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ABSTRACT
Mining data warehouses is still an open problem as few approaches
really take into account the specifities of this framework (e.g. mul-
tidimensionnality, hierarchies, historized data). Multidimensional
sequential patterns have been studied. However, they do not pro-
vide any way to handle hierarchies. In this paper, we propose an
original method of extraction of sequential patterns taking into ac-
count the hierarchies. This method extracts more accurate knowl-
edge and extends our preceding approach M2SP. We define the con-
cepts related to our problems as well as the associated algorithms.
The experiments which we carried out show the interest of our pro-
posal.
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1. INTRODUCTION
The techniques of data mining can provide a considerable help
in the OLAP framework ([5]) where the user must make the best
adapted decisions in a minimum of time. More precisely, data min-
ing is a key step in the decisional process considering large vol-
umes of multidimensional data. Indeed, mined patterns or rules
allow another view of the original data. However, discovering such
rules needs some parameters. In particular, it needs minimal sup-
port which corresponds to the minimal frequency the patterns occur
within the database. If the selected minimal support is too high, the
number of rules discovered is weak and the rules are too general to
be useful. If the support is too low, the number of mined rules is
very important and makes difficult the analysis of those. The de-
cision maker is then confronted with the following problem: how
to lower the minimal support without generating the discovery of
non-relevant rules? Or how to increase the minimal support with-
out losing the useful rules? Is it then necessary to make a trade-off
between the quality of extracted knowledge and the minimal sup-
port?

In this context, using hierarchies can help to solve this dilemma. It
makes it possible to discover rules within several levels of hierar-

chies. Thus, even if a high support is used, important knowledge
which support is weak in the database can be included in more gen-
eral knowledge which will be considered frequent. We thus wish to
extend our preceding proposal to mine multidimensional sequential
patterns by taking hierarchies into account.

Sequential patterns have been studied for more than ten years [1],
with a lot of research and industrial applications (e.g. user behavior,
web log analysis, discovery of patterns from proteins’ sequences,
security). Algorithms have been proposed, based on the APriori-
based framework [16, 10, 2], or on other approaches [11, 7]. Some
other work has been done on the discovery of frequent episods
[9]. Sequential patterns have recently been extended to multidi-
mensional sequential patterns by Pinto et al. [12], Plantevit et al.
[13], and Yu et al. [15]. They aim at discovering patterns that take
time into account and that involve several dimensions. For instance
in [13], rules like A customer who bought a surfboard together with
a bag in NY later bought a wetsuit in SF are discovered.

Even if some approaches provide the taking into account of the
hierarchies in the extraction of sequential patterns, there does not
exist, to our best knowledge, any work combining the extraction
of multidimensional sequential patterns and the management of the
hierarchies. No current method can extract knowledge like: When
the sales of soft drinks increase in Europe, exports of Perrier in-
crease in France and exports of soda increase in the USA, where
Perrier is a kind of French carboned soft drink. We propose a novel
approach HYPE (HierarchY Pattern Extension) which is an exten-
sion of our previous proposition M2SP [13]. The originality of our
approach lies in the idea that no single level of hierarchy is fixed
and that several levels can be mixed. The extracted sequential pat-
terns are automatically associated to the most adequate levels of
hierarchies.

In this paper, we present the concepts related to the traditional
sequential patterns and multidimensional ones as well as the ap-
proaches managing hierarchies during the extraction of knowledge.
We introduce then the fundamental concepts related to our approach
HYPE as well as the algorithms allowing its implementation. Ex-
periments carried out on synthetic data are reported and confirm
the interest of our approach. We also show that using the hierar-
chies allows a better management of the joker values defined in the
M2SP approach.

2. HIERARCHIES AND DATAMINING
In this section, we present the sequential patterns as well as the
approaches of the literature having dealt with the problem of the
extraction of sequential pattern in a multidimensional framework



(several analysis dimensions). Then, we underline why it is rele-
vant to use the hierarchies during the process of extraction of se-
quential patterns and wa make an overview of associated work.

2.1 Sequential Patterns
An early example of research in the discovering of patterns from se-
quences of events can be found in [4]. In this work, the idea is the
discovery of rules underlying the generation of a given sequence in
order to predict a plausible sequence continuation. This idea is then
extended to the discovery of finding interesting patterns (or rules)
embedded in a database of sequences of sets of events (items). A
more formal approach in solving the problem of mining sequen-
tial patterns is the AprioriAll algorithm as presented in [9]. Given
a database of sequences, where each sequence is a list of transac-
tions ordered by transaction time, and each transaction is a set of
items, the goal is to discover all sequential patterns with a user-
specified minimum support, where the support of a pattern is the
number of data-sequences that contain the pattern. In [1], the au-
thors introduce the problem of mining sequential patterns over large
databases of customer transactions where each transaction consists
of customer-id, transaction time, and the items bought in the trans-
action. Formally, given a set of sequences, where each sequence
consists of a list of elements and each element consists of a set of
items, and given a user-specified min support threshold, sequential
pattern mining is to find all of the frequent subsequences, i.e., the
subsequences whose occurrence frequency in the set of sequences
is no less than min support. Sequential pattern mining discovers
frequent patterns ordered by time. An example of this type of pat-
tern is A customer who bought a new television 3 months ago, is
likely to buy a DVD player now. The main stake of sequential pat-
tern mining methods is then the most effective extraction. Algo-
rithms have been proposed, based on the APriori-based framework
[16, 10, 2], or on other approaches [11, 7].

In the traditional framework (only one analysis dimension ) for
association rule or sequential pattern extraction, there are several
works which take into account the hierarchies in order to allow an
extraction of accurate knowledge.

In [14], the beginnings of the hierarchy management in the extrac-
tion of association rules and sequential patterns are proposed. The
authors suppose that the hierarchical relations between the items
are represented by a set of taxonomies. They make it possible to
extract association rules or sequential reasons according to several
levels of hierarchy. They modify the transactions by adding for
each item all of its ancestors in associated taxonomy. Then, they
generate the frequent sequences while trying to filter with the max-
imun redundant information and by optimizing the process using
several properties. However, this approach cannot be scalable in a
multidimensional context. Indeed, to add on each dimension the
list of the ancestors of one item in taxonomy, for each transaction,
is unthinkable. That would be equivalent, in the worst case, to mul-
tiply the size of the database by the maximum depth of a hierarchy
and this for each dimension of analysis, scan of this basis would be
then too much expensive.

The approach of J. Han et al. [6] is quite different. The authors
tackle the association rule extraction problem, but this approach
can be adapted to sequential pattern extraction. Begining at the
highest level of the hierarchy, they extract the rules on each level
while lowering the support when going down in the hierarchy. The
process is reiterated until no rules can be extracted or until the low-
est level of the hierarchy. However, this method does not make it

possible to extract rules containing items of different levels. For ex-
ample wine and drinks cannot cohabit in such a rule. This method
thus proposes the extraction of intra level of hierarchy association
rules. It thus does not make it possible to answer the general prob-
lems of extraction of the sequences on various levels of hierarchy.
Furthermore, the implementation of this approach in a multidimen-
sional context can be discussed. If several taxonomies exist (one
by dimension), does one have to move on the same levels of hier-
archy on various taxonomies or to combine these levels? This type
of extraction can be expensive in time, because the mechanism of
extraction of knowledge can be reiterated several times (depth of
taxonomy), which is not inconsiderable.

We have presented the sequential patterns as well as works allowing
the taking into account of the hierarchies in the extraction of knowl-
edge. Nevertheless the sequential patterns are sometimes quite poor
compared to the data they describe. Indeed, the correlations are ex-
tracted within only one dimension (e.g. the product dimension)
whereas a database can contain several other dimensions. This is
why several works try to combine several analysis dimensions in
the extraction of sequential patterns.

2.2 Multidimensional Sequential Patterns
Combining several analysis dimensions makes it possible to extract
knowledge which describes the data in a better way. [12] is the first
paper dealing with several dimensions in the framework of sequen-
tial patterns. For instance, purchases are not only described by con-
sidering the customer ID and the products, but also by considering
the age, type of the customer (Cust-Grp) and the city where he lives.
Multidimensional sequential patterns are defined over the schema
A1, ..., Am, S where the set of Ai stands for the dimensions de-
scribing the data and S stands for the sequence of items purchased
by the customers ordered over time. A multidimensional sequen-
tial pattern is defined as (id1,(a1, ..., am),s) where ai ∈ Ai ∪ {∗}.
id1,(a1, ..., am) is said to be a multidimensional pattern. For in-
stance, the authors consider the sequence ((∗, NY, ∗),〈bf〉) mean-
ing that customers from NY have all bought a product b and then a
product f. Note that the sequences found by this approach do not
contain several dimensions since the dimension time only concerns
products. The product dimension is the only dimension that can be
combined over time, meaning that it is not possible to have a rule
indicating that when b is bought in Boston then c is bought in NY .

[13] proposes to mine such inter pattern multidimensional sequences.

In [15], the authors consider sequential pattern mining in the frame-
work of Web Usage Mining. Even if they consider three dimen-
sions (pages, sessions, days), these dimensions are very particular
since they belong to a single hierarchized dimension. Moreover, the
sequences found describe correlations between objects over time
by considering only one dimension, which corresponds to the web
pages.

We can also quote work of [3], which proposes a first order tem-
poral logic based approach for multidimensional sequential pattern
mining. [8] also proposes a new method of generation of the mul-
tidimensional sequences embedded in a set of transactions.

To our best knowledge, there is not any approach proposing to take
the hierarchies into account in the extraction of multidimensional
sequential patterns. We thus propose to integrate the management
of the hierarchies into M2SP in order to allow a more complete
extraction of knowledge, suitable in the OLAP framework.



2.3 Running Example
In order to illustrate the various concepts and definitions, we pro-
pose the running example. Table 1 describes the purchases of prod-
uct carried out in various cities of the world. For the hierarchies,
we choose two dimensions, the cities and the products, whose re-
spective taxonomies are indicated in Figures 1 and 2.

Table 1: Running Example
D B Pl P

(Date) (BlockID) (Place) (Product)
1 1 Germany beer
1 1 Germany pretzel
2 1 Germany M2
3 1 Germany chocolate
4 1 Germany M1
1 2 France soda
2 2 France wine
2 2 France pretzel
3 2 France M2
1 3 UK whisky
1 3 UK pretzel
2 3 UK M2
1 4 LA chocolate
2 4 LA M1
3 4 NY whisky
4 4 NY soda

Figure 1: Taxonomy over the Place dimension

Figure 2: Taxonomy over the Product dimension

3. CONTRIBUTIONS
In this section, we present our approach allowing the management
of hierarchies in multidimensional sequential patterns. First, we
define the concepts related to our approach. Then, we propose then
the algorithms allowing the implementation of our approach.

3.1 Definitions
3.1.1 Dimension Set Partition

Let us consider a database DB where data are described with re-
spect to n dimensions. We consider a 3-bin partitioning of the di-
mensions: the set of those dimensions that will be contained within
the rules (analysis dimensions) is denoted by DA; the set of those

dimensions which the counting will be based on (reference dimen-
sions) is denoted by DR; and the set of those dimensions that are
meant to introduce an order between events (e.g. time) is de-
noted by DT . Each tuple c = (d1, . . . , dn) can thus be denoted
by c = (r, a, t) with r the restriction on DR, a the restriction on
DA, t the restriction on DT .

Given a table DB, the set of all tuples in DB having the same
value r on DR is said to be a block denoted by BDB,DR

on the
set of blocks from table DB. The concept of block is necessary to
define the support of a multidimensional sequence. Its application
in our running example is trivial since |DR| = 1, the different
blocks are described in the Figure 3.

Figure 3: Block Partition of DB (figure 1) according to DR =
{B}

Figure 4: block (1)
D B Pl P

1 1 Germany beer
1 1 Germany pretzel
2 1 Germany M2
3 1 Germany chocolate
4 1 Germany M1

Figure 5: block (2)
D B Pl P

1 2 France soda
2 2 France wine
2 2 France pretzel
3 2 France M2

Figure 6: block (3)
D B Pl P

1 3 UK whisky
1 3 UK pretzel
2 3 UK M2

Figure 7: block (4)
D B Pl P

1 4 LA chocolate
2 4 LA M1
3 4 NY whisky
4 4 NY soda

3.1.2 Taxonomies
In our multidimensional framework, we consider that there are hi-
erarchical relations on each analysis dimension1. We consider that
these hierarchical relations are materialized in the form of taxon-
omy. A taxonomy is a direct acyclic graph. The edges are is-a
relation. The Specialization relation is then from root to leaves.
Each analysis dimension thus has a taxonomy which makes it pos-
sible to represent the hierarchical relations between the elements of
its domain.

Let TDA
= {T1, . . . , Tm} be the set of taxonomies associated to

analysis dimensions where: (i) Ti is the taxonomy representing the
hierarchical relations between the elements from the domain of the
analysis dimension Di; (ii) Ti is a direct acyclic graph; (iii) ∀ node
ni ∈ Ti, label(ni) ∈ Dom(Di).
1This relation may be reduced to the tree of depth 1 where the root
is labelled by * if no hierarchy is defined.



We write x̂ an ancestor of x according to the associated taxon-
omy and x̌ one of its descendant. For instance, drinks = ŝoda

means that drinks is an ancestor of soda according to the Gener-
alization/Specialization relation. More precisely, drinks is a more
general instance than soda.

3.1.3 Hierarchies and Data
Each analysis dimension Di from a transaction b of DB cannot
be instanciated with a value di of which the node associated to the
label di in the taxonomy Ti is a leaf. Formaly, ∀di ∈ πDi(B),-
∀ node ni such that label(ni) = di@nœud n′ such that n′ =
ňi (ni leaf). For instance, the transaction database cannot contain
the value drinks since there are some more specific instances in
the taxonomy (soda, wine).

3.1.4 h-generalized Item, Itemset and Sequence
We now define the fundemental concepts of h-generalized item,
itemset and sequence.

DEFINITION 1 (MULTIDIMENSIONAL H-GENERALIZED ITEM).
A multidimensional h-generalized item e = (d1, . . . , dm) is a tu-
ple defined over the set of the m DA dimensions such that di ∈
{label(Ti)}.

Contrary to the transactions of DB, multidimensional h-generali-
zed items can be defined with any value di which associated node
in the taxonomy is not a leaf. For instance (drinks, USA), (so-
da, France) are some multidimensional h-generalized items.

Since multidimensional h-generalized items are instanciated on var-
ious levels of hierarchy, it is possible that two items are comparable,
i.e. item is more specific or general than another. In order to no be
heavy with the notations, we directly use the concept of ancestor on
the item and the transaction without locating in the corresponding
taxonomy.

DEFINITION 2 (HIERARCHICAL INCLUSION). Let e and e’
be two multidimensional h-generalized items, e = (d1, . . . , dm)
and e′ = (d′

1, . . . , d
′
m), we say that:

• e is more general than e′ (e >h e′) if ∀di, di = d̂′
i or di =

d′
i;

• e is more specific than e′ (e <h e′) if ∀di, di = ď′
i or di =

d′
i;

• e and e′ are incomparable if there is no relation between
them (e ≯h e′ and e′ ≯h e).

For instance, we have:

• (USA, drinks) >h (USA, soda);

• (France, wine) <h (EU, Alcoholic drinks);

• (France, wine) and (USA, soda) are incomparable.

DEFINITION 3. A transaction b supports an item e if ΠDA
(b) <h

e.

As an example, the transaction (1, 1, F rance, wine) supports the
item (EU, alcool).

DEFINITION 4 (MULTIDIMENSIONAL H-GENERALIZED ITEMSET).
A multidimensional h-generalized itemset i = {e1, . . . , ek} is a
non-empty set of multidimensional h-generalized items where all
items are incomparable.

Two comparable items cannot be present in the same itemset since
we adopt a ensemblist point of view. Moreover we prefer to repre-
sent the most precise possible information within an itemset. For
instance, {(France, wine), (USA, soda)} is a multidimensional
h-generalized itemset whereas {(France, wine), (EU, Alcoholic -
drinks)} is not such an itemset because (France, wine) <h (EU,-
Alcoholic drinks).

DEFINITION 5 (MULTIDIMENSIONAL H-GENERALIZED SEQUENCE).
A multidimensional h-generalized sequence s = 〈i1, . . . , ij〉 is a
non-empty ordered list of multidimensional h-generalized itemsets.

For instance, 〈{(France, wine), (USA, soda)}, {(Germany, beer)}〉
is a multidimensional h-generalized sequence. Multdimensional
sequences can be included into another one:

DEFINITION 6 (SEQUENCE INCLUSION). A multdimensional
sequence ς = 〈a1, . . . , al〉 is said to be a subsequence of ς ′ =
〈b1, . . . , bl′〉 if there exist integers 1 ≤ j1 ≤ j2 ≤ . . . ≤ jl ≤ l′

such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , al ⊆ bjl
.

The inclusion of the multidimensional sequences must respect the
hierarchical inclusion of the multidimensional h-generalized items.
As an example:

• The sequence 〈{(France, wine)}, {(Germany, beer)}〉 is
a subsequence of 〈{(France, wine), (USA, soda)}, {(Ger-
many, beer)}〉;

• The sequence 〈{(France, wine)}, {(Germany, beer)}〉 is
a subsequence of 〈{(France, Alcoholic drinks), (USA-
, drinks)}, {(EU, Alcoholic drinks)}〉;

• The sequence 〈{(EU, wine)}, {(Germany, beer)}〉 is not
a subsequence of the sequence 〈{(France, wine), (USA, so-
da)}, {(Germany, beer)}〉 because (EU, wine) £h (Fran-
ce, wine), the hierarchical inclusion is not respected here.

3.1.5 Support
Computing the support of a multidimensional h-generalized se-
quence is equivalent to count the the number of blocks defined over
the reference dimensions DR which support the sequence. A block
supports a multidimensional h-generalized sequence if it is possible
to find a set of tuples which satisfies it. All the itemsets from the
multidimensional h-generalized sequence must be found on vari-
ous dates belonging to the domain of Dt such as the order of the
itemsets respects the sequentiality.

DEFINITION 7. A block supports a sequence 〈i1, . . . , il〉 if ∀j =
1 . . . l, ∃dj ∈ Dom(Dt), for each item e from ij , ∃t = (r, e, dj)
where t = (r, ě, dj) ∈ T w.r.t. d1 < d2 < . . . < dl.



Thus, the support of a multidimensional h-generalized sequence is
the number of those blocks defined over DR which contain this
sequence.

According to a user-defined-minimal-treshold , a multidimensional
h-generalized sequential pattern is a sequence which support is
greater than the minimal treshold.

EXAMPLE 1. According to our running example database DB,
let us consider DR = {Bid}, DA = {Place, Product}, DT =
{Date}, minimal support = 2, and ς = 〈{(EU, Alcoholic -
drinks), (EU, pretzel)}{(EU, M2)}〉. The sequence is frequent
if at least two blocks of the partition of DB support the sequence.

1. block (1) (Fig. 4). According to the taxonomies, Germany is
more specific than EU and beer is an Alcoholic drinks. Thus, at the
date 1, there is the first itemset {(EU, Alcool), (EU, pretzel)} of
ς . A date later (2), the last itemset {(EU, M2)} is contained. The
sequence ς is supported by this block.

2. block (2) (Fig. 5). France is an instance of EU and wine is
more specific than Alcoholic drinks. The sequence ς is supported
by this block.

3. block (3) (Fig. 6). UK is an instance of EU and whisky is an
instance of Alcoholic drinks. This block then supports the sequence
ς .

4. block (4) (Fig. 7). This block does not support the sequence ς

since the place dimension does not contain any instance of EU.

The support of ς is 3. The sequence is thus frequent.

3.2 The HYPE Algorithm Proposal
3.2.1 Overview

Before presenting the algorithms allowing the extraction of multi-
dimensional h-generalized sequential patterns, we briefly detail the
general behavior of our approach.

HYPE is divided into two phases. Firstly, the maximaly specific
items are extracted. We think the maximaly specific items are an
alternative to the huge of extracted knowledge. Indeed, they make
it possible to factorize knowledge. The user can infer more general
knowledge in a post-processing. Secondly, the multidimensional h-
generalized sequences are mined in a further step. These sequences
are generated and validated from the frequent maximaly items.

However, the fact of using maximaly specific items to generate the
frequent sequences does not enable us to extract all knowledge em-
bedded in the database. Indeed, some sequences whose first items
are not maximaly specific cannot be mined. Some longer sequences
cannot then be mined (blocks fastly support more general knowl-
edge). However, this deficiency is relative because these non-mined
sequences often describe too general knowledge which do not pro-
vide any interest for the user.

It is not necessary to prune the taxonomies in a preprocessing step.
Indeed, this operation can easily be carried out during the multidi-
mensional h-generalized sequential pattern mining process.

3.2.2 Generation of frequent items

Multidimensional h-generalized items are the basis of the multidi-
mensional h-generalized sequential pattern mining. They are the
sequences which length is 1. In a will of scalbility, items cannot be
mined in only one scan. Indeed, considering the cartesian product
of analysis dimension domains is not possible in aplications where
the number of dimensions and the cardinality of their domains can
be very important. If the number of analysis dimensions is m, then
the number of generated items χ is exponential according to m:

2m ≤ χ ≤
m
X

i=1

“m

i

”

i
k

where k = max |Dom(Di)|

We thus consider that such an approach can compromise the scal-
ability of the extraction. It is thus necessary to define a method
which limits the number of candidate items and the number of
database scans. In order to focus on items which probability to be
frequent is non-null, we adopt a levelwise algorithm. Indeed a lev-
elwise algorithm is used in order to build the frequent multidimen-
sional h-generalized items. To this end, we consider a lattice which
lower bound is the (∗, . . . , ∗) multidimensional item2. This lattice
is partially built from (∗, . . . , ∗) up to the frequent items3 contain-
ing as few ∗ as possible. At level i, i values are specified. Then
items at level i are combined to build a set of candidates at level
i + 1. The process is iterated m times until obtaining the complete
set of multidimensional h-generalized items. Two frequent items
are combined to build a candidate if they are 1-compatible. That is
to say they share a sufficient number of valus over analysis dimen-
sions (Definition 8). To be 1-compatible, two multidimensional
items defined over n dimensions should share n − 2 values. For
instance, (a, ∗, c) and (∗, b, c) share 3− 2 = 1 value, they are then
1-compatible. The items (a, b, ∗) and (a, b, ∗) are not compatible.

DEFINITION 8 (1-COMPATIBILITY). Let e1 = (d1, . . . , dn)
and e2 = (d′

1, . . . , d
′
n) be two distinct multidimensional items

where di and d′
i ∈ dom(Di) ∪ {∗}. e1 and e2 are said to be

1-compatible if ∃∆ = {Di1 , . . . , Din−2
} ⊂ {D1, . . . , Dn} such

that for every j ∈ [1, n − 2], dij = d′
ij
6= ∗ with din−1

= ∗ and
d′

in−1
6= ∗ and din 6= ∗ and d′

in
= ∗.

The join operation is defined as follows:

DEFINITION 9 (JOIN). Let e1 = (d1, . . . , dn) and e2 =-
(d′

1, . . . , d
′
n) be two 1-compatible multidimensional items. We de-

fine e1 1 e2 = (v1, . . . , vn) where vi = di if di = d′
i, vi = di

if d′
i = ∗ and vi = d′

i if di = ∗. Let E and E′ be two sets
of multidimensional items of size n, we define E 1 E ′ = {e 1

e′ s.t. (e, e′) ∈ E × E′ ∧ e and e’ are 1-compatible}

3.2.3 Generation of Frequent Sequences
The frequent items give all frequent sequences containing one item-
set consisting of a single item. To mine the frequent multidimen-
sional h-generalized sequences, we follow the Apriori-like paradigm.
Indeed, the multidimensional framework keeps the antimonotony
of the support (All subsets of a frequent set are frequent). Once 1-
frequent items are mined, the candidate sequences of size k (k ≥ 2)

2* on dimension Di can be seen as the root of the taxonomy Ti.
3By definition, an h-generalized item is instanciated over all its
dimensions. By misnomer, we use the term of item to describe
the frequent tuples which are instanciated in a levelwise method in
order to mine multidimensional h-generalized items.



are generated and validated to keep the frequent items. To effi-
ciently maintain the set of frequent sequence, we use a prefixed-
tree-like structure as [10].

3.2.4 Counting the Support of a Sequence
The support counting is one of the main operation of datamining
process.

The reference dimensions enables to identify all the blocks which
may support a sequence ς . The enumeration of all the blocks is es-
sential to compute the support of a sequence and thus define if the
sequence is frequent. The algorithm 1 checks whether each block
of DB supports the sequence by calling the function supportBlock
(Algorithm 2). If the sequence is supported then its support is in-
cremented. The algorithm then returns the relative support of the
sequence.

The algorithm 2 checks if a sequence ς is supported by a block B.
To achieve it, the algorithm combines recursivity and anchoring
operation. The anchoring operation is used to reduce the space
search. This algorithm attempts to find a tuple from the block that
matches the first item of the first itemset of the sequence in order
to anchor the sequence. This operation is repeated recursively until
all itemsets from the sequence are found (return true) or until there
is no way to go on further (return false). Several possible anchors
may be tested if the first ones do not fit.

Algorithm 1: SupportCount: Compute the support of a sequence
Data: Sequence ς , database DB, reference dimension set DR

Result: The support of the sequence ς

begin
Integer support←− 0;
Boolean supportedSeq;
BDB,DR

←− {blocks identified over DR};
foreach B ∈ BDB,DR

do
supportedSeq ←− supportBlock(ς, B) ;
if supportedSeq is true then

support←− support + 1;

return
“

support

|BDB,DR
|

”

;

end

In order to study the complexity of these algorithms, we adopt the
following notations: nB is the number of tuples in B, m = |DA|
is the number of analysis dimensions, Pmax is the maximal depth
of a taxonomy.

SupportBlock (algorithm 2) The block B is ordered w.r.t. DT ,
the anchoring operation is realizable in O(log nC). It is enough
to carry out a dichotomic seeking to find all the tuples w.r.t. the
date condition. Checking if a tuple supports an item take, in the
worst case, O(Pmax ×m). We should compare the m dimensions
of the item to tuple’s ones. In the worst case, the complexity is
O(nB × Pmax ×m× log nB).

SupportCount (algorithm 1) The previous function is called for
each the l blocks Bi from {BDB,DR}. Let nmax = max nBi , the
complexity in the worst case is then: O(l) × O(nmax × Pmax ×
m× log nmax) = O(l × nmax × Pmax ×m× log nmax)

3.3 HYPE Against M2SP

Algorithm 2: SupportBlock: Checking if a sequence is supported
by a block
Data: Sequence ς , block B

Result: Boolean
begin

/* *--initialization--* */
boolean foundItemSet←− faux

sequence←− ς

itemset←− sequence.first()
item←− itemset.first()
/* Condition to stop the recursivity */
si ς = ∅ alors

retourner (vrai)
/* Scanning the block */
while tuple←− B.next 6= ∅ do

if tuple supports item then
followingItem←− itemset.second()
si followingItem = ∅ alors

foundItemSet←− true

/* Searching for all the items of
the itemset */

else
/* Anchoring w.r.t. item (date)

*/
B′ ←− σdate=cell.date(B)
while tuple′ ←− B′.next() 6=
∅ ∧ foundItemSet = faux do

if tuple′ supports followingItem then
followingItem←− itemset.next()
if followingItem = ∅ then

foundItemSet←− vrai

if foundItemSet is true then
/* Searching for the other

itemsets */
return
(SupportBlock(sequence.tail(), σdate>tuple.date(B)))

else
itemset←− sequence.first()
/* Reducing the search space */
C ←− σdate>cell.date(B)

/* ς is not supported */
return (false)

end



Managing hierarchies can be seen as a better way to manage the
joker values, previously defined in [13]. Indeed, in M2SP, the root
of a taxonomy is the joker value * over the associated dimension.
Then, if there is no possible value instanciation, no leaf label can
be suitable. So, we directly go from the leaf to the root of the
taxonomy (Figure 8). Thanks to HYPE, more accurate knowledge
is mined. Indeed, taxonomies are an alternative when M2SP is not
able to instanciate a dimension. We do not directly go from leaf
to root. We try to instanciate the dimension with the most specific
ancestor of the leaf (9).

Figure 8: Joker value (*)
management with M2SP

Figure 9: Hierarchy manage-
ment with HYPE

EXAMPLE 2 (COMPARISON WITH M2SP). Let a user-defined
threshold, the taking into account of the hierarchies (HYPE) makes
it possible to mine knowledge which is not mined by M2SP.

M2SP:

• (∗, chocolate), (∗, pretzel), (∗, M1), (∗, soda), (∗, M2),
(∗, whisky)

• 〈{(∗, chocolate)}{(∗, M1)}〉, 〈{(∗, pretzel)}{(∗, M2)}〉

HYPE:

• (Place, chocolate),(EU, pretzel), (Place, M1), (Place,-
soda), (EU, M2), (Place, Whisky), (EU, Alcoholic drinks),
• 〈{(Place, chocolate)}{(Place, M1)}〉
〈{(EU, pretzel)}{(EU, M2)}〉
〈{(EU, Alcoholic drinks)}{(EU, M2)}〉

• 〈{(EU, Alcoholic drinks), (EU, Pretzel)}{(EU, M2)}〉

Taking into account hierarchies makes it possible to mine more
finer sequences than in M2SP’s approach.

4. EXPERIMENTS
In this section, we report experiments performed on synthetic data.
These experiments aim at showing the interest of our approach,
especially in the hierarchy management. The synthetic database
contains 5, 000 tuples defined over 5 analysis dimensions. These
first experiments compare the number of frequent mined sequences
over the depth of the taxonomies (specialisation level) and the user

Figure 10: Number of frequent sequences over the depth of the
taxonomies (minsup=0.3, DA = 5, deg = 3)
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Figure 11: Number of frequent sequences over the depth of the
taxonomies (minsup=0.4, DA = 5, deg = 4)
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Figure 12: Number of frequent sequences over the minimal
support ( DA = 5, deg = 3, higly correlated data)
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Figure 13: Number of frequent sequences over the minimal
support ( D15, deg = 4, depth= 4)
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defined threshold. We compared our results to M2SP’s results. in
order to study the quality of the mined knowledge.

The figures 10 and 11 show the number of frequent mined se-
quences over the depth of the taxonomies. Growing the taxonomies
generates an additional specialization level (drinks become alco-
holic drinks or sodas). When the data becomes more specific, M2SP mi-
ned less frequent sequences until it cannot mine any more knowl-
edge. Taking into account hierarchies gives a robustness front of
the specialization phenomena. Indeed, the sequences are mined
among several levels of hierarchies.

The figure 12 shows the number of frequent mined sequences over
the user-defined threshold in a highly correlated database (lower
cardinality of analysis dimensions). As soon as the minimal sup-
port becomes too low, M2SP extracts too many frequent sequences.
Taking into account the hierarchies introduces a powerful ability
of subsumption which prevents HYPE from mining too many se-
quences.

Furthermore, in lowly correlated database, the number of frequent
mined sequences is simular to this one in highly correlated database
whereas M2SP mined a very low number of sequences. This high-
lights the interest of our approach front of the data quality (highly
or lowly correlated database).

5. CONCLUSIONS
In this paper, we have defined the multidimensional h-generalized
sequential patterns. We integrate the taking into account of the
hierarchies thanks to taxonomies on analysis dimensions. It makes
possible the building of multidimensional sequences defined over
several level of hierarchies.

We have defined the different concepts (multidimensional h-generalized
item, itemset and sequence) and the algorithms allowing the im-
plementation of our approach. Experiments on synthetic data are
reported and show the interest of HYPE. These experiments par-
ticulary show its ability to subsume knowledge and its strength in
front of the data diversity (density, specialization, . . .).

This work offers several perspectives. The efficiency of the extrac-
tion could be enhanced by using condensed representation of mined
knowledge (closed, free, non-derivable). The use of condensed rep-
resentation can allow an additional pruning and thus enhance the
extraction process. Other proprositions can be done about the hi-
erarchy management. We can imagine modular management of
the hierarchies where some dimensions would not have the same
benhiavour than other ones in order to suit to the user’s needs (pro-
hibition to exceed the hierarchy level λ over the dimension ξ, . . .).
The hierarchy management can allow us to define a novel automatic
method to help user to navigate in the data cubes.
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