drag-and-drop instrument could be replaced by a pick-and-drop instrument,
changing the actions and reactions set between the user and the instrument
but keeping the same set of commands and responses between the instrument
and the object. Thus the object is not affected by this swapping of instrument.

3.2.1 Instrument and domain objects

As far as standard drag-and-drop is concerned, the instrument part is reduced
to minimum: a pointer that let the user move objects around. But as soon as
one considers extensions such as drag-and-pop, throwing techniques or push-
and-pop, exhibiting an instrument is mostly useful.

In throwing extensions, the metaphors used based on pantograph and archery
metaphor directly suggest the use of an instrument. In pick-and-drop, a real
physical instrument, the pen, is used to perform the operation from one screen
to another. In other cases, the instrument is less visible but still, reactions and
feedback provided with these techniques can be embodied by an instrument.

Domain objects can be of various kinds: icons, pieces of text, images, etc.
but they have to be differentiated depending on the part they play in the
operation. Indeed, domain objects will be acting either as source or as target :
a source is being moved over potential targets until the user ends the operation
by dropping the source over the target.

3.2.2 Actions, Reactions and Feedback

There are mainly four actions that occur when a user performs dragging and
dropping:

• Source selection and target selection,
• Specification of type of action,
• Data transfer (validation of the selected target) and
• Cancellation.

As soon as drag-and-drop extensions become available in windowing systems,
a fifth action has to be considered. This action consists of:

7



• Choice/activation of one type of instrument.

There are many ways the latter action could be performed. In most cases, the
user might want to specify he uses one type of instrument as default and thus
the choice might appear as one aspect of his profile. But in some cases he
might want to shift between two instruments on the fly. This is mostly useful
for more elaborated instruments where some instruments perform better for
some task than for other. For example, push-and-pop has proved to be faster
and more accurate than push-and-throw for sending on source object to one
target object, but at the same time it does not make possible to reach any
area in the display. With push-and-pop, only potential targets can be reached.
When a user just wants to move one object to a non-target location (a position
on the desktop, for example), he has to use another instrument. In order to
keep the interaction fluid, this change should be performed on the fly. In the
case of push-and-pop the user can switch between two instruments by just
bringing the source object back to its initial position. By doing so, the current
instrument deactivates and hands the rest of the operation over to a push-
and-throw instrument.

In most existing windowing systems, the four core actions mentioned above
are performed very easily. To select one or several sources, the user just moves
the pointer over the source(s) and clicks on the mouse (or other pointing
device) and remains pressed, thus obtaining a ghost (also called drag icon).
This ghost can further be dragged over the target to select it. While dragging,
users can change the type of action they want to perform by using modifier keys
such as CTRL or ALT in Windows/Linux systems, OPTION or COMMAND
on MacOS systems. They are usually three types of actions available: copy,
move, make a link (or alias). Lastly, while dragging, users can also cancel the
operation by pressing ESC so that the drag is interrupted and all dragged
sources return to their original location.

For regular drag-and-drop, when these actions are performed, windowing sys-
tems provide feedback usually referred to as drag-under visual effect and drag-
over visual effect.

Drag-over effects consist mainly in feedback that occurs on a source object.
Typically, during a regular drag on a source, the pointer shape changes into
a drag icon or ghost that represents the data being dragged. This icon can
change during a drag to indicate the current action (copy/move/alias). Hence
drag-over feedback mainly consists of shape and colour of source ghost changes
when the user changes the type of action, or when drop becomes possible
/ impossible. Some windowing systems may go a step beyond by providing
animation: to indicate that the action was cancelled, they may animate ghosts
back to their original position. It is interesting to note that even if drag-and-
drop model is mature, not all windowing systems offer this feature. When no

8



animation is provided, it is significantly more difficult for the user to follow
the effect of its cancellation.

Drag-under visual effects represent feedback provided on the target side. It
conveys information when a potential target has a drag icon passing through
it. The target can respond in many ways, by modifying its shape and colour
or even in more sophisticated cases by performing actions. For example, when
moving a file over a set of folders, when the file remains above a certain folder
a sufficient amount of time, the folder might open up to let the user recursively
explore the file hierarchy to the desired target folder.

If drag-over and drag-under visual effects are sufficient to describe feedback
in the case of regular drag-and-drop operation, they are not for most of its
recent extensions. In the latter case, more feedback is added that cannot really
be considered as drag-under or drag-over. This additional feedback will be
referred to as instrument feedback. For example, in the case of drag-and-pop
rubber bands are used to help user with locating/identifying potential targets.
Furthermore, when a user initiates a drag, for both drag-and-pop and push-
and-pop computation and display of a rearrangement of all potential targets is
needed. This will be part of the reaction and feedback provided by the related
instrument. In the case of throwing, take-off areas as well as trajectories are
displayed to help user adjust its target selection. Similar additional feedback
is used in other extensions.

As a summary, in an instrumental view of drag-and-drop techniques at large,
five main actions can be exhibited and feedback can be decomposed into three
types of feedback: drag-under feedback, drag-over feedback and instrument
feedback. When a user needs to change from one instrument to another one,
drag-under and drag-over visual effects might be preserved, only instrument
feedback would vary.

3.3 Comparison of instruments

In this section we consider that all potential drag-and-drop techniques can be
embodied in an instrument. These instruments let the user perform some or
all of the five actions mentioned in previous section and provide different types
of feedback. All instruments differ in several ways. Our aim is to exhibit the
dimensions that matters in a comparison.

An instrument mediates the interaction between user and domain objects
[10] (fig. 2). The interactions between the instrument and a domain object
(commands/responses) are the same for all drag-and-drop like instruments.
On the contrary, interactions between the user and the instrument (actions /
reactions / feedback) are specific to each instrument.

9



We can now compare all the techniques described in the previous section: drag-
and-drop, pick-and-drop [7], hyperdragging [8], throwing [6,16] drag-and-throw
[15], push-and-throw [15], accelerated push-and-throw [12], drag-and-pop [17]
and push-and-pop [12].

3.3.1 Actions

The users’ actions are different: for a drag-and-throw, a push-and-throw or an
accelerated push-and-throw instruments, the pointer is moved all the way to
the target. Users have to constantly monitor the reactions and feedbacks of
the instrument and reorient themselves as it is virtually impossible to guess
upfront where their pointer (finger, mouse pointer, etc.) has to be in order to
acquire a target.

In contrast, drag-and-pop and push-and-pop instruments involve a single fairly
dramatic movement on the screen. Once users have identified the target tip
icon, they can complete the interaction easily: the target is at a stable location
and acquiring it requires only very little attention. However, since different
drag directions cause the tip cluster to be a little different every time, users
need to re-orient once to identify the correct tip icon. In drag-and-pop, the
rubber bands have been designed to help users in that task.

Actions might also differ along another dimension: the direction of the hand
motion and the direction of the throw is either opposite or not. In drag-and-
throw, the user drags the pointer in the opposite direction of the throw until
the target is selected. This is consistent with the archery metaphor. On the
contrary, with other instruments such as push-and-pop or drag-and-pop, the
user aims by moving his hand in the actual direction of the target.

Drag-and-drop and hyperdragging involve basic dragging and dropping actions.
The difference is that hyperdragging allows the pointer to leave its display.
Pick-and-drop is also very close to drag-and-drop except that two clicks are
necessary to complete an operation.

In the throwing initial technique, users needed to make two strokes which
direction and length determined the position where the involved object was
thrown.

3.3.2 Reactions

Reactions are trivial for drag-and-drop, pick-and-drop and hyperdragging in-
struments.

There is a major difference between push-and-throw and drag-and-pop instru-

10



ments: while reactions of push-and-throw based instruments are visible all
over the display, reactions of drag-and-pop based instruments are visible in
the users’ motor space. Hence, the focus of the user will not be the same when
using these techniques.

Indeed, when using drag-and-throw or push-and-throw, the pointer moves in
a small area (the take-off area), but the source object is replicated as a ghost
and moves all over the display. Hence, users mostly focus on ghost and targets
all over the display.

On the contrary, using drag-and-pop keeps users’ focus in their motor space.
Indeed, potential targets are replicated close at hand near the pointer thus in
the space reachable by the user, that we call motor space.

We call ‘to target’ instruments the instruments of the type of drag-and-throw.
They replicate source object with a ghost that is pushed toward the potential
targets real position. They can be opposed to ‘to pointer’ instruments - such
as drag-and-pop - that replicate targets as ghosts and move ghosts toward the
pointer real position (e.g. the source object real position). Throwing uses a ‘to
target’ approach since it throws the object in the direction of the target.

3.3.3 Feedback

Only drag-under and drag-over visuals are used for drag-and-drop and pick-
and-drop instruments.

Hyperdragging adds a trajectory feedback that links the remote pointer to its
original display.

Throwing initial technique does not provide any instrument feedback. This
is probably the critical point that yields high error rates and low precision.
Indeed, in the context of throwing, instrument feedback can be considered a
specific type of recognition feedback. As it was suggested by [4],

“Recognition feedback allows users to adapt to the noise, error, and miss-
recognition found in all recognizer-based interactions”.

Drag-and-throw and push-and-throw introduce two feedbacks: the take-off area
and the trajectory. Accelerated push-and-throw can not offer the take-off area
feedback so only trajectory is used.

Drag-and-pop offer two kinds of visual feedbacks: the tip icons and the rubber
bands that link the tip icons to their originals.

Push-and-pop combines strengths of push-and-throw and drag-and-pop. There-

11



fore, it uses the take-off area and the tip icons feedbacks.

Table 1 sums up the design dimensions of all the instruments discussed in this
section.

technique Action Reaction Feedback

(need to reorient) (approach)

drag-and-drop never - -

pick-and-drop never - -

hyperdragging never - trajectory

throwing never to target -

drag-and-throw / constantly to target take-off area

push-and-throw and trajectory

acc. push-and- constantly to target trajectory

throw

drag-and-pop once to pointer tip icons and

rubber bands

push-and-pop once, later never to pointer take-off area

and tip icons
Table 1
Design dimensions of direct manipulation instruments.

4 Toward an open unified implementation model

So far, the extensions discussed above are developed individually with ad-hoc
event models. Most of them remain as prototypes. However, Hyperdragging
was implemented for a specific system in the Sony products under the Flying-
Pointer name [18].

It is striking to observe the diversity of implementations of actual regular
drag-and-drop in different windowing systems [14,13]. The lack of a unified
and open implementation model over different platforms hampers the integra-
tion of evolutions and the support of distributed environments. So far, only
pick-and-drop and hyperdragging have been implemented in a multi-users en-
vironment.

The objective of this work is to propose a unified and open model for all
drag-and-drop like manipulations. This includes drag-and-drop of course, but

12



also its recent evolutions described above. These evolutions include additional
reactions and enriched feedback. They also require multi-machine support.
Our aim is to build a model out of past experiences and new requirements
to facilitate the integration of recent and future extensions of drag-and-drop
like operation. In order to illustrate the use of our model, we provide a Java-
based implementation and illustrate its benefits with the implementation of
two techniques: drag-and-drop and push-and-pop (which can be deactivated
into push-and-throw).

4.1 Principles

The core of our model is the event model. One important aspect of our model is
modularity: source and target components of the operation should be notified
of relevant events and their behaviour should not be reconsidered with every
new technique.

In order to achieve this modularity, the key elements are a DmManager and
a DmAbstractInstrument, which are responsible for managing all the oper-
ations: notifying the components of the different events that occur during
the operation, and eventually displaying some visual clues (depending on the
technique that is used). The DmManager is visible to the components which
support drag-and-drop like operations. It manages register of source and tar-
get components. On the other hand, the DmAbstractInstrument manages the
actual behaviour of an instrument.

Amongst existing windowing systems, MacOS is the only one to provide a
similar entity [13], which is called DragManager in the Carbon toolkit. In the
Cocoa toolkit, the drag-and-drop mechanism is deeply included in the system
and such entity does not appear to the developer.

DmManager and DmAbstractInstrument entities ensure a consistent behaviour
between the different applications that use the technique: for example, it is
very distracting to have two applications performing different actions (copy,
move, etc.) when the same modifier key (shift, ctrl) is used. Another example
of such inconsistent behaviour can be found when different shortcuts are used
for the same commands (e.g. cut/copy/paste actions are usually shortcut by
ctrl+x, ctrl+c and ctrl+v, but we can still find some applications that use
shift+delete, ctrl+insert and shift+insert).

The whole drag-and-drop behaviour lies in the DmAbstractInstrument entity.
This allows modularity. To change from one interaction technique(say drag-
and-drop) to another one (say push-and-pop), only the instrument needs to be
changed. The components (sources or targets) do not need to be aware of it.
Whatever technique is used, source and target components act the same and

13



are notified of same types of events.

4.2 Architectural model

The model that we propose was kept as simple as possible. As shown in fig.
3, we introduced two interfaces that have to be implemented by the source
(DmSourceListener) and the target (DmTargetListener) components. We fur-
ther introduce two event types and a DmManager class that manages the
registration process for source and target components. Finnaly, we define a
DmAbstractInstrument that contains the instrument behaviour.

Fig. 4 shows an UML sequence diagram of a successful object manipulation.
It uses a source and a target component that can be any visible component
which is capable of receiving a full set of pointing device events.

DmSourceEvent

−x:int

−y:int

−deviceID:int

−accepted:boolean

−srcAccepted:boolean

−action:int

−success:boolean

−supportedDataTypes:ArrayList<String>

−dataTypeRequired:String

−textualProxy:String

−graphicalProxy:ImageIcon

+startDm(dataTypes:ArrayList<String>):void

+setData(data:ITransferableData):void

<< interface >>

IDmSourceListener

+dmDetected(e:DmSourceEvent):void

+dmSourceOver(e:DmSourceEvent):void

+dmSourceActionChanged(e:DmSourceEvent):void

+dmDataRequired(e:DmSourceEvent):void

+dmEnded(e:DmSourceEvent):void

+dmSourceTextualProxyNeeded(e:DmSourceEvent):void

+dmSourceGraphicalProxyNeeded(e:DmSourceEvent):void

DmTargetEvent

−x:int

−y:int

−deviceID:int

−accepted:boolean

−action:int

−success:boolean

−supportedDataTypes:ArrayList<String>

−textualProxy:String

−graphicalProxy:ImageIcon

+getData(dataType:String):ITransferableData

+accept():void

+reject():void

+success():void

+failure():void

<< interface >>

IDmTargetListener

+dmEntered(e:DmTargetEvent):void

+dmTargetOver(e:DmTargetEvent):void

+dmExited(e:DmTargetEvent):void

+dmTargetActionChanged(e:DmTargetEvent):void

+dmReceive(e:DmTargetEvent):void

+dmTargetTextualProxyNeeded(e:DmTargetEvent):void

+dmTargetGraphicalProxyNeeded(e:DmTargetEvent):void

DmAbstractInstrument

−rank:int (either MASTER_INSTR or SLAVE_INSTR)

+inputEventDispatched(e:Event):void

+masterToSlaveMessage(m:Serializable):Serializable

+slaveToMasterMessage(m:Serializable):Serializable

+feedback(g:Graphics):void

DmManager

−dmMasterInstrument:DmAbstractInstrument

−dmSlavesInstrument:ArrayList<DmAbstractInstrument>

−dmSources:HashTable<Component, IDmSourceListener>

−dmTargets:HashTable<Component, IDmTargetListener>

+registerSource(c:Component,l:IDmSourceListener):void

+unregisterSource(l:IDmSourceListener):void

+registerTarget(c:Component,l:IDmTargetListener):void

+unregisterTarget(l:DmTargetListener):void

+inputEventDispatched(e:Event):void

+createSlaveInstruments():void

+destroySlaveInstruments():void

+createSlaveInstrument(masterID:int):void

+destroySlaveInstrument(masterId:int):void

+feedback(g:Graphics):void

lirmm.PoIP.dm

1..*

*

*

Fig. 3. Class diagram of drag-and-drop model.

4.2.1 DmSourceListener

The DmSourceListener interface contains all the methods needed by the source
component to manage a drag-and-drop like operation.

The activation gesture must be detected by the instrument because it could
be different from one technique to another (e.g. the beginning of a drag for
drag-and-drop, a click for pick-and-drop, etc.). When this gesture is detected,

14



the source component is notified by dmDetected() and should return the types
of the data to be transferred by specifying the supported data types and by
calling the startDm() method of the received event. Note that there can be
several data types.

During the operation, the source component is notified by dmSourceOver()
and dmSourceActionChanged() methods while the pointer is moving or mod-
ifier keys (alt, ctrl, shift) are enabled or disabled.

When the object is dropped, the source component is asked for the actual data
to transfer through the dmDataRequired() method that receives the data type
requested by the target in parameter. This method should return the data to
transfer in the specified format using the setData() method of the event. And,
after the data is submitted to the target component, the source is notified of
the end of the operation through the dmEnded() method. So the source knows
if target has successfully received and handled data and is able to process some
updates if necessary.

Note that it is important that dmDetected() method returns one or more
data formats and that the actual data is transferred later through the dataRe-
quired() method. Indeed, generating the data can trigger a long process and
it could be awkward for the user to have a delay at the beginning of the
drag. Furthermore, why generating the data on several formats since most
likely only one format will be used by the target? Some current systems (e.g.
Java/Swing) do not offer this possibility [13].

Finally, a source component of a drag-and-drop like manipulation should be
able to give a graphical and a textual proxy of it. Such proxy can be used for
displaying a ghost or tip icon at pointer location while dragging for example.

4.2.2 DmTargetListener

The DmTargetListener interface has to be implemented by a component that
wants to be a potential target for drag-and-drop like techniques.

When an object is being dragged over a target, the component is notified by
dmEntered() method. The target component should then call the accept() or
the reject() method of the received event depending on its abilities to handle
the supported data types (getSupportedDataTypes() method of the event).
While the object is moved over the target, the component is notified through
the dmTargetOver() method so it can display some visual feedbacks (drag
under) and when the object leaves the target, the component’s dmExited()
method is called. If ever the user changes the way to transfer the object (by
pressing alt, shift or ctrl modifiers), the component is notified by the dmTar-
getActionChanged() method. The target component is notified of this event

15



e.success() should
be called by tl.

e.accept() should
be called by tl.

t:C
om

ponent
tm

:ID
m

T
argetListener

m
ngB

:D
m

M
anager

slaveA
:D

m
A

bstractInstrum
ent

slaveB
:D

m
A

bstractInstrum
ent

e.startD
m

(supported−
D

ataT
ypes) should

be called by sl.

m
asterA

:D
m

A
bstractInstrum

ent
m

ngA
:D

m
M

anager
sl:ID

m
S

ourceListener
source:C

om
ponent

S
im

ple drag−
and−

drop

 .registerS
ource(source,sl)

 .create
 .create

1) .dm
D

etected(e)

1) dm
D

etected

 .create

2) .createS
laveInstrum

ents()

2) createS
laveInstrum

ents

 .create

3) .createS
laveInstrum

ent(id)

3) createS
laveInstrum

ent

 .create

4) .m
asterT

oS
laveM

essage(P
O

IN
T

E
R

_M
O

V
E

D
):T

A
R

G
E

T
_C

H
A

N
G

E
D

4) m
asterT

oS
laveM

essage

5) .dm
E

ntered(e)

5) dm
E

ntered

6) .dm
T

argetO
ver(e)

6) dm
T

argetO
ver

7) .dm
S

ourceO
ver(e)

7) dm
S

ourceO
ver

8) .dm
R

eceive(e)

8) dm
R

eceive

9) .getD
ata

9) 

10) .dm
D

ataR
equired(x)

10) dm
D

ataR
equired

11) .dm
E

nded(e)

11) dm
E

nded

C
om

puter A
C

om
puter B

12) .destroyS
laveInstrum

ents()

12) destroyS
laveInstrum

ents

 .destroy

13) .destroyS
laveInstrum

ent(id)

13) destroyS
laveInstrum

ent

 .destroy

 .unregisterS
ource(sl)

 .unregisterT
arget(tl)

 .registerT
arget(t,tl)

Fig. 4. Sequence diagram of drag-and-drop model.

before the source component.

At the end of the operation, the dmReceive() method is called for the listener
of the target component. The target component is able to know the supported
data types (event method getSupportedDataTypes()) and can ask for the data
in a given format thanks to the method getData() of the event. Once the data
is received, either success() or failure() method of the event has to be called.
So the system and the source component are aware of whatever data transfer
succeeded or not.

16



Like the source component, the target must be able to create graphical and
textual proxies of itself. It can be used by techniques like drag-and-pop. Drag-
and-pop creates new ghosts near the mouse pointer for a set of selected targets.

4.2.3 DmManager

The DmManager aims at managing the core of the instrument. It is the in-
terface between the user and the domain objects. It manages actions of the
user and responds with reactions and feedbacks. To do so, it uses a com-
mand/response set of methods to communicate with the domain objects (source
and target components). This set of methods is defined by DmSourceListener
and DmTargetListener and are meant to stay unchanged. It is the counterpart
to have a modular instrument: interfaces have to be standard and therfefore
fixed a priori.

4.2.4 DmAbstractInstrument

DmAbstractInstrument is an abstract instrument that implements the be-
haviour of the instrument. It knows the registered source and target compo-
nent thanks to DmManager. An instrument can be a master instrument or a
slave instrument. A DmManager owns one and only one master instrument
and a variable number of slave instruments. Slave instruments were introduced
mainly for multi-machine support but they are also used in a single machine
environment for consistency purposes. Slave instruments are usually used for
finding which component is at a given position or for visual feedbacks.

A master instrument asks for the creation of slave instruments when a drag-
and-drop like manipulation is detected and asks for their destruction at the
end of the manipulation. Thus, a master instrument is linked to n slave instru-
ments during a drag-and-drop like manipulation. n is the number of accessible
surfaces (an accessible surface owns a DmManager).

For example, suppose two computers (A and B) share their surfaces and a
drag-and-drop instrument is used on computer A while a push-and-pop instru-
ment is in use on computer B. Then, if the user of A starts a drag-and-drop
from A, the DmManager of A, which already owns a master drag-and-drop in-
strument, will create a slave drag-and-drop instrument. DmManager of B will
also create a slave drag-and-drop instrument for A. Now, if at the same time
the user of B starts a push-and-pop on B then a slave push-and-pop instru-
ment will be added to both DmManager of A and DmManager of B, though
DmManager of B already owns a master push-and-pop instrument. In other
words, if the two users of A and B perform drag-and-drop like operations at
the same time, each DmManager will three instruments: one master and two
slaves per DmManager.

17



Several types of instruments can be used without any problem, but only on
type of instrument is linked to a given surface (i.e. an input device). At any
time, a DmManager owns exactly one master instrument and as many slave
instruments as drag-and-drop like manipulations are running.

4.3 Multi-computer support

Implementing an interaction technique, such as drag-and-drop or its exten-
sions across machines, is a real challenge. Multi-computer environments are
particularly difficult to handle especially when interaction takes place dynam-
ically. In this context, where the user starts dragging on one computer and
drops on another machine that he selects “on the fly”, several well-known
problems arise: (1) the spontaneous device sharing problem [9], (2) incom-
patibility of heterogeneous windowing systems implementations and (3) data
transfer problem.

Hence, existing drag-and-drop implementations do not provide any support for
distributed display environments. In related work, pick-and-drop and hyper-
dragging are designed and implemented for interactions between computers.
They do not aim at providing a general implementation that would solve the
problems mnetioned above and extend easily to other drag-and-drop like tech-
niques.

Pick-and-drop is probably the most emblematic example as it is the first multi-
computer direct manipulation technique. Nevertheless as for others that fol-
lowed, the implementation is ad-hoc and cannot easily extend to support the
requirements needed by most other extensions discussed earlier in this paper.
Indeed, based on a combination of Pen-ID associated with a specific device (a
pen) and a server (called pen manager), the implementation of Pick-and-drop
is not only device dependent but also very specialized. It cannot extend easily
to handle most of the feedback needed in other drag-and-drop extensions.

Providing a framework that would solve all of the three problems mentioned
above in a general way goes beyond the scope of this paper. In particular, over
the past decades, progress with data transfer protocols and formats have been
made. When this field comes to maturity, solutions for the data transfer prob-
lem will come somewhat naturally. More recently, the need for binding together
devices “on the fly” to share information [2], collaborate or communicate has
already led to partial solutions for the “spontaneous device sharing problem”
[9]. The aim of our work is to propose a solution for the second problem
mentioned above: incompatibility of heterogeneous windowing systems imple-
mentations. However, we have designed a simple basis for supporting multiple
users to work collaboratively on distributed display environments.

18



The concept of SharedSurface was introduced. SharedSurface shares the sur-
face of a given GUI component by a registration on a RemoteSurfaceServer.
All the shared surfaces compose one continuous shared space where pointers
can move transparently from one to another and perform drag-and-drop like
operations as well. In order to support these operation each shared surface
handles one unique DmManager and each DmManager handles one unique
master instrument.

4.3.1 Remote surface server

A RemoteSurfaceServer has a very simple behaviour: it maintains a list of
shared surfaces and manages the topology of surfaces. For example, if a surface
needs to know which surface is on its left, it asks the RemoteSurfaceServer.

4.3.2 Shared surface

A SharedSurface owns a name and a unique ID. It receives all input events that
occur on the linked component and controls a fake pointer. The fake pointer
has the same unique ID as the shared surface that controls it. The fake pointer
can move over all shared surfaces registered on the RemoteSurfaceServer.

This implies that several pointers can act on the same surface at a given time.
The model described here allows identifying each input device thanks to its ID.
Thus, components (or domain objects) have to be able to deal with multiple
input devices. It is possible for a DmManager to handle simultaneous drag-
and-drop like manipulations that end on the same target component, but
this target component must be able to handle mixed events from the two
simultaneous interactions.

4.4 Pros & Cons of the model

As already said, an asset of this model is to offer a consistent behaviour
through the different applications that use drag-and-drop or drag-and-drop-like
techniques unlike X-Window/Motif and Windows/OLE systems [13]. Down-
side, customizations (e.g. visual feedbacks like drag-over effects) are not al-
lowed for source and target components. Such customizations could conflict
with the visual feedbacks or hints managed by the DmAbstractInstrument it-
self. Moreover, cancellation of the operation can only be made by the DmAb-
stractInstrument and therefore the source application has no control over it.

Another asset of this model is to simplify the concepts. A developer who wants
his component to support drag-and-drop like manipulations only deals with

19



five classes.

However, the data management has not been simplified. If transfered data is
of basic type (i.e. text, files list, image), then data creation is very simple. Else,
developer will have to write its own class to manage data or to convert data
into a textual form. As mentioned earlier, we do not focus on data management
in this paper: the proposed model concentrates on the event and interaction
models. The definition of a scalable way to represent data goes past our es-
tablishment of an interaction model. Furthermore, such data representations
already exist (e.g. OLE, MIME, etc.).

The main asset of this model is to allow use of any drag-and-drop extensions by
only replacing the dmMasterInstrument entity. Source and target components
do not need to be aware of the interaction technique to be used. The dmMas-
terInstrument property can be changed dynamically. The DmManager serves
as an intermediary between source and target components, the instrument and
the user.

And finally, this model can support multi-device systems and thus multi-
computer systems thanks to the management of a device identifier.

5 IMPLEMENTATION

The model previously described has been implemented in a Java API. Three
type of instrument have been included as this API: a drag-and-drop instrument
and a push-and-pop instrument that can be deactivated into push-and-throw.
This combination has been chosen because push-and-pop was found to be the
most efficient [12] and thanks to the push-and-throw deactivation, all possible
locations on a workspace can be reached (contrary to push-and-pop).

This implementation has a limitation: system-wide drag-and-drop like opera-
tions are not allowed. It is only possible to manipulate domain objects that
are registered in the DmManager thus created in a Java environment. The
reason for that is that doing system-wide drag-and-drop like operations prop-
erly would require this system to be implemented at the windowing system
level. This, in turn requires a redesign and major reimplementation of very
low level system routines that goes beyond our scope.

20



5.1 Implementation choices

5.1.1 The communication technology

The communication technology chosen is the Remote Method Invocation (RMI)
of Java. This led us to introduce several interfaces. Indeed, a stub interface is
needed for each class for which methods can be invoked remotely (e.g. Shared-
Surface, RemoteSurfaceServer, DmManager, etc.).

When invoked remotely methods are likely to throw RemoteException. It
seemed inadequate to ask that source and target components’ listeners’ meth-
ods throw RemoteExceptions. For this reason, a proxy is created for each
listener.

On the other hand, parameters of remotely invokable methods have to be
serializable (implement the Serializable interface). This includes particularly
events and data.

The use of RMI is efficient (no lag) and transparent for users. There is no
sensible difference when a fake pointer moves on its local surface or on a
remote shared surface.

5.1.2 Input events

All input events are captured by adding an AWTEventListener to the default
Toolkit. Events are consumed and re-generated while adding a device ID and
moving the fake pointer.

To make sure that the system pointer does not exit the component linked to
the SharedSurface, a Robot is used to re-centre the system pointer. However,
it is possible to avoid the use of a Robot. Removing the Robot presents one
advantage but also one drawback. The advantage is that it avoids potential
conflicts with direct pointing devices (e.g. Mimio, SmartBoard). Hence without
the Robot, direct pointing devices can be used safely. The problem though is
that in this case, drag-and-drop is bound to a single surface. Only push-and-
pop or other such techniques can be used to move an object from one surface
to another. This is consistent: a direct pointing device is bound to its surface.

5.1.3 Visuals

In order to display fake pointers and instrument feedbacks, a layered pane is
created on top of the component linked to a SharedSurface.

21



Fig. 5. (Top to bottom) (a) drag-and-drop (b) push-and-pop (c) push-and-throw (d)
two concurrent manipulations: a push-and-throw from A to B and a push-and-pop
from B to A.

5.1.4 Drag-and-drop instruments

The drag-and-drop instrument (fig. 5 - (a)) has been implemented without
using the existing drag-and-drop mechanism included in Java. It directly an-
alyzes the mouse event on the source and target components.

A ghost, provided by the source component, is displayed at the pointer location
by a slave instrument.

Communications between the master instrument and its slaves occur at differ-
ent stages: when the source component listener is needed (at the beginning of
a drag-and-drop), when the location of the fake pointer changes (so the ghost
should also move), when the target component changes and when the ghost
image changes (occurs only once).

22



Concerning the events, if a target refuses an operation when the dmEntered()
method is triggered, it will not be notified of any other event (dmExited(),
dmTrgOver(), dmReceive()).

5.1.5 Push-and-pop instrument

The push-and-pop instrument (fig. 5 - (b) and (d)) creates an array of targets
around the pointer [12,17].

The set of targets only contains targets that accept the manipulated domain
object. Indeed, when creating the set, each target’s dmEntered() and dmEx-
ited() methods are called. If the event’s accept() method is called, the poten-
tial target component is included in the array. Otherwise, if reject() method
is called, the component is ignored.

The array of targets is laid out with the mechanism described by authors of
[17]. The original algorithm was enhanced by the ability to manage a set of
icons representing targets of different sizes. If a target provides a graphical
proxy which is too large, the image is reduced. This can be done either by
scaling the entire image or by cropping it. The best method has still to be
specified. Examples of too large images are returned by components like text
areas or text fields.

The take-off area (i.e. array of targets) contains a circle at the starting point
of the manipulation. By pointing back to this circle, the push-and-pop is de-
activated into push-and-throw [12] (fig. 5 - (c) and (d)). As mentioned earlier,
Push-and-throw is another technique that allows the user to reach any part
of the workspace and not only on a pre-selected set of targets. This is useful
when rearranging icons on a desktop or when moving some text inside a text
area, for example.

5.2 Modularity

In order to use a new drag-and-drop like technique, developers need to create a
new class that inherits from DmAbstractInstrument. Events described in the
DmSourceListener and DmTargetListener have to be triggered by this new
instrument.

In order to enable components for drag-and-drop like interactions, they have to
implement DmSourceListener and/or DmTargetListener interfaces and regis-
ter themselves by calling the (Un)RegisterSource() and/or (Un)RegisterTar-
get() methods.

23



It is possible to switch instruments easily by setting the dmMasterInstrument
property of the DmManager. Note that a drag-and-drop like manipulation
should not be running while switching instruments.

Multi-machine manipulations introduce a new issue: topology of the different
displays has to be known because relative positions of components are used to
generate the take-off area [15]. Such topology is used by authors of [3] but do
not manage mobile displays (e.g. laptops). A much more dynamic topology is
proposed by authors of [8], but it uses a complex camera-driven system. At this
point, a compromise has to be found between functionalities and complexity.

6 CONCLUSION

We proposed a new implementation model for drag-and-drop and its exten-
sions. The main strengths of the model are: (1) openess and modularity for
the programmer - programming a new technique requires little effort (2) mod-
ularity for the user - who can choose his preferred technique a little like one
chooses his favourite X-Window manager and (3) multi-computer support for
drag-and-drop like operations.

Compared to many drag-and-drop implementations, we introduced more con-
sistency by adding the notion of instrument and a DmManager entity that
ensures the same behaviour for every drag-and-drop like operation.

In addition to the model, we implemented a Java-based API that implements
three instruments: drag-and-drop, push-and-throw, and push-and-pop. This
API and an example of use are available at http://edel.lirmm.fr/dragging/.

References

[1] A. Bezerianos and R. Balakrishnan. The vacuum: facilitating the manipulation
of distant objects. In ACM CHI ’05 Proceedings, pages 361–370, ACM PRESS,
2005.

[2] Jolle Coutaz, Stanislaw Borkowski, and Nicolas Barralon Coupling Interaction
Resources: an Analytical Model. In EUSAI’2005, pages 183–188, 2005.

[3] Brad Johanson, Greg Hutchins, Terry Winograd, and Maureen Stone.
Pointright: experience with flexible input redirection in interactive workspaces.
In ACM UIST ’02 proceedings, pages 227–234, ACM Press, 2002.

[4] Dan R. Olsen and S. Travis Nielsen. Laser pointer interaction. In ACM
CHI’2001 proceedings, pages 17–22, ACM PRESS, 2001.

24



[5] Fraunhofer institute. The dynawall project.
http://www.ipsi.fraunhofer.de/ambiente/english/projekte/projekte/dynawall.html.

[6] J. Geißler. Shuffle, throw or take it! working efficiently with an interactive wall.
In ACM CHI ’98 proceedings, pages 265–266, ACM Press, 1998.

[7] Jun Rekimoto. Pick-and-drop: a direct manipulation technique for multiple
computer environments. In ACM UIST ’97 proceedings, pages 31–39, ACM
Press, 1997.

[8] Jun Rekimoto and Masanori Saitoh. Augmented surfaces: a spatially continuous
work space for hybrid computing environments. In ACM CHI ’99 proceedings,
pages 378–385, ACM Press, 1999.

[9] K. Hinckley, G. Ramos, F. Guimbretiere, P. Baudisch and M. Smith. Stitching:
Pen Gestures that Span Multiple Displays. In Proceedings of AVI’04, pages
23–31, ACM PRESS, 2004.

[10] Michel Beaudouin-Lafon. Instrumental interaction: an interaction model for
designing post-wimp user interfaces. In ACM CHI ’00 proceedings, pages 446–
453, ACM Press, 2000.

[11] M. Collomb and M. Hascoët. Speed and accuracy in throwing models. In
HCI2004, Design for life, Volume 2, pages 21–24. British HCI Group, 2004.

[12] M. Collomb, M. Hascoët, P. Baudisch, and B. Lee. Improving drag-and-drop
on wall-size displays. In Proceedings of Graphics Interface 2005, Victoria, BC,
2005.

[13] M. Collomb, M. Hascoët. Comparing drag-and-drop implementations. Technical
Report RR-LIRMM-05003, LIRMM, University of Montpellier, France, 2005.

[14] M. Hascoët, M. Collomb, and R. Blanch. Evolution du drag-and-drop : du
modèle d’interaction classique aux surfaces multi-supports. revue I3, 4(2), 2004.

[15] M. Hascoët. Throwing models for large displays. In HCI2003, Designing for
society, Volume 2, pages 73–77. British HCI Group, 2003.

[16] N. A. Streitz, J. Geißler, T. Holmer, S. Konomi, C. Mller-Tomfelde, W. Reischl,
P. Rexroth, P. Seitz, R. and Steinmetz. i-LAND: an interactive landscape for
creativity and innovation. In ACM CHI ’99 proceedings, pages 120–127, ACM
PRESS, 1999.

[17] P. Baudisch, E. Cutrell, D. Robbins, M. Czerwinski, P. Tandler, B. Bederson,
and A. Zierlinger. Drag-and-pop and drag-and-pick: techniques for accessing
remote screen content on touch and pen-operated systems. In Proceedings of
Interact 2003, Sep. 1–5 2003.

[18] Sony Japan. Flyingpointer.
http://www.sony.jp/products/consumer/pcom/software 02q1/flyingpointer.

[19] Stanford University ComputerScience. The stanford interactive workspaces
project. http://iwork.stanford.edu/.

25


