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Abstract

This paper deals with an efficient application of a model-based predictive control scheme in parallel mechanisms. A predictive

functional control strategy based on a simplified dynamic model is implemented. Experimental results are shown for the H4 robot, a

fully parallel structure providing 3 degrees of freedom (dof) in translation and 1 dof in rotation. Predictive functional control,

computed torque control and PID control strategies are compared in complex machining tasks trajectories. Tracking performance

and disturbance rejection are enlightened.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Parallel mechanisms were introduced by Gough
(1957) and Stewart (1965). Clavel (1989) proposed the
Delta structure, a parallel robot dedicated to high-speed
applications, which has been intensively used in
industry. Also the so-called ‘‘hexapod’’ robot with six
U-P-S chains in parallel (U-P-S: Universal-Prismatic-
Spherical) is another undeniable success for parallel
robotics thanks to the enormous amount of research
dedicated to these structures (Merlet, 1997; Thönshoff,
1998). Others structures like the Hexa robot (Pierrot,
Dauchez, & Fournier, 1991) and the HexaM machine
(Pierrot & Shibukawa, 1998) propose different solutions
for machining tasks.
For most pick-and-place applications, at least four

dof are required (3 translations and 1 rotation to put the
carried object in its final location). For the Delta robot,
it is achieved thanks to an additional link between the
base and the gripper, but it does not seem to be as
efficient as a parallel arrangement. Moreover, 6-degree
e front matter r 2004 Elsevier Ltd. All rights reserved.
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of freedom (dof) fully parallel machines currently used
in machining suffer from their complexity (they need at
least 6 motors while the cutting process requires only 5
controlled axis plus the spindle rotation) and their
limited tilting angle. An intermediate solution to these
drawbacks, with the 4-dof parallel mechanism—the H4
robot—have been proposed (Company & Pierrot, 1999;
Pierrot, Marquet, Company, & Gil, 2001). Fig. 1 shows
a photograph of the H4 parallel robot.
This machine is based on 4 independent active chains

between the base and the nacelle; each chain is actuated
by a brushless direct-drive motor fixed on the base and
equipped with an incremental position encoder. Thanks
to its design, the mechanism is able to provide great
performance. However, in order to achieve high speed
and acceleration for pick-and-place applications or
precise motion in machining tasks, advanced model-
based robust controllers are often required to increase
the performance of the robot.
In the past decade model predictive control (MPC)

has become an efficient control strategy for a large
number of processes (Clarke, Mothadi, & Tuffs, 1987).
Different works have shown that predictive control
schemes are of great interest when requiring good
performance in terms of rapidity, disturbances or errors

www.elsevier.com/locate/conengprac
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Fig. 2. Design parameters.

Fig. 1. H4 robot.
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cancellations (Clarke et al., 1987; Allgöwer, Badgwell,
Qin, Rawlings, & Wright, 1999). Stability has been the
subject of several studies (Van den Boom, De Vries,
Boumeester, & Verbruggen, 1994; Zheng, 1997).
In this paper, the focus is on the implementation of

the predictive functional control (PFC) developed by
Richalet (Richalet, 1993a,b; Richalet et al., 1997) on the
H4 parallel robot. Recent contributions to this approach
can be found in Rossiter (2002) as well as in
(Abdelghani-Idrissi, Arbaoui, Estel, & Richalet, 2001),
where industrial applications restricted to slow dynamic
systems are presented.
Basically, the procedure will consist of two steps (i)

the process is first linearized by feedback (ii) secondly,
the MPC scheme is computed from a linearized
model composed of a set of double integrators first
stabilized with an inner closed-loop structure. Experi-
mental results, enlightening performance on circular or
angular path and robustness to load variation, are
compared with those obtained from the model-based
computed torque control (CTC) (Canudas de Wit,
Siciliano, & Bastin, 1996) and the classical PID
controller.
The paper is organized as follows: Section 2 is

dedicated to the geometric, kinematics and dynamics
modeling required to implement the control strategy.
Section 3 details the model PFC. Section 4 introduces
the compared control schemes: PFC, CTC and PID.
Section 5 lists major experimental results in terms of (i)
tracking performance in complex trajectories, that can
be found in pick-and-place applications or machining
tasks, and (ii) robustness. Finally, conclusions are given
in Section 6.
2. Robot modeling

2.1. Geometric and kinematics modeling

The Jacobian matrix and the forward geometric
model are required to compute the dynamic model (see
Section 2.2) Khalil and Dombre, 2002. Therefore, a brief
presentation detailing the computation of the different
relationships required to obtain this model and matrix
are presented. The design parameters of the robot are
described in Fig. 2, where the following parameters have
been chosen:

a1 ¼ 0; a2 ¼ p; a3 ¼ 3p=2; a4 ¼ 3p=2;

u1 ¼ uy; u2 ¼ �uy; u3 ¼ ux; u4 ¼ ux:

The angles ai describe the position of the four motors,
L is the length of arms, l is the length of the forearms, y
the nacelle’s angle, and d and h are the half lengths of
the ‘‘H’’ forming the nacelle. O is the origin of the base
frame and D is the origin of the nacelle frame. R gives
the motor’s position. The AiBi segments represent the
arms of the robot and PiBi the forearm segments. The
joint positions are represented by qi:
To obtain the inverse geometric model, it is necessary

to express the different points of the mechanical system
with respect to the origin O: The origin is fixed in the
middle of the nacelle with the coordinates (x, y, z). In
the Cartesian space, the end effector position is given by
ðx; y; z; yÞ:

OD ¼ ½x y z�T (1)

The vector that joins the absolute origin O and all the
forearms to the nacelle is

OAi ¼ OD þ DAi ¼

x

y

z

2
64

3
75þ DAi: (2)



ARTICLE IN PRESS

Fig. 3. H4 workspace for y ¼ 0:
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The DAi segments can be expressed as

DA1 ¼

h cos y

h sin yþ d

0

2
64

3
75; DA2 ¼

�h cos y

�h sin yþ d

0

2
64

3
75: (3)

DA3 ¼

�h cos y

�h sin y� d

0

2
64

3
75; DA4 ¼

h cos y

h sin y� d

0

2
64

3
75: (4)

Then, the vector that links the absolute origin and all
of the arms to the forearms is

OBi ¼ OPi þ PiBi (5)

with

PiBi ¼

l cos qi cos ai

l cos qi sin ai

�l sin qi

2
64

3
75 (6)

and actuator locations are:

OP1 ¼

h þ R cos a1
d þ R sin a1

0

2
64

3
75; OP2 ¼

�h þ R cos a2
d þ R sin a2

0

2
64

3
75:
(7)

OP3 ¼

�h þ R cos a3
�d þ R sin a3

0

2
64

3
75; OP4 ¼

h þ R cos a4
�d þ R sin a4

0

2
64

3
75:
(8)

Finally, arms coordinates are given by

AiBi ¼ AiO þ OBi: (9)

As usual for most parallel robots, the inverse
geometric model is easy to be computed. The following
equality can simply be written

kAiBik
2 ¼ L2; i ¼ 1; . . . ; 4: (10)

This relationship leads to

Mi cos qi þ Ni sin qi ¼ Gi; (11)

where

Mi ¼ �2lðPiBix cos ai þ PiBiy sin aiÞ;

Ni ¼ 2lPiBiz;

Gi ¼ L2 � l2 � PiB
2
i :
Resorting to the new variable ti ¼ tanðyi=2Þ; the
result is

qi ¼ 2 tan
�1 �b2i 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bi � 4aici

p

2ai

� 	
; (12)

where

ai ¼ Gi þ Mi;

bi ¼ �2Ni;

ci ¼ Gi � Mi:

Eq. (11) thus solved, a mathematical singularity can
occur when ai ¼ 0: It is possible to overcome this
problem by introducing the following new variables:

tan Xi ¼
Ni

Mi

; cos bi ¼
Gi

Mi

: (13)

This leads to another expression of the inverse
kinematics:

qi ¼ tan
�1 Ni

Mi

� 	
	 cos�1

Giffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i þ N2
i

q
0
B@

1
CA: (14)

Kinematics models have been used to determine the
H4 workspace, depicted in Fig. 3 for y ¼ 0: To have a
good Jacobian matrix condition number, workspace
should be limited. Eventually, this workspace is limited
to a ð300� 300� 300Þmm3 centered cube: work will be
done within this workspace. More details can be found
in Pierrot et al. (2001) and Company, Marquet, and
Pierrot (2003).
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The analytical forward geometric model of a parallel
robot is more difficult to compute. Up to now, the
simplest model is an eighth degree polynomial equation.
The forward model is then computed successively using
the classical recurrent formula:

xnþ1 ¼ xn þ Jðxn; qnÞ½q � qn�; (15)

where q is the convergence point and J is the robot
Jacobian matrix. If the mechanism is not in a singular
configuration, this expression is derived as follows
(Company & Pierrot, 1999; Pierrot et al., 2001):

J ¼ J�1
x Jq; (16)

where

Jx ¼

A1B1x
A1B1y

A1B1z
ðDC1 � A1B1Þz

A2B2x
A2B2y

A2B2z
ðDC2 � A2B2Þz

A3B3x
A3B3y

A3B3z
ðDC3 � A3B3Þz

A4B4x
A4B4y

A4B4z
ðDC4 � A4B4Þz

2
6664

3
7775: (17)

Jq ¼ diagððPiBi � AiBiÞ � umiÞ; i ¼ 1; . . . ; 4: (18)

DC i is the distance between the center of the nacelle and
the center of the half-lengths of the ‘‘H’’ that forms the
nacelle.
Table 1

Estimated parameters (SI units)

Physical parameters Estimated values %sx̂r

Imot1 0.0167 2.37

Imot2 0.0164 2.36

Imot3 0.0176 1.58

Imot4 0.0234 1.16

Mnac 0.9840 0.47

Inac 0.0029 3.73
2.2. Dynamic modeling

In a first approximation, the dynamic model is
computed by considering the physical dynamics. Indeed,
drive torques are mainly used to move the motor inertia,
the forearms, arms and the nacelle that can be equipped
with a machining tool. Because of the design, the
forearm inertia can be considered as a part of the motor
inertia and the arm (manufactured in carbon materials)
effects are neglected (Company & Pierrot, 1999; Pierrot
et al., 2001).
If Cmotð2 R4�4Þ is the actuator torque vector, the basic

equation of dynamics can be written as

Cmot ¼ Imot €q þ JTMð €x � GÞ; (19)

where Imot represents the motor’s inertia diagonal
matrix (Eq. (20)) including the forearm’s inertia, M ð2

R4�4Þ is a diagonal matrix (Eq. (21)) containing the mass
of the nacelle and its inertia (Mnac and Inac; respectively),
J is the Jacobian matrix given in Eq. (16), €x is the vector
of cartesian accelerations, and G the gravity vector.
Thanks to the design, the forearm’s inertia is taken into
account in the motor’s inertia,
with

Imot ¼

Imot1 0 0 0

0 Imot2 0 0

0 0 Imot3 0

0 0 0 Imot4

2
6664

3
7775 (20)
M ¼

Mnac 0 0 0

0 Mnac 0 0

0 0 Mnac 0

0 0 0 Inac

2
6664

3
7775: (21)

The motor position q ¼ ½q1 q2 q3 q4�
T are directly

measured, and the velocity _q and acceleration €q are
obtained by a first-order differentiation. As the accel-
eration measurement €x is not available, €x is computed
with

€x ¼ J €q þ _J _q; (22)

where J depends on x and q; and _J is computed using a
first-order differentiation.
Then, the dynamic model can be written as

Cmot ¼ AðqÞ€q þ Hðq; _qÞ (23)

with

AðqÞ ¼ Imot þ JTMJ (24)

and

Hðq; _qÞ ¼ JTM _J _q � JTMG : (25)

2.3. Dynamic parameter estimation

The dynamic model can be linearly expressed with
respect to the dynamic parameters by (Vivas, Poignet,
Marquet, Pierrot, & Gautier, 2003):

Y ¼ Wh; (26)

where Y is the measurement vector of joint torques, W
is the observation matrix and h is the parameters vector
to be estimated. The parameters vector is then estimated
using weighted least-squares techniques (Vivas et al.,
2003).
Joint velocities and accelerations required in Eq. (23)

are estimated by a band-pass filtering of the position.
The band-pass filtering is obtained by the product of a
low-pass filter in both the forward and the reverse
direction and a derivative filter obtained by a central
difference algorithm, without phase shift. A parallel
filtering is implemented to reject the high-frequency
ripples of the measured motor torques.
Exciting trajectories, composed of concatenated mo-

tions leading to a good condition number of the
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observation matrix W ; are generated. The obtained
estimated values, given in Table 1, will be considered as
the nominal values for the feedback linearization (see
Section 4.2) during the experiments. The relative
standard deviation (%sx̂r) is also given. More details
concerning the identification procedure may be found in
(Vivas et al., 2003; Poignet & Gautier, 2001; Canudas de
Wit et al., 1996).
3. Predictive functional control

This section is dedicated to briefly recall the main
steps of the model PFC scheme used hereafter for the
implementation. This predictive technique has been
developed by Richalet and complete details of the
computation may be found in Richalet (1993b); Richalet
et al. (1997).

3.1. Internal modeling

The model used is a linear one given by

xM ðnÞ ¼ FMxMðn � 1Þ þ GMuðn � 1Þ;

yMðnÞ ¼ CT
MxM ðnÞ; (27)

where xM is the state, u is the input, yM is the measured
model output, FM ; GM and CM are, respectively,
matrices or vectors of the right dimension.
If the system is unstable, the problem of robustness

caused by the controller’s cancellation of the poles is
usually solved by a model decomposition (Richalet,
1993b).

3.2. Reference trajectory

The predictive control strategy of the MPC is
summarized in Fig. 4. Given the set point trajectory
over a receding horizon ½0;h�; the predicted process
CLTR 

FuturePast

Set point

Process output

h

ŷP

yR

Fig. 4. Reference trajectory and predictive control strategy.
output ŷP will reach the future set point following a
reference trajectory yR:
In Fig. 4, �ðnÞ ¼ cðnÞ � yPðnÞ is the position tracking

error at time n, c is the set point trajectory, yP is the
process output, and CLTR is the closed-loop time
response.
Over the receding horizon, the reference trajectory

yR; which is the path towards the future set point, is
given by

cðn þ iÞ � yRðn þ iÞ ¼ aiðcðnÞ � yPðnÞÞ for 0piph;

(28)

where að0oao1Þ is a scalar which has to be chosen as a
function of the desired closed-loop response time.
The predictive essence of the control strategy is

completely included in Eq. (28). Indeed, the aim is to
track the set point trajectory following the reference
trajectory. This trajectory may be considered as the
desired closed-loop behavior.

3.3. Performance index

The performance index may be a quadratic sum of the
errors between the predicted process output ŷP and the
reference trajectory yR: It is defined as follows:

DðnÞ ¼
Xnh

j¼1

ŷPðn þ hjÞ � yRðn þ hjÞ
� �2

; (29)

where nh is the number of coincidence time point, hj are
the coincidence time points over the prediction horizon.
The predicted output ŷP is usually defined as

ŷPðn þ iÞ ¼ yMðn þ iÞ þ êðn þ iÞ; 1piph; (30)

where yM is the model output, ê is the predicted future
output error.
It may be convenient to add a smoothing control term

in the performance index. The index becomes

DðnÞ ¼
Xnh

j¼1

fŷPðn þ hjÞ � yRðn þ hjÞg
2

þ lfuðnÞ � uðn � 1Þg2; ð31Þ

where u is the control variable.

3.4. Control variable

The future control variable is assumed to be
composed of a priori known functions

uðn þ iÞ ¼
XnB

k¼1

mkðnÞuBK ðiÞ; 0piph; (32)

where mk are the coefficients to be computed during the
optimization of the performance index, uBK are the base
functions of the control sequence, nB is the number of
base functions.
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The choice of the base functions depends on the
nature of the set point and the process. Dynamical
functions will be used hereafter

uBK ðiÞ ¼ ik�1 8k: (33)

In fact, only the first term is effectively applied for the
control, that is

uðnÞ ¼
XnB

k¼1

mkðnÞuBK ð0Þ: (34)

The model output is composed of two parts:

yMðn þ iÞ ¼ yUF ðn þ iÞ þ yF ðn þ iÞ; 1piph; (35)

where yUF is the free (unforced) output response ðu ¼ 0Þ;
yF is the forced output response to the control variable
given by Eq. (32).
Given Eq. (27) and Eq. (32), it follows

yUF ðn þ iÞ ¼ CT
MF i

MxM ðnÞ; 1piph;

yF ðn þ iÞ ¼
XnB

k¼1

mkðnÞyBK ðiÞ; 0piph; (36)

where yBK is the model output response to uBK :
Assuming that the predicted future output error is
approximated by a polynomial function, it follows

êðn þ iÞ ¼ eðnÞ þ
Xde

m¼1

emðnÞi
m; for 1piph; (37)

where de is the degree of the polynomial approximation
of the error, em are coefficients computed on-line
knowing the past and present output error.
The minimization of the performance index without

smoothing control term, in the case of the polynomial
base functions, leads to the applied control variable:

uðnÞ ¼ kofcðnÞ � yPðnÞg

þ
Xmaxðdc;deÞ

m¼1

kmfcmðnÞ � emðnÞg þ V T
X xMðnÞ; ð38Þ

where dc is the degree of the polynomial approximation
of the set point and the gains ko; km; V T

X are computed
off-line (see the Appendix).
Therefore, the control variable is composed of three

terms: the first one is due to the tracking position error,
the second one is placed especially for disturbance
rejection and the last one corresponds to a model
compensation.
4. Compared control strategies

Performance and robustness of PID, CTC and PFC
controllers are compared on complex trajectories given
in the task space such as a circle or angular path. The
CTC and PFC controllers are based on non-linear
compensation and decoupling through the computation
of the inverse dynamic model, described in Section 4.2
(Vivas & Poignet, 2003). A stabilizing linear controller is
then applied (Figs. 7 and 8).

4.1. PID controller in the task space

The PID controller applied to H4 robot in the task
space is shown in Fig. 5. Frequency analysis yielded
resonance frequency ðor ¼ 50 rad=sÞ: Using the tuning
procedure proposed in (Khalil & Dombre (2002)), the
gain parameters of the controller have been adjusted to
Kp ¼ 500; Ki ¼ 5000; and Kd ¼ 6; which guarantees a
good bandwidth and good tracking performance.

4.2. Feedback linearization

In order to compute the PFC control strategy
(Poignet & Gautier, 2000) as well as for the design of
the CTC controller, it is basically required to linearize
the non-linear dynamic model of the robot. Let us
consider the non-linear dynamic equations for an m-link
robot expressed as follows:

C ¼ AðqÞ€q þ Hðq; _qÞ: (39)

It is well known that the rigid m-link robot equations
may be linearized and decoupled by non-linear feedback
(Khalil, 1996; Khalil & Dombre, 2002). Let Â and Ĥ ;
respectively, be the estimates of A and H : Assuming that
Â ¼ A and Ĥ ¼ H ; the problem is reduced to that of the
linear control on n decoupled double-integrators:

€q ¼ w; (40)
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where w is the new input control vector. This equation
corresponds to the familiar inverse dynamics control scheme
where the direct dynamic model characterizing the robot is
transformed into a double set of integrators (Fig. 6).
Linear control techniques (Lewis, 1992; Khalil &

Dombre, 2002) can then be used to design a tracking
controller such as the model-based predictive control
scheme described in Section 3 or a PID controller in case
of the CTC described in the next section.

4.3. Computed torque control

Assuming that the motion is completely specified with
the desired position qd ; velocity _qd and acceleration €qd ;
the computed torque control (Canudas de Wit et al., 1996)
computes the required input control vector as follows:

w ¼ Kpðq
d � qÞ þ K vð_q

d � _qÞ þ €qd ; (41)

where Kp; K v are the controller gains.
An integrator has been added to the classical

scheme to decrease the static error due to the errors
between the estimated inverse dynamic model and the
real one (Fig. 7). Then, Eq. (41) becomes

w ¼ Kpðq
d � qÞ þ Kvð_q

d � _qÞ þ Ki

Z
ðqd � qÞdtþ €qd :

(42)

The tuning of the CTC controller (Khalil & Dombre,
2002), leads to the gains Kp ¼ 5000; Kv ¼ 65 and Ki ¼

60000:
4.4. Predictive functional control

The non-linear compensation does not indeed supply
a double set of integrators due to estimation uncertain-
ties. Both the process and its non-linear compensation
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Fig. 11. Experimental results for a circle (w ¼ 4 rad=s) (a) obtained
and zoomed trajectories; (b) tracking errors.
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are identified once again. The new linear model is then
given by a second-order transfer function:

GðsÞ ¼
2:7

s2 � 52:6s þ 54:7
: (43)
The process and its non-linear compensation are first
stabilized with an inner velocity closed loop with a
proportional gain Kv (equal to 70). The PFC is then
implemented with the second-order model given by Eq.
(43) and its stabilizing gain Kv (Fig. 8).
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Three different base functions have been used: step,
ramp and parabola. The closed-loop response time is
fixed to 20�T sampling in order to ensure a trade-off
between tracking performance and robustness. Three
coincidence time points on the receding horizon are
chosen.
5. Experimental results

The control system is implemented on a single PC
(Pentium II, 200MHz, 256Mb) running under Windows
NT and RTX (real time extension) is used as real time
software to ensure a control task periodicity of 1.5ms.
Different situations are considered in this section to

illustrate the performance and robustness of each
controller. First, complex trajectories are tracked at
different velocities such as a circle and an angular path.
Second, responses to external disturbances are shown.
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Fig. 12. Experimental results for an angular path ðv ¼ 0:012m=sÞ (a)
obtained trajectories; (b) tracking errors.
5.1. Performance

The following paths, including inside the robot
workspace, will be tracked by the robot:
(i) circular path with diameter d ¼ 20mm and angular

velocity o ¼ 1; 2 and 4 rad/s (that means a circle
achieved in 6, 3, and 1.5 s, respectively).
(ii) linear path with a change of direction of 55� and

linear velocity v ¼ 0:012m=s and 0.024m/s (trajectories
covered in 6 and 3 s, respectively).
Figs. 9–11 show the results for the circular path;

results for the angular path are shown in Figs. 12 and
13. Table 2 points the average tracking errors.

5.2. Robustness

An external disturbance is introduced with a load
variation of 4 kg on the nacelle, tested in regulation
mode around a given steady state position. Figs. 14–16
show the disturbance rejection and Figs. 17–19 show the
required torques in each case.
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Fig. 13. Experimental results for an angular path ðv ¼ 0:024m=sÞ (a)
obtained trajectories; (b) tracking errors.
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Table 2

Average tracking errors

PID (m) CTC (m) PFC (m)

Circle ðw ¼ 1 rad=sÞ 7.6116e�5 1.1498e�4 8.2559e�5

Circle ðw ¼ 2 rad=sÞ 1.4882e�4 1.6047e�4 8.0214e�5

Circle ðw ¼ 4 rad=sÞ 2.7094e�4 2.8236e�4 1.7974e�4

Angle ðv ¼ 0:012m=sÞ 1.0743e�4 9.2060e�5 5.0723e�5

Angle ðv ¼ 0:024m=sÞ 8.2959e�5 8.9723e�5 5.8633e�5

0 100 200 300 400 500 600 700 800 900 1000
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Time (ms)

D
is

tu
rb

an
ce

 r
ej

ec
tio

n 
(r

ad
)

Fig. 14. Output disturbance rejection for the PID.
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Fig. 15. Output disturbance rejection for CTC.
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Fig. 16. Output disturbance rejection for PFC.
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Fig. 17. Torques for output disturbance in PID.
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Fig. 18. Torques for output disturbance in CTC.
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In all cases, PFC controller yields the smallest contour
error, indicating good performance due to its anticipa-
tion capacity. The plots in Figs. 10b, 11b, 12b, 13b,
show a good response of the PFC controller when the
speed becomes higher. The tracking errors are signifi-
cantly decreased (see also Table 2 giving the average
tracking error) and the time response are better.
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Fig. 19. Torques for output disturbance in PFC.
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Figs. 14–16 show the disturbance rejection response.
In this case, the PFC controller also shows a well-
damped response as well as a faster one.
6. Conclusion

Advanced motion control of a parallel robot has been
considered in this study. Experimental tracking perfor-
mance on complex trajectories and disturbance rejection
are compared for three types of controllers: a classical
PID strategy and two model-based controllers, that is,
the CTC and the PFC. In the model-based strategies, the
process is first linearized by feedback. Due to the
estimation uncertainties an integrator has been added in
the CTC control scheme for reducing the static errors.
In case of PFC control scheme, the identification
processing has been performed once again after linear-
ization in order to improve the quality of model used in
the controller. The PFC controller is applied to the
linearized process with a stabilized inner velocity closed
loop.
Experimental tasks (circular path, linear path) that

are widely used in industrial pick-and-place applica-
tions, have shown that predictive functional control has
the best performance with respect to the two other
control strategies. Further works will concern the
implementation of additional sensors in order to directly
control the device in the operational space.
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