
HAL Id: lirmm-00102873
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102873v1

Submitted on 2 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unanticipated Connection of Components based on their
State Changes Notifications

Luc Fabresse, Christophe Dony, Marianne Huchard

To cite this version:
Luc Fabresse, Christophe Dony, Marianne Huchard. Unanticipated Connection of Components based
on their State Changes Notifications. EECC: Evaluation and Evolution of Component Composition,
Jul 2006, San Francisco, United States. �lirmm-00102873�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102873v1
https://hal.archives-ouvertes.fr

Unanticipated connection of components
based on their state changes notifications

Luc Fabresse, Christophe Dony and Marianne Huchard

LIRMM – Université Montpellier II
161, rue Ada

F-34392 Montpellier Cedex 5, France
E-mail: {fabresse,dony,huchard}@lirmm.fr

Abstract

Component-based software development is a promis-
ing track in software engineering to improve reuse. This
paradigm is based on the unanticipated connection of inde-
pendently developed black-box components. However, any
existing proposals enable connections of components based
on their state changes notifications without requiring that
specific code related to the connection is integrated into
components. In this article, we propose a solution to sup-
port these kinds of connections. Our solution introduces
component properties and special connectors. We show
that properties ease component programming and connec-
tors enforce strict separation between functional code and
code dedicated to connection. We develop a prototype in
Squeak named SCL (Simple Component Language) to give
a concrete form to our proposition.

1 Introduction

Software engineering focuses on component-based mod-
els and languages [1, 2, 3, 4, 5, 6, 7] in order to increase
reuse as stated by component software development [8].
This new paradigm is based on the following definition: ”A
software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties” [9]. Starting
from this definition, component-based languages have been
built with different or adapted abstractions and mechanisms
to provide unanticipated connection between two or more
components. To support unanticipated connections, a com-
ponent definition sets up which services are provided and
which services are needed and should make no assumptions
about its possible connections or other components to be
connected with.

In this paper, we focus on connections based on notifi-
cations of component state changes. These kinds of con-
nections are really useful to trigger a component service
whenever another component notifies that its state changes.
Although these state connections are very useful, they are
not possible in actual component-based languages in an
unanticipated way i.e without writing specific connection
code in components. We introduce component properties
to avoid this constraint and provide a mechanism based on
connectors to support unanticipated state connections be-
tween components. Properties represent external state of
components and connectors represent connections between
components. We enhance the actual prototype of our lan-
guage SCL (Simple Component Language), a simple dy-
namically typed component-oriented language to support
properties and connectors. SCL offers a unified mechanism
to build standard and based on properties notifications con-
nections.

The paper is organized as follows. Section 2 discusses
why connections based on component state changes no-
tifications are interesting. Section 3 presents the basis
of component-oriented programming in SCL. Section 4
presents component properties and how to connect com-
ponents using properties in SCL. Section 5 discusses re-
lated works. Finally, section 6 concludes and presents fu-
ture work.

2 Motivation

Triggering operations as a consequence of state changes
in a component is not a new idea. It is a related idea to dae-
mons or procedural attachments [10] in frame languages,
where it was possible to attach procedures to an attribute
access which is then executed each time this attribute is ac-
cessed, or the Observer design pattern [11]. These kinds of
interactions are particularly used between ”views” (in the
MVC sense [12]) and ”models”.

1

In component-based languages, this must be done in an
unanticipated way and with strict separation between the
component code and the connection code to enable compo-
nents reuse. However, existing proposals fail to solve these
two main constraints. Connecting components based on
their state changes notifications always requires that com-
ponent programmers add special code (like event signaling)
in components. For example, Figure 1 shows Archjava [4]
code of a CHATCLIENT component that has specific code to
enable ”state connections”.

component c l a s s C h a t C l i e n t {
p r i v a t e S t r i n g c h a t T e x t ;

p u b l i c port A c c e s s i n g {
p r o v id e s S t r i n g g e t C h a t T e x t () {

re turn c h a t T e x t ;
}
p r o v id e s void s e t C h a t T e x t (S t r i n g s) {

S t r i n g oldV = A c c e s s i n g . g e t C h a t T e x t () ;
c h a t T e x t = s ;
A c c e s s i n g . cha tTex tHasChanged (oldV , s) ;

}
b r o a d c a s t s vo id cha tTex tHasChanged (

S t r i n g o ldValue ,
S t r i n g newValue) ;

}
. . .

}

Figure 1. An incomplete CHATCLIENT compo-
nent declaration in Archjava.

At connection time, the broadcast service
chatTextHasChanged of a CHATCLIENT component
may be bound to provided services of other components.
For example, it can be bound to a service of a CHATCLIENT-
GUI component that refreshes the GUI. This connection
is only possible because the CHATCLIENT component has
a broadcast service which is invoked in its code. This
constraint of integrated special code in notifier components
is inconsistent with unanticipated connection and strict
separation between component code and connection code.
It has been illustrated in Archjava but similarly appears in
other approaches. In fact, a software architect must be able
to construct a software by choosing existing components,
adapting them and finally build connections between
them without requiring that they have been defined in a
convenient way. With our approach, we provide component
properties coupled with special connectors to support
unanticipated ”state connections” of components.

3 Component-oriented programming in SCL

In this section, we present SCL, a simple and dynami-
cally typed component-oriented language, upon which we
propose a solution to support unanticipated connection of
components based on their state changes notifications. SCL
integrates the common features of component-based lan-
guages: component, service, port, property and connector
and offers standard mechanisms of service invocation and
unanticipated connection with some variations.

A component has internal state and services. Ser-
vices represent component behavior like object methods in
object-oriented paradigm. Ingoing services are services de-
fined in a component and invoked by other components.
Outgoing services are invoked by a component (in its code)
but not defined on it and this service may be bound at con-
nection time. Required services are those that must be
bound at connection time to an ingoing service of a con-
nected component in order to solve the outgoing service in-
vocation.

Ports are interaction points of components and there-
fore support connections and service invocations. Figure 2
shows a CHATCLIENT component with two ports.

Caption :

ChatClient

Port Port direction

join: aServerAdress

leave

send: aMessage

Networking connect: aServerAdress
...

...
Chatting Networking

Figure 2. A CHATCLIENT component

Chatting is an ingoing port of the CHATCLIENT com-
ponent providing a set of services that the other components
can invoke. In this example, Chatting provides the ser-
vices join:, leave and send:. Networking is an out-
going port used in the code of the CHATCLIENT component
to invoke services provided by other components. A service
invocation is syntactically alike message sending in object-
oriented languages. The receiver of a service invocation is
a port and the selector is a service name. If the receiver is
an ingoing port, the executed service is the matching name
service defined on the component whose this port belongs
to. If the receiver is an outgoing port, the effectively exe-
cuted service depends on connections. The outgoing service
connect: used by CHATCLIENT to make network connec-
tion to a chat server has to be bound to a provided service
of another component at connection time. Figure 3 shows
SCL code of the definition of a CHATCLIENT component.

2

SCLCOMPONENTBUILDER create: # C h a t C l i e n t
outPorts: ’ Ne twork ing ’
inPorts: ’ C h a t t i n g ’.

CHATCLIENT>>init
(self port: # C h a t t i n g)

addServiceSelector: # j o i n : ;
addServiceSelector: # l e a v e ;
addServiceSelector: # send :.

CHATCLIENT>>join: serverAdrs
(self port: # Ne twork ing) connect: serverAdrs.

Figure 3. SCL declaration of CHATCLIENT

We choose to represent connections between compo-
nents by connectors [13] in SCL in order to provide a
good separation of components code and connections code.
Connectors connect components through their ports and
help solving adaptation problems [14] without using any
Adapter pattern [11]. In a connector, outgoing ports are
called source ports because service invocations come from
these ports. Target ports are ingoing ports used to invoke
services of components. Figure 4 shows the connection
of a CHATCLIENT component with a NETWORKMANAGER

component that provides services openConnectionTo:,
closeConnection and sendData: through its port
Networking.

Chatting

ChatClient

<<SclBinaryConnector>>

Glue code

Source Target

Networking

Connect: OpenConnectionTo:

Disconnect

Send:

CloseConnection

SendData:

NetworkManager

Networking

Figure 4. Connection of two components

At connection time, components are like black boxes and
ingoing or outgoing services of a component are known by
reading the component specification or by introspecting the
component. Figure 5 shows the code of the connection
of Figure 4 that deals with a frequent adaptation problem
which is the non-matching service name problem [15].

In this example, the connection is achieved with the spe-
cial connector SCLBINARYCONNECTOR which has only one
source port and one target port. Glue code is written in the
connector to deal with each service invocation and solve
adaptation problems: the invocation of the connect: ser-
vice in the CHATCLIENT component code results by ex-
ecuting the openConnectionTo: service of the NET-
WORKMANAGER. This connection mechanism is the basis
of component-oriented programming but it can not express

c h a t := CHATCLIENT new.
netManager := NETWORKMANAGER new.

SCLBINARYCONNECTOR new
source: (c h a t port: # Ne twork ing)
target: (netManager port: # Ne twork ing)
glue: [:source : t a r g e t :message |

(message selector == # c o n n e c t :) ifTrue: [
ˆ t a r g e t openConnectionTo:

(message arguments first)]
]; connect.

Figure 5. SCL connection code

unanticipated connections of components based on their ex-
ternal state changes notifications. As in Archjava, a compo-
nent has to integrate an outgoing port and notifying services
to enable these kinds of connections. Our goal is to discard
this constraint using component properties.

4 Component properties

To support components connection based on notifica-
tions of their state changes, we introduce the concept of
property. This property concept enhances the idea of prop-
erty in the Javabeans component model [16] with strict
separation between component code and connection code.
For example, a CHATCLIENT component has a property
named chatText. This means that it is possible to get
and set a chatText value (string messages from chat
users) to a CHATCLIENT component. The two first lines
of code on Figure 8 show the declaration of the CHAT-
CLIENT component with its ChatText and NickName
properties. The ChatText property declaration does not
enforce the use of an instance variable named chatText
to implement this property: other internal implementations
can be choosen. When a programmer declares a prop-
erty, the component is automatically equipped with two
ports: an access port and a notifying port. The property
access port is an ingoing port that provides at least get-
ter and setter services. This port avoids the services to
respect particular syntactic name convention. The notify-
ing port is an outgoing port, which is used to invoke ser-
vices during property accesses. These services are defined
in the SCL component model. For example, the service
nac:value:oldValue: (nac is an acronym for Notify
After Change) is invoked after a property is modified with
the new and the old value of the property as parameters.
Another service, the nbc:value:newValue: (nbc is an
acronym for Notify Before Change) service, is invoked be-
fore the property is modified with the current value and the
next value of the property as parameters. In fact, all defined
services have two main characteristics: when they are in-
voked (before or after the property modification) and what

3

a connected component is able to do (nothing, prevent the
modification or change the property value). An example of
connection using properties is depicted on Figure 6 and the
corresponding SCL code is shown on Figure 7.

displayText:

chatText:
chatText

ChatClient

ChatClientGui

DisplayingChatText

Networking

SendingChatting

nac:value:oldValue:
nbc:value:oldValue:

Figure 6. Connect components using proper-
ties changes notifications

c l i e n t := CHATCLIENT new.
c l i e n t G u i := CHATCLIENTGUI new.

SCLBINARYNACCONNECTOR new
source: (c l i e n t notifyPortOf: # C h a tT e x t)
target: (c l i e n t G u i port: # D i s p l a y i n g)
glue: [:source :g u i :message |

g u i displayText: (message arguments second).
]; connect.

Figure 7. Connecting two components based
on a property changes notifications

In this example, each time the chatText prop-
erty of the CHATCLIENT is changed, this results in
changing the displayed text on the CHATCLIENTGUI due
to the SCLBINARYNACCONNECTOR that only considers
nac:value:oldValue: invocations on the source port.
Special connectors like SCLBINARYNACCONNECTOR ease
connection writing. Moreover, a software architect is able
to build reusable connectors that can be included in a li-
brary of generic connectors. Actually, SCL provides dif-
ferent kinds of connectors like SCLBINARYNACCONNEC-
TOR, SCLBINARYNBCCONNECTOR, PROPERTYBINDERCON-
NECTOR ensuring that the value of the target property is al-
ways synchronized with the value of the source property.

Figure 8 shows the complete code of the CHATCLIENT.
Figure 9 shows the complete connection code necessary to
build the application. Figure 10 shows a simulation code
and Figure 11 shows the screenshot of this simulation1 exe-
cution.

1The whole code is available at http://www.lirmm.fr/˜fabresse/scl

SCLCOMPONENTBUILDER create: # C h a t C l i e n t
properties: ’ c h a t T e x t nickName ’.
outPorts: ’ Ne twork ing ’ inPorts: ’ C h a t t i n g ’.

CHATCLIENT>>init ” p r e s e n t e d i n F ig ur e 3”

CHATCLIENT>>primitivechatText
” i n t e r n a l component a c c e s s o r d e f i n e d by t h e
programmer and used by t h e g e n e r a t e d c h a t T e x t
p r o p e r t y a c c e s s o r ”
chatText ifNil: [chatText := ’ ’].
ˆchatText

CHATCLIENT>>primitivechatText: newV
chatText := newV

CHATCLIENT>>primitivenickName
nickName ifNil: [nickName := ’ anonymous ’].
ˆnickName

CHATCLIENT>>primitivenickName: n
nickName := n

CHATCLIENT>>leave
(self port: # Ne twork ing) disconnect.

CHATCLIENT>>send: aMessage
(self port: # Ne twork ing)

send: (’< ’, self nickName, ’> ’, aMessage)

CHATCLIENT>>receive: aMessage
(self accessPortOf: # c h a t T e x t) chatText:

(self chatText, String crlf, aMessage).

Figure 8. The CHATCLIENT SCL code

Properties are a new feature that helps component pro-
gramming by providing a higher abstraction to component
programmers and software architects. Figure 12 illustrates
this fact because a new functionality is added to our chat
client with only one ”state connection”.

This connection allows our chat client application to
automatically send the current title played by our music
player to other chat users. In other words, each time
the CurrentTitle property of the component MUSIC-
PLAYER is modified, a message is sent to chat users using
the send: service of the CHATCLIENT component through
its Chatting port.

5 Related Work

Our approach is similar to Javabeans component
model [16]. A Javabeans programmer declares properties
through syntactic name conventions like get and set and
writes the event signaling code to enable connection based
on Javabeans properties event signals. The Javabeans model
distinguishes different kinds of properties depending on sig-
nals like bound properties that notify connected Javabeans

4

CHATCLIENTAPP>>createChatClientFor: aNickName
| c h a t C l i e n t c h a t C l i e n t G u i |

c h a t C l i e n t := SCLCHATCLIENT new.
c h a t C l i e n t G u i := SCLCHATCLIENTGUI new.

SCLBINARYCONNECTOR new
source: (c h a t C l i e n t port: # Ne twork ing)
target: (NETWORKMANAGER new port: # Ne twork ing)
glue: [:chat :netM :message |

(message selector == # c o n n e c t :) ifTrue: [
netM openConnectionTo:

message arguments first.
] ifFalse: [

(message selector == # d i s c o n n e c t)
ifTrue: [netM closeConnection.]
ifFalse: [

netM sendData: message arguments first.
]

]
] ; connect.

SCLBINARYCONNECTOR new
source: (c h a t C l i e n t G u i port: # Send ing)
target: (c h a t C l i e n t port: # C h a t t i n g)
glue: [:gui :chat :message |

chat send: (message arguments first)
] ; connect.

SCLPROPERTYBINDER new
bind: (c h a t C l i e n t property: # c h a t T e x t)
with: (c h a t C l i e n t G u i property: # d i s p l a y T e x t).

SCLPROPERTYBINDER new
bind: (c h a t C l i e n t property: # nickName)
with: (c h a t C l i e n t G u i property: # chatUserName).

(c h a t C l i e n t accessPortOf: # nickName)
nickName: aNickName.

(c h a t C l i e n t accessPortOf: # c h a t T e x t)
chatText: ’ Welcome i n C h a t C l i e n t app v 0 . 0 . 1 ’.

(c h a t C l i e n t G u i port: # D i s p l a y i n g) show.

ˆ c h a t C l i e n t

Figure 9. Chat client application code

after each value changes. A Javabean component program-
mer has to write a lot of code that is not relevant for the
component but for its connection. The automatic and hid-
den use of Adapter pattern enables to create connections be-
tween Javabeans without requiring that notified components
integrate specific code like in the Observer pattern (notified
component have to define an update method).

In the Corba Component Model [3], the notifier com-
ponent must integrate an event source that emits an event
notifying its value changes and notified components have to
offer an event sink that receives compatible events. This is
not an unanticipated connection although the Adapter pat-
tern can also be used to avoid specific code in notified com-
ponents.

| chatClientApp chatServer b C l i r C l i |

chatServer := ChatServer new startOn: 8080.

chatClientApp := ChatClientApp new.
b C l i := chatClientApp createChatClientFor: ’ Bob ’.
r C l i := chatClientApp createChatClientFor: ’ R i ck ’.

(b C l i port: # C h a t t i n g) join: ’ 1 2 7 . 0 . 0 . 1 : 8 0 8 0 ’.
(r C l i port: # C h a t t i n g) join: ’ 1 2 7 . 0 . 0 . 1 : 8 0 8 0 ’.

(r C l i port: # C h a t t i n g) send: ’ H e l l o guys ’.
(b C l i port: # C h a t t i n g) send: ’ Hi R ick ’.
(b C l i port: # C h a t t i n g)

send: ’ Did you have a n i c e day ? ’.

Figure 10. Simulation code

Figure 11. Screenshot of the simulation exe-
cution

P

P

P

P

CurrentTitle

Caption:

A property

ChatClient

ChatText

Pseudo

Networking
Chatting

MusicPlayer

Playing

Figure 12. Evolving the chat client application
using connection based on properties

In the Fractal model [5], components have interfaces
(defining a set of services) that are server (provided) or
client (required). Components are connected through prim-
itive bindings or composite bindings. A primitive binding
is a fixed interface connection mechanism that binds one
client interface with one server interface. Binding compo-
nents also called connectors represent composite bindings.
Like in Archjava with broadcast services, in Fractal, noti-
fying services have to be coded in components and put in
client interfaces although they are not required by the com-
ponent.

5

6 Conclusion and Future Work

In this article, we show that the unanticipated connection
mechanism of components in most component-based lan-
guages is not enough to create connections based on com-
ponent states notifications. We propose a solution to enable
this kind of connections in an unanticipated way and with a
strict separation between the component code and the con-
nection code. To achieve this goal, we introduce compo-
nent properties based on ones in the Javabeans component
model. Properties allow programmers to declare external
state of components that will be used by software architects
at connection time to create connections among notifica-
tions emitted by these properties. The connection code is
encapsulated into connectors allowing code separation and
extensibility because the software architect is able to build
new connectors to extend this connection mechanism. Our
proposition is based on our SCL (Simple Component Lan-
guage) language prototyped in Squeak.

On the one hand, we will extend the property concept
to support multi-valued properties i.e. properties whose
value is a collection of elements. These properties changes
are different such as adding or removing an element and
new connectors are needed. On the other hand, connections
based on properties notifications have to be used carefully
because of the possibility of infinite recursive notification
loop. For example, glue code in a connector is executed
each time a property notifies a change and this glue code
must not change directly or indirectly (through other con-
nections) this property otherwise there is an infinite notifi-
cation loop during runtime. This problem has to be detected
before runtime with program analysis.

References

[1] J. C. Seco and L. Caires, “A basic model of typed
components,” Lecture Notes in Computer Science,
vol. 1850, pp. 108–129, 2000. [Online]. Available:
citeseer.ist.psu.edu/article/seco00basic.html

[2] R. Monson-Haefel, Enterprise JavaBeans. Se-
bastopol, CA, USA: O’Reilly & Associates, Inc.,
1999.

[3] Object Management Group, Manual of Corba Com-
ponent Model V3.0, 2002, http://www.omg.org/-
technology/documents/formal/components.htm.

[4] J. Aldrich, C. Chambers, and D. Notkin, “Archjava:
connecting software architecture to implementation.”
in ICSE. ACM, 2002, pp. 187–197.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and
J.-B. Stefani, “An open component model and its sup-
port in java.” in CBSE, ser. Lecture Notes in Computer

Science, I. Crnkovic, J. A. Stafford, H. W. Schmidt,
and K. C. Wallnau, Eds., vol. 3054. Springer, 2004,
pp. 7–22.

[6] P. H. Fröhlich, A. Gal, and M. Franz, “Supporting
software composition at the programming-language
level,” Science of Computer Programming, Special
Issue on New Software Composition Concept, vol. 56,
no. 1-2, pp. 41–57, April 2005. [Online]. Available:
http://www.cs.jhu.edu/ phf/publications.shtml

[7] R. Marvie, “Picolo: A simple python framework for
introducing component principles,” in Euro Python
Conference 2005, Göteborg, Sweden, june 2005.

[8] G. T. Heineman and W. T. Councill, Eds., Component-
based software engineering: putting the pieces to-
gether. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 2001.

[9] C. Szyperski, Component Software: Beyond Object-
Oriented Programming (2nd Edition). Addison-
Wesley, 2002.

[10] M. Minsky, “A Framework for Representing Knowl-
edge,” in The Psychology of Computer Vision, P. Win-
ston, Ed. ny: mgh, 1975, pp. 211–281.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign Patterns : Elements of Reusable Object-Oriented
Software. Addison Wesley, March 1995.

[12] G. E. Krasner and S. T. Pope, “A cookbook for us-
ing the model-view-controller user interface paradigm
in smalltalk-80,” in Journal of Object-Oriented Pro-
gramming, vol. 1, Août-Septembre 1988, pp. 26–49.

[13] M. Shaw, “Procedure calls are the assembly language
of software interconnection: Connectors deserve first-
class status,” in ICSE ’93: Selected papers from the
Workshop on Studies of Software Design. London,
UK: Springer-Verlag, 1996, pp. 17–32.

[14] J. Sametinger, Software engineering with reusable
components. New York, NY, USA: Springer-Verlag
New York, Inc., 1997.

[15] P. H. Fröhlich, “Component-oriented programming
languages: Messages vs. methods, modules vs. types,”
in Proceedings of the Workshop on Programming Lan-
guages and Computer Architecture. Bad Honnef,
Germany: Technical Report 2007, Institute for Com-
puter Science and Applied Mathematics, Christian-
Albrechts-University, Kiel, Germany, May 2000.
[Online]. Available: citeseer.ist.psu.edu/317429.html

[16] G. Hamilton, “JavaBeans,” Sun Microsystems,” API
Specification, July 1997, version 1.01.

6

